

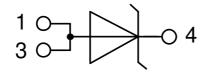
Schottky Diode

 $V_{RRM} = 150 V$

 $I_{\text{FAV}} = 6A$

 $V_{\rm F}$ = 0.62 V

High Performance Schottky Diode Low Loss and Soft Recovery Single Diode


Part number

DSS6-015AS

Marking on Product: 6Y150AS

Backside: cathode

Features / Advantages:

- Very low Vf
- Extremely low switching losses
- Low Irm values
- Improved thermal behaviour
- High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- Low noise switching

Applications:

- Rectifiers in switch mode power supplies (SMPS)
- Free wheeling diode in low voltage converters

Package: TO-252 (DPak)

- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

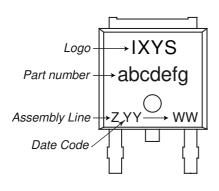
Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747and per semiconductor unless otherwise specified

20190221d


Schottky					Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
V _{RSM}	max. non-repetitive reverse block	ing voltage	$T_{VJ} = 25^{\circ}C$			150	V	
V _{RRM}	max. repetitive reverse blocking v	oltage	$T_{VJ} = 25^{\circ}C$			150	V	
I _R	reverse current, drain current	$V_R = 150 \text{ V}$	$T_{VJ} = 25^{\circ}C$			250	μΑ	
		$V_R = 150 \text{ V}$	$T_{VJ} = 125$ °C			2.5	mA	
V _F	forward voltage drop	I _F = 6 A	$T_{VJ} = 25^{\circ}C$			0.78	V	
		I _F = 12 A				0.86	٧	
		I _F = 6 A	T _{VJ} = 125°C			0.62	٧	
		I _F = 12 A				0.71	٧	
I _{FAV}	average forward current	T _c = 165°C	T _{vJ} = 175°C			6	Α	
		rectangular $d = 0.5$					 	
V _{F0}	threshold voltage slope resistance $ T_{VJ} = 175^{\circ}C $ for power loss calculation only					0.45	V	
r _F						14.6	mΩ	
R _{thJC}	thermal resistance junction to cas	e				3	K/W	
R _{thCH}	thermal resistance case to heatsi	nk			0.50		K/W	
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			50	W	
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			120	Α	
CJ	junction capacitance	$V_B = 24 V f = 1 MHz$	$T_{VJ} = 25^{\circ}C$		82		pF	

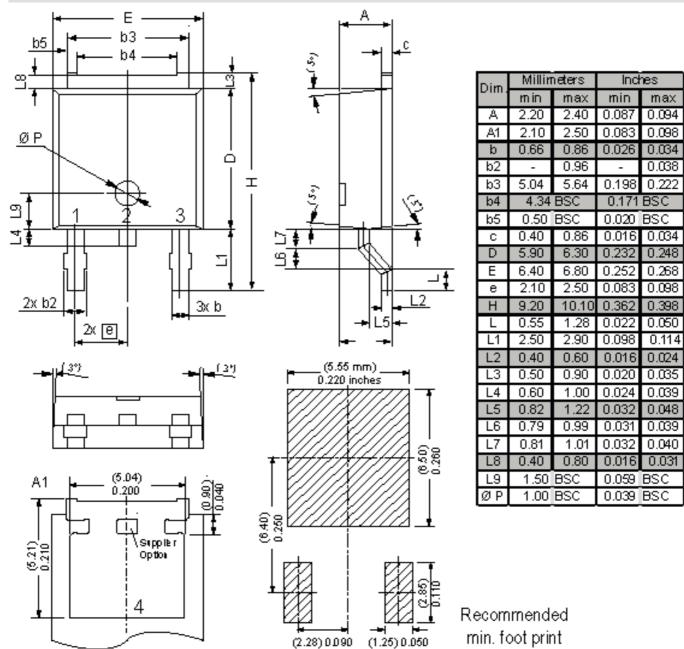
Package TO-252 (DPak)			Ratings				
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per terminal 1)			20	Α	
T _{VJ}	virtual junction temperature		-55		175	°C	
T _{op}	operation temperature		-55		150	°C	
T _{stg}	storage temperature		-55		150	°C	
Weight				0.3		g	
F _c	mounting force with clip		20		60	N	

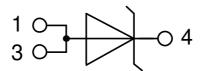
¹⁾ l_{nusc} is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a product with multiple pins for one chip-potential, the current capability can be increased by connecting the pins as one contact.

Product Marking

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DSS6-015AS-TRL	6Y150AS	Tape & Reel	2500	498912
Alternative	DSS6-015AS-TUB	6Y150AS	Tube	70	525021

Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 175 ^{\circ}\text{C}$
$I \rightarrow V_0$)— <u>R</u> o—	Schottky		
V _{0 max}	threshold voltage	0.45		V
$R_{0 \text{ max}}$	slope resistance *	11.4		$m\Omega$


IXYS reserves the right to change limits, conditions and dimensions.


Data according to IEC 60747and per semiconductor unless otherwise specified

20190221d

Outlines TO-252 (DPak)

Schottky

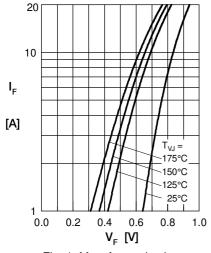


Fig. 1 Max. forward voltage drop characteristics

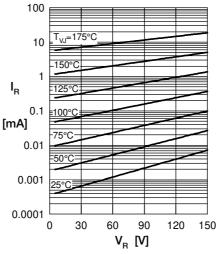


Fig. 2 Typ. reverse current $I_{\rm R}$ vs. reverse voltage $V_{\rm R}$

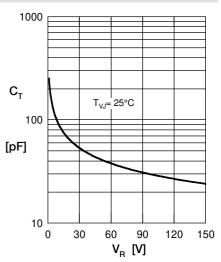


Fig. 3 Typ. junction capacitance C_T vs. reverse voltage V_R

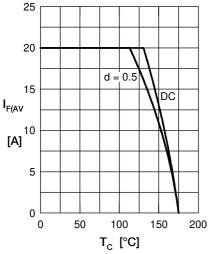


Fig. 4 Average forward current $I_{F(AV)}$ vs. case temp. T_C

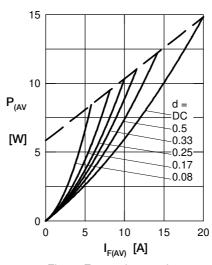


Fig. 5 Forward power loss characteristics

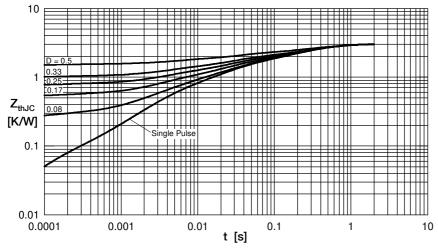


Fig. 6 Transient thermal impedance junction to case at various duty cycles

Note: All curves are per diode

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747and per semiconductor unless otherwise specified

20190221d