LT6003/LT6004/LT6005

1.6V, $1 \mu \mathrm{~A}$ Precision Rail-to-Rail Input and Output Op Amps

feATURES

- Wide Supply Range: 1.6V to 16V
- Low Supply Current: $1 \mu \mathrm{~A} /$ Amplifier Max
- Low Input Bias Current: 90pA Max
- Low Input Offset Voltage: $500 \mu \mathrm{~V}$ Max
- Low Input Offset Voltage Drift: $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- CMRR: 100dB
- PSRR: 95dB
- Avol Driving 20k Load: 100,000 Min
- Capacitive Load Handling: 500pF
- Specified from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Available in Tiny $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ DFN and Low Profile (1mm) ThinSOTTM Packages

APPLICATIONS

- Portable Gas Monitors
- Battery- or Solar-Powered Systems
- Low Voltage Signal Processing
- Micropower Active Filters

DESCRIPTIOn

The LT ${ }^{\top} 6003 / L T 6004 /$ /T6005 are single/dual/quad op amps designed to maximize battery life and performance for portable applications. These amplifiers operate on supplies as low as 1.6 V and are fully specified and guaranteed over temperature on $1.8 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 8 \mathrm{~V}$ supplies while only drawing $1 \mu \mathrm{~A}$ maximum quiescent current.
The ultralow supply current and low operating voltage are combined with excellent amplifier specifications; input offset voltage of $500 \mu \mathrm{~V}$ maximum with a typical drift of only $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 90 pA maximum, open loop gain of 100,000 and the ability to drive 500 pF capacitive loads, making the LT6003/LT6004/LT6005 amplifiers ideal when excellent performance is required in battery powered applications.
The single LT6003 is available in the 5 -pin TSOT-23 and tiny $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ DFN packages. The dual LT6004 is available in the 8 -pin MSOP and $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN packages. The quad LT6005 is available in the 16 -pin SSOP and $5 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN packages. These devices are specified over the commercial, industrial and automotive temperature ranges.

[^0]TYPICAL APPLICATION
Micropower Oxygen Sensor

Start-Up Characteristics Supply Current vs Supply Voltage

LT6003/LT6004/LT6005

absolute maximum ratings

(Note 1)

Total Supply Voltage (V^{+}to V^{-}) 18 V
Differential Input Voltage.. 18 V
Input Voltage Below V^{-}... 9 V
Input Current... 10 mA
Output Short Circuit Duration (Note 2)............. Indefinite
Operating Temperature Range (Note 3)
LT6003C, LT6004C, LT6005C \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6003I, LT6004I, LT6005I................... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ LT6003H, LT6004H, LT6005H............. $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Specified Temperature Range (Note 4)
LT6003C, LT6004C, LT6005C \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6003I, LT6004I, LT6005I................... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6003H, LT6004H, LT6005H............. $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Junction Temperature
DFN Packages. $125^{\circ} \mathrm{C}$
All Other Packages... $150^{\circ} \mathrm{C}$
Storage Temperature Range
DFN Packages. $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
All Other Packages $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) TSOT, MSOP, SSOP Packages $300^{\circ} \mathrm{C}$

pIn CONFIGURATIOn

LT6003 DC PACKAGE 4 -LEAD $(2 \mathrm{~mm} \times 2 \mathrm{~mm})$ PLASTIC DFN $\begin{gathered} \mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=102^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{NOTE} 2) \\ \text { EXPOSED PAD (PIN 5) IS V-} \\ \text { MUST BE SOLDERED TO PCB } \end{gathered}$	$\mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=250^{\circ} \mathrm{C} / \mathrm{W}$	LT6004 DD PACKAGE 8-LEAD $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ PLASTIC DFN $T_{\text {Jmax }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=160^{\circ} \mathrm{C} / \mathrm{W}$ (NOTE 2) EXPOSED PAD (PIN 9) CONNECTED TO V^{-} (PCB CONNECTION OPTIONAL)
LT6004	16-LEAD ($5 \mathrm{~mm} \times 3 \mathrm{~mm}$) PLASTIC DFN $T_{J M A X}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=160^{\circ} \mathrm{C} / \mathrm{W}$ (NOTE 2) EXPOSED PAD (PIN 17) CONNECTED TO V^{-}, (PCB CONNECTION OPTIONAL)	

LT6003/LT6004/LT6005

ORDER InFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LT6003CDC\#PBF	LT6003CDC\#TRPBF	LCKF	4-Lead (2mm $\times 2 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6003IDC\#PBF	LT6003IDC\#TRPBF	LCKF	4-Lead (2mm $\times 2 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6003HDC\#PBF	LT6003HDC\#TRPBF	LCKF	4-Lead (2mm $\times 2 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT6003CS5\#PBF	LT6003CS5\#TRPBF	LTCKG	5-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT60031S5\#PBF	LT60031S5\#TRPBF	LTCKG	5-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6003HS5\#PBF	LT6003HS5\#TRPBF	LTCKG	5-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT6004CDD\#PBF	LT6004CDD\#TRPBF	LCCB	8-Lead (3mm $\times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6004IDD\#PBF	LT6004IDD\#TRPBF	LCCB	8-Lead (3mm $\times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6004HDD\#PBF	LT6004HDD\#TRPBF	LCCB	8-Lead (3mm $\times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT6004CMS8\#PBF	LT6004CMS8\#TRPBF	LTCBZ	8-Lead Plastic MSOP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6004IMS8\#PBF	LT6004IMS8\#TRPBF	LTCBZ	8-Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6004HMS8\#PBF	LT6004HMS8\#TRPBF	LTCBZ	8-Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT6005CDHC\#PBF	LT6005CDHC\#TRPBF	6005	16-Lead ($5 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6005IDHC\#PBF	LT6005IDHC\#TRPBF	6005	16-Lead ($5 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6005HDHC\#PBF	LT6005HDHC\#TRPBF	6005	16-Lead ($5 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT6005CGN\#PBF	LT6005CGN\#TRPBF	6005	16-Lead Plastic SSOP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6005IGN\#PBF	LT6005IGN\#TRPBF	60051	16-Lead Plastic SSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6005HGN\#PBF	LT6005HGN\#TRPBF	6005H	16-Lead Plastic SSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS (LT6003C/, LT6004C/, LT6005C//) The • denotes the specifications which

 apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}$; $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}$, $V_{C M}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=$ half supply, R_{L} to ground, unless otherwise noted.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | $\begin{aligned} & \text { LT6003S5, LT6004MS8 } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 175 | $\begin{aligned} & 500 \\ & 725 \\ & 950 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| | | $\begin{aligned} & \text { LT6005GN } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 190 | $\begin{aligned} & 650 \\ & 925 \\ & 1.15 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ mV |
| | | $\begin{aligned} & \text { LT6004DD, LT6005DHC } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 290 | $\begin{array}{r} 850 \\ 1.15 \\ 1.4 \end{array}$ | $\mu \mathrm{V}$ mV mV |
| | | $\begin{aligned} & \text { LT6003DC } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 290 | $\begin{aligned} & 950 \\ & 1.3 \\ & 1.6 \end{aligned}$ | $\mu \mathrm{V}$ mV mV |
| $\Delta \mathrm{V}_{0 S} / \Delta \mathrm{T}$ | Input Offset Voltage Drift (Note 5) | $\begin{aligned} & \text { S5, MS8, GN } \\ & \text { DC, DD, DHC } \end{aligned}$ | \bullet | | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 5 \\ & 7 \end{aligned}$ | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
 $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |

LT6003/LT6004/LT6005

ELECTRICAL CHARACTERISTICS (LT6003C/I, LT6004C/I, LT6005C//) The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{S}=1.8 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V} ; \mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V}$, $V_{C M}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=$ half supply, R_{L} to ground, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{B}	Input Bias Current (Note 7)	$\begin{aligned} & V_{C M}=0.3 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & V_{C M}=V^{+}-0.3 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & V_{C M}=0.3 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \\ & V_{C M}=V^{+}-0.3 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ & V_{C M}=0 \mathrm{~V} \end{aligned}$			$\begin{gathered} \hline 5 \\ 40 \\ 5 \\ 40 \\ 0.13 \end{gathered}$	$\begin{gathered} 90 \\ 140 \\ 120 \\ 170 \\ 1.4 \end{gathered}$	pA pA pA pA nA
los	Input Offset Current (Note 7)	$\begin{aligned} & V_{C M}=0.3 \mathrm{~V} \\ & V_{C M}=V^{+}-0.3 \mathrm{~V} \\ & V_{C M}=0 \mathrm{~V} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 5 \\ & 7 \\ & 5 \end{aligned}$	$\begin{gathered} 80 \\ 80 \\ 100 \end{gathered}$	pA pA pA
	Input Noise Voltage	0.1 Hz to 10 Hz			3		$\mu \mathrm{V}_{\text {P-P }}$
e_{n}	Input Noise Voltage Density	$f=100 \mathrm{~Hz}$			325		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$f=100 \mathrm{~Hz}$			12		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential Common Mode			$\begin{gathered} \hline 10 \\ 2000 \end{gathered}$		$\mathrm{G} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance				6		pF
CMRR	Common Mode Rejection Ratio (Note 7)	$\begin{aligned} & V_{S}=1.8 \mathrm{~V} \\ & V_{C M}=0 \mathrm{~V} \text { to } 0.7 \mathrm{~V} \\ & V_{C M}=0 \mathrm{~V} \text { to } 1.8 \mathrm{~V}, \mathrm{~S}, \mathrm{MS}, \mathrm{GN} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 1.8 \mathrm{~V}, \mathrm{DC}, \mathrm{DD}, \mathrm{DHC} \end{aligned}$	\bullet	$\begin{aligned} & 73 \\ & 63 \\ & 60 \end{aligned}$	$\begin{gathered} 100 \\ 80 \\ 78 \end{gathered}$		dB dB dB
		$\begin{array}{\|l} \hline V_{S}=5 \mathrm{~V} \\ V_{C M}=0 \mathrm{~V} \text { to } 3.9 \mathrm{~V} \\ V_{C M}=0 \mathrm{~V} \text { to } 5 \mathrm{~V}, \mathrm{~S} 5, \mathrm{MS} 8, \mathrm{GN} \\ V_{C M}=0 \mathrm{~V} \text { to } 5 \mathrm{~V}, \mathrm{DC}, \mathrm{DD}, \mathrm{DHC} \\ \hline \end{array}$	\bullet	$\begin{aligned} & 88 \\ & 72 \\ & 69 \end{aligned}$	$\begin{gathered} 115 \\ 90 \\ 86 \\ \hline \end{gathered}$		dB dB dB
	Input Offset Voltage Shift (Note 7)	$\begin{aligned} & V_{C M}=0 V \text { to } V^{+}-1.1 \mathrm{~V} \\ & V_{C M}=0 V \text { to } V^{+}, S 5, M S 8, G N \\ & V_{C M}=0 V \text { to } V^{+}, D C, D D, D H C \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 7 \\ 0.16 \\ 0.23 \end{gathered}$	$\begin{aligned} & 155 \\ & 1.3 \\ & 1.8 \end{aligned}$	$\mu \mathrm{V}$ mV mV
	Input Voltage Range	Guaranteed by CMRR	\bullet	0		V^{+}	V
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & V_{S}=1.6 \mathrm{~V} \text { to } 6 \mathrm{~V}, \mathrm{~V}_{C M}=0.5 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & V_{S}=1.7 \mathrm{~V} \text { to } 6 \mathrm{~V}, \mathrm{~V}_{C M}=0.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 80 \\ & 78 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \end{aligned}$		dB dB
	Minimum Supply Voltage	Guaranteed by PSRR, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	\bullet	$\begin{aligned} & 1.6 \\ & 1.7 \end{aligned}$			V
AVOL	Large Signal Voltage Gain (Note 7)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{~V}_{\text {OUT }}=0.25 \mathrm{~V} \text { to } 1.25 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	150		V / mV V / mV
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{~V}_{\text {OUT }}=0.25 \mathrm{~V} \text { to } 4.25 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 100 \\ & 60 \end{aligned}$	500		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output Swing Low (Notes 6, 8)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SINK }}=100 \mu \mathrm{~A} \\ & \hline \end{aligned}$	\bullet		$\begin{gathered} 15 \\ 110 \end{gathered}$	$\begin{gathered} 50 \\ 240 \end{gathered}$	mV mV
V_{OH}	Output Swing High (Notes 6, 9)	No Load $I_{\text {SOURCE }}=100 \mu \mathrm{~A}$	\bullet		$\begin{aligned} & \hline 45 \\ & 200 \end{aligned}$	$\begin{aligned} & 100 \\ & 350 \end{aligned}$	mV
ISC	Short Circuit Current (Note 8)	Short to GND $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	\bullet	$\begin{gathered} \hline 2 \\ 1.5 \\ 0.5 \\ \hline \end{gathered}$	5		mA mA mA
		Short to V^{+} $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	\bullet	$\begin{gathered} 2 \\ 1.5 \\ 0.5 \end{gathered}$	7		mA mA mA
Is	Supply Current per Amplifier	$\begin{aligned} & V_{S}=1.8 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		0.85	$\begin{gathered} 1 \\ 1.4 \\ 1.6 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
		$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		1	$\begin{aligned} & 1.2 \\ & 1.6 \\ & 1.9 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
600345fd							
Δ						\bigcirc	

LT6003/LT6004/LT6005

ELECTRICAL CHARACTERISTICS (LT6003C/I, LT6004C/I, LT6005C/I) The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}$, $V_{C M}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=$ half supply, R_{L} to ground, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
GBW	Gain Bandwidth Product	$\mathrm{f}=100 \mathrm{~Hz}$			2		kHz
SR	Slew Rate (Note 11)	$\begin{aligned} & A_{V}=-1, R_{F}=R_{G}=1 M \Omega \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{gathered} 0.55 \\ 0.4 \\ 0.2 \end{gathered}$	0.8		V/ms V/ms V/ms
FPBW	Full Power Bandwidth	$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}_{\text {P-P }}($ Note 10)			170		Hz

(LT6003H, LT6004H, LT6005H) The \bullet denotes the specifications which apply over the full specified temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$. $V_{S}=1.8 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V} ; \mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{0 U T}=$ half supply, R_{L} to ground, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \text { LT6003S5, LT6004MS8 } \\ & \text { LT6005GN } \\ & \text { LT6004DD, LT6005DHC } \\ & \text { LT6003DC } \end{aligned}$	\bullet			$\begin{aligned} & 1.5 \\ & 1.7 \\ & 1.9 \\ & 2.1 \end{aligned}$	mV mV mV mV
$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	Input Offset Voltage Drift (Note 5)	$\begin{aligned} & \text { S5, MS8, GN } \\ & \text { DC, DD, DHC } \end{aligned}$	\bullet		2 3	$\begin{aligned} & 6 \\ & 8 \\ & 8 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current (Note 7)	$\begin{aligned} & \text { LT6003, } \mathrm{V}_{\mathrm{CM}}=0.3 \mathrm{~V}, \mathrm{~V}^{+}-0.3 \mathrm{~V} \\ & \text { LT6004, LT6005, } \mathrm{V}_{\mathrm{CM}}=0.3 \mathrm{~V}, \mathrm{~V}^{+}-0.3 \mathrm{~V} \end{aligned}$				$\begin{gathered} 6 \\ 12 \end{gathered}$	nA nA
IOS	Input Offset Current (Note 7)	$\begin{aligned} & \text { LT6003, } \mathrm{V}_{\mathrm{CM}}=0.3 \mathrm{~V}, \mathrm{~V}^{+}-0.3 \mathrm{~V} \\ & \text { LT6004, LT6005, } \mathrm{V}_{\mathrm{CM}}=0.3 \mathrm{~V}, \mathrm{~V}^{+}-0.3 \mathrm{~V} \end{aligned}$				$\begin{aligned} & 2 \\ & 4 \end{aligned}$	nA
CMRR	Common Mode Rejection Ratio (Note 7)	$\begin{aligned} & V_{S}=1.8 \mathrm{~V} \\ & V_{C M}=0.3 \mathrm{~V} \text { to } 0.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0.3 \mathrm{~V} \text { to } 1.5 \mathrm{~V}, \mathrm{~S} 5, \mathrm{MS} 8, \mathrm{GN} \\ & \mathrm{~V}_{\mathrm{CM}}=0.3 \mathrm{t} \text { t } 1.5 \mathrm{~V}, \mathrm{DC}, \mathrm{DD}, \mathrm{DHC} \end{aligned}$	\bullet	$\begin{aligned} & 67 \\ & 57 \\ & 55 \end{aligned}$			dB dB dB
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0.3 \mathrm{~V} \text { to } 3.9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0.3 \mathrm{~V} \text { to } 4.7 \mathrm{~V}, \mathrm{~S} 5, \mathrm{MS} 8, \mathrm{GN} \\ & \mathrm{~V}_{\mathrm{CM}}=0.3 \mathrm{t} \text { to } 4.7 \mathrm{~V}, \mathrm{DC}, \mathrm{DD}, \mathrm{DHC} \end{aligned}$	\bullet	$\begin{aligned} & 86 \\ & 68 \\ & 66 \\ & \hline \end{aligned}$			dB dB dB
	Input Offset Voltage Shift (Note 7)	$\begin{aligned} & V_{C M}=0.3 \mathrm{~V} \text { to } \mathrm{V}^{+}-1.1 \mathrm{~V} \\ & V_{C M}=0.3 \mathrm{~V} \text { to } \mathrm{V}^{+}-0.3 \mathrm{~V}, \mathrm{S5}, \mathrm{MS} 8, \mathrm{GN} \\ & V_{C M}=0.3 \mathrm{~V} \text { to } \mathrm{V}^{+}-0.3 \mathrm{~V}, \mathrm{DC}, \mathrm{DD}, \mathrm{DHC} \end{aligned}$	$\stackrel{\bullet}{\bullet}$			$\begin{aligned} & 180 \\ & 1.7 \\ & 2.2 \\ & \hline \end{aligned}$	$\mu \mathrm{V}$ mV mV
	Input Voltage Range	Guaranteed by CMRR	\bullet	0.3		$\mathrm{V}^{+}-0.3 \mathrm{~V}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=1.7 \mathrm{~V}$ to $6 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=0.5 \mathrm{~V}$	\bullet	76			dB
	Minimum Supply	Guaranteed by PSRR	\bullet	1.7			V
AVOL	Large Signal Voltage Gain (Note 7)	$\mathrm{V}_{S}=1.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$ to 1.25 V	\bullet	4			V / mV
		$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$ to 4.25 V	\bullet	20			V / mV
$\mathrm{V}_{0 \mathrm{~L}}$	Output Swing Low (Notes 6, 8)	No Load $I_{\text {SINK }}=100 \mu \mathrm{~A}$				$\begin{gathered} 60 \\ 275 \end{gathered}$	mV mV
V_{OH}	Output Swing High (Notes 6, 9)	No Load $I_{\text {SOURCE }}=100 \mu \mathrm{~A}$	\bullet			$\begin{aligned} & 120 \\ & 400 \end{aligned}$	mV mV
ISC	Short Circuit Current (Note 8)	Short to GND	\bullet	0.5			mA
		Short to V^{+}	\bullet	0.5			mA
Is	Supply Current per Amplifier	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \end{aligned}$	\bullet			$\begin{aligned} & 2.2 \\ & 2.5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
SR	Slew Rate (Note 11)	$A_{V}=-1, R_{F}=R_{G}=1 \mathrm{M} \Omega$	\bullet	0.2			V / ms

LT6003/LT6004/LT6005

ELECTRICAL CHARACTERISTICS (LTG0035n, LTG004CN/, LTG0055//) The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{S}= \pm 8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, R_{L} to ground, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \text { LT6003S5, LT6004MS8 } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	\bullet		185	$\begin{aligned} & 600 \\ & 825 \\ & 1.05 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ mV
		$\begin{aligned} & \text { LT6005GN } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		200	$\begin{aligned} & 750 \\ & 1.05 \\ & 1.25 \end{aligned}$	$\mu \mathrm{V}$ mV mV
		$\begin{aligned} & \text { LT6004DD, LT6005DHC } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		300	$\begin{aligned} & 950 \\ & 1.25 \\ & 1.5 \end{aligned}$	$\mu \mathrm{V}$ mV mV
		$\begin{aligned} & \text { LT6003DC } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		0.3	$\begin{gathered} 1.05 \\ 1.4 \\ 1.65 \end{gathered}$	mV mV mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Input Offset Voltage Drift (Note 5)	$\begin{aligned} & \text { S5, MS8, GN } \\ & \mathrm{DC}, \mathrm{DD}, \mathrm{DHC} \end{aligned}$	\bullet		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \hline 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \\ & \hline \end{aligned}$	pA pA
IOS	Input Offset Current		\bullet		7	90	pA
	Input Noise Voltage	0.1 Hz to 10 Hz			3		$\mu \mathrm{V}$ P-P
e_{n}	Input Noise Voltage Density	$f=100 \mathrm{~Hz}$			325		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$f=100 \mathrm{~Hz}$			12		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential Common Mode			$\begin{gathered} \hline 10 \\ 2000 \end{gathered}$		$\mathrm{G} \Omega$ $\mathrm{G} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance				6		pF
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{\text {CM }}=-8 \mathrm{~V} \text { to } 6.9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=-8 \mathrm{~V} \text { to } 8 \mathrm{~V}, \mathrm{~S}, \mathrm{MS} 8, \mathrm{GN} \\ & \mathrm{~V}_{\mathrm{CM}}=-8 \mathrm{~V} \text { to } 8 \mathrm{~V}, \mathrm{DC}, \mathrm{DD}, \mathrm{DHC} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	92 82 78	$\begin{gathered} 120 \\ 100 \\ 96 \end{gathered}$		dB dB dB
	Input Offset Voltage Shift	$\begin{aligned} & V_{C M}=-8 \mathrm{~V} \text { to } 6.9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=-8 \mathrm{~V} \text { to } 8 \mathrm{~V}, \mathrm{~S}, \mathrm{MS} 8, \mathrm{GN} \\ & \mathrm{~V}_{\mathrm{CM}}=-8 \mathrm{~V} \text { to } 8 \mathrm{~V}, \mathrm{DC}, \mathrm{DD}, \mathrm{DHC} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 15 \\ 0.16 \\ 0.25 \end{gathered}$	$\begin{gathered} 375 \\ 1.3 \\ 2 \end{gathered}$	$\mu \mathrm{V}$ mV mV
	Input Voltage Range	Guaranteed by CMRR	\bullet	-8		8	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 1.1 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	\bullet	86	105		dB
AVOL	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=-7.3 \mathrm{~V}$ to 7.3 V			350		V / mV
$\mathrm{V}_{\text {OL }}$	Output Swing Low (Notes 6, 8)	No Load $I_{\text {SINK }}=100 \mu \mathrm{~A}$	\bullet		$\begin{gathered} 10 \\ 105 \end{gathered}$	$\begin{gathered} 50 \\ 240 \end{gathered}$	mV mV
V_{OH}	Output Swing High (Notes 6, 9)	No Load $I_{\text {SOURCE }}=100 \mu \mathrm{~A}$			$\begin{gathered} 50 \\ 195 \end{gathered}$	$\begin{aligned} & 120 \\ & 350 \\ & \hline \end{aligned}$	mV mV
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	Short to GND $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	\bullet	4 3 1	9		mA mA mA
I_{S}	Supply Current per Amplifier	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		1.25	$\begin{aligned} & 1.5 \\ & 1.9 \\ & 2.2 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
GBW	Gain Bandwidth Product	$f=100 \mathrm{~Hz}$			3		kHz
SR	Slew Rate (Note 11)	$\begin{aligned} & A_{V}=-1, R_{F}=R_{G}=1 \mathrm{M} \Omega \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	0.55 0.4 0.2	1.3		V / ms V / ms V / ms
FPBW	Full Power Bandwidth	$\mathrm{V}_{\text {OUT }}=14 \mathrm{~V}_{\text {P-P }}$ (Note 10)			30		Hz

ELECTRICAL CHARACTERISTICS
(LT6003H, LT6004H, LT6005H) The • denotes the specifications which apply over the full specified temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$. $\mathrm{V}_{S}= \pm 8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply, R_{L} to ground, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\begin{aligned} & \text { LT6003S5, LT6004MS8 } \\ & \text { LT6005GN } \\ & \text { LT6004DD, LT6005DHC } \\ & \text { LT6003DC } \end{aligned}$	$\stackrel{\bullet}{\bullet}$			$\begin{gathered} \hline 1.6 \\ 1.8 \\ 2 \\ 2.2 \end{gathered}$	mV mV mV mV
$\Delta \mathrm{V}_{0 S} / \Delta \mathrm{T}$	Input Offset Voltage Drift (Note 5)	$\begin{aligned} & \text { S5, MS8, GN } \\ & \mathrm{DC}, \mathrm{DD}, \mathrm{DHC} \end{aligned}$			2 3	$\begin{aligned} & \hline 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & \text { LT6003 } \\ & \text { LT6004, LT6005 } \end{aligned}$				$\begin{gathered} 6 \\ 12 \end{gathered}$	nA nA
IOS	Input Offset Current	$\begin{aligned} & \text { LT6003 } \\ & \text { LT6004, LT6005 } \end{aligned}$				$\begin{aligned} & 2 \\ & 4 \end{aligned}$	nA
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}=-7.7 \mathrm{~V} \text { to } 6.9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=-7.7 \mathrm{~V} \text { to } 7.7 \mathrm{~V}, \mathrm{~S} 5, \mathrm{MS} 8, \mathrm{GN} \\ & \mathrm{~V}_{\mathrm{CM}}=-7.7 \mathrm{~V} \text { to } 7.7 \mathrm{~V}, \mathrm{DC}, \mathrm{DD}, \mathrm{DHC} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 90 \\ & 78 \\ & 76 \end{aligned}$			dB dB dB
	Input Offset Voltage Shift	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=-7.7 \mathrm{~V} \text { to } 6.9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=-7.7 \mathrm{~V} \text { to } 7.7 \mathrm{~V}, \mathrm{~S} 5, \mathrm{MS} 8, \mathrm{GN} \\ & \mathrm{~V}_{\mathrm{CM}}=-7.7 \mathrm{~V} \text { to } 7.7 \mathrm{~V}, \mathrm{DC}, \mathrm{DD}, \mathrm{DHC} \end{aligned}$	$\stackrel{\bullet}{\bullet}$			$\begin{aligned} & 460 \\ & 1.9 \\ & 2.5 \end{aligned}$	$\mu \mathrm{V}$ mV mV
	Input Voltage Range	Guaranteed by CMRR	\bullet	-7.7		7.7	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 1.1 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	\bullet	84			dB
VoL	Output Swing Low (Notes 6, 8)	No Load $I_{\text {SINK }}=100 \mu \mathrm{~A}$				$\begin{gathered} 60 \\ 275 \end{gathered}$	mV mV
V_{OH}	Output Swing High (Note 6)	No Load $I_{\text {SOURCE }}=100 \mu \mathrm{~A}$				$\begin{aligned} & 140 \\ & 400 \end{aligned}$	mV mV
ISC	Short Circuit Current	Short to GND	\bullet	1			mA
Is	Supply Current per Amplifier		\bullet			3	$\mu \mathrm{A}$
SR	Slew Rate (Note 11)	$A_{V}=-1, R_{F}=R_{G}=1 M \Omega$	\bullet	0.2			V / ms

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: A heat sink may be required to keep the junction temperature below absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted. The θ_{JA} specified for the DC, DD and DHC packages is with minimal PCB heat spreading metal. Using expanded metal area on all layers of a board reduces this value.
Note 3: The LT6003C/LT6004C/LT6005C and LT60031/LT60041/LT6005I are guaranteed functional over the temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LT6003H/LT6004H/LT6005H are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 4: The LT6003C/LT6004C/LT6005C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT6003C/LT6004C/LT6005C are designed, characterized and expected to meet specified performance from
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but are not tested or QA sampled at these temperatures. The LT60031/LT60041/LT60051 are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LT6003H/LT6004H/LT6005H are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 5: This parameter is not 100% tested.
Note 6: Output voltage swings are measured between the output and power supply rails.
Note 7: Limits are guaranteed by correlation to $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ tests.
Note 8: Limits are guaranteed by correlation to $\mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V}$ tests
Note 9: Limits are guaranteed by correlation to $\mathrm{V}_{\mathrm{S}}= \pm 8 \mathrm{~V}$ tests
Note 10: Full-power bandwidth is calculated from the slew rate: FPBW $=S R / \pi V_{\text {p-p }}$.
Note 11: Slew rate measured at $\mathrm{V}_{S}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {Out }}=0.4 \mathrm{~V}$ to 1.4 V is used to guarantee by correlation the slew rate at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}$ to 4 V and the slew rate at $\mathrm{V}_{\mathrm{S}}= \pm 8 \mathrm{~V}, \mathrm{~V}_{\text {Out }}=-5 \mathrm{~V}$ to 5 V .

LT6003/LT6004/LT6005

TYPICAL PERFORMANCE CHARACTERISTICS

Change in Input Offset Voltage vs Total Supply Voltage

Input Bias Current vs Common Mode Voltage

TC $\mathrm{V}_{\text {OS }}$ Distribution

Input Offset Voltage
vs Total Supply Voltage

Output Saturation Voltage
vs Load Current (Output High)

Supply Current vs Supply Voltage

Input Offset Voltage vs Input Common Mode Voltage

Output Saturation Voltage vs Load Current (Output Low)

TYPICAL PERFORMANCE CHARACTERISTICS

0.1 Hz to 10 Hz Voltage Noise

Output Short-Circuit Current vs Total Supply Voltage (Sourcing)

Open-Loop Gain

Output Short-Circuit Current vs Total Supply Voltage (Sinking)

600345 G12

600345 G16

Voltage Noise vs Frequency

600345 G15

9

LT6003/LT6004/LT6005

TYPICAL PERFORMANCE CHARACTERISTICS

LT6003/LT6004/LT6005

TYPICAL PERFORMAOCE CHARACTERISTICS

LT6003/LT6004/LT6005

SIMPLIFIED SCHEMATIC

Figure 1

APPLICATIONS INFORMATION

Supply Voltage

The positive supply of the LT6003/LT6004/LT6005 should be bypassed with a small capacitor (about $0.01 \mu \mathrm{~F}$) within an inch of the pin. When driving heavy loads, an additional $4.7 \mu \mathrm{~F}$ electrolytic capacitor should be used. When using split supplies, the same is true for the negative supply pin.

Rail-to-Rail Characteristics

The LT6003/LT6004/LT6005 are fully functional for an input signal range from the negative supply to the positive supply. Figure 1 shows a simplified schematic of the amplifier. The input stage consists of two differential amplifiers, a PNP stage Q3/Q6 and an NPN stage Q4/ Q5 that are active over different ranges of the input common mode voltage. The PNP stage is active for common mode voltages, V_{CM}, between the negative supply to approximately 0.9 V below the positive supply. As $\mathrm{V}_{\text {CM }}$ moves closer towards the positive supply, the transistor Q7 will steer Q2's tail current to the current mirror Q8/Q9, activating the NPN differential pair. The PNP pair becomes inactive for the rest of the input common mode voltage range up to the positive supply.

The second stage is a folded cascode and current mirror that converts the input stage differential signals into a single ended output. Capacitor C1 reduces the unity cross frequency and improves the frequency stability without degrading the gain bandwidth of the amplifier. The complementary drive generator supplies current to the output transistors that swing from rail to rail.

Input

Input bias current $\left(I_{\mathrm{B}}\right)$ is minimized with cancellation circuitry on both input stages. The cancellation circuitry remains active when $V_{C M}$ is more than 300 mV from either rail. As $V_{\text {CM }}$ approaches V^{-}the cancellation circuitry turns off and I_{B} is determined by the tail current of Q2 and the
beta of the PNP input transistors. As V_{CM} approaches V^{+} devices in the cancellation circuitry saturate causing I_{B} to increase (inthe nanoamp range). Input offset voltage errors due to I_{B} can be minimized by equalizing the noninverting and inverting source impedances.
The input offset voltage changes depending on which input stage is active; input offset voltage is trimmed on both input stages, and is guaranteed to be $500 \mu \mathrm{~V}$ max in the PNP stage. By trimming the input offset voltage of both input stages, the input offset voltage shift over the entire common mode range (CMRR) is typically $160 \mu \mathrm{~V}$, maintaining the precision characteristics of the amplifier.

The input stage of the LT6003/LT6004/LT6005 incorporates phase reversal protection to prevent wrong polarity outputs from occurring when the inputs are driven up to 9 V below the negative rail. 600k protective resistors are included in the input leads so that current does not become excessive when the inputs are forced below V^{-}or when a large differential signal is applied. Input current should be limited to 10 mA when the inputs are driven above the positive rail.

Output

The output of the LT6003/LT6004/LT6005 is guaranteed to swing within 100 mV of the positive rail and 50 mV of the negative rail with no load, over the industrial temperature range. The LT6003/LT6004/LT6005 can typically source 8 mA on a single 5 V supply. Sourcing current is reduced to 5 mA on a single 1.8 V supply as noted in the electrical characteristics. However, when sourcing more than $250 \mu \mathrm{~A}$ with an output load impedance greater than 20k Ω, a $1 \mu \mathrm{~F}$ capacitor in series with a 2 k resistor should be placed from the output to ground to insure stability.
The normally reverse-biased substrate diode from the output to V^{-}will cause unlimited currents to flow when the output is forced below V^{-}. If the current is transient and limited to 100 mA , no damage will occur.

LT6003/LT6004/LT6005

APPLICATIONS INFORMATION

Gain

The open-loop gain is almost independent of load when the output is sourcing current. This optimizes performance in single supply applications where the load is returned to ground. The Typical Performance Characteristics curve of Open-Loop Gain for various loads shows the details.

Start-Up and Output Saturation Characteristics

Micropower op amps are often not micropower during start-up or during output saturation. This can wreak havoc on limited current supplies. In the worst case there may not be enough supply current available to take the system up to nominal voltages. Unlike the LT6003/LT6004/LT6005, when the output saturates, some op amps may draw excessive current and pull down the supplies, compromising rail-to-rail performance. Figure 2 shows the start-up characteristics of the LT6003/LT6004/LT6005 for three limiting cases. The circuits are shown in Figure 3. One circuit creates a positive offset forcing the output to come up saturated high. Another circuit creates a negative offset forcing the output to come up saturated low, while the last circuit brings the output up at $1 / 2$ supply. In all cases, the supply current is well controlled and is not excessive when the output is on either rail.

Figure 2. Start-Up Characteristics

Output High

Output Low

Output at $\mathrm{V}_{\mathrm{S}} / 2$

Figure 3. Circuits for Start-Up Characteristics

Adaptive Filter

The circuit of Figure 4 shows the LT6005 applied as a micropower adaptive filter, which automatically adjusts the time constant depending on the signal level. Op amp A1 buffers the input onto the RC which has either a 1 ms or 20 ms time constant depending on the state of switch S1. The signal is then buffered to the output by op amp A2. Op amps A3 and A4 are configured as gain-of-40 difference amplifiers, gaining up the difference between the buffered input voltage and the output. When there is no difference, the outputs of A3 and A4 will be near zero. When a positive signal step is applied to the input, the output of A3 rises. When a negative signal step is applied to the input, the output of A4 rises. These voltages are fed to the LT6700-2 comparator which has a built in 400 mV reference. If the input step exceeds 10 mV , the output of the difference amplifiers will exceed 400 mV and the comparator output (wired in OR gate fashion) falls low. This turns on S 1 , reducing the time constant and speeding up the settling. The overall effect is that the circuit provides "slow filtering" with "fast settling." Waveforms for a 100 mV input step are shown in the accompanying photo. The fast 1 ms time constant is obvious in the output waveform, while the slow time constant is discernible as the slow ramping sections. That the slow time constant is discernible at all is due to delay time in the difference amplifier and comparator functions.

APPLICATIONS InFORMATION

ADAPTIVE FILTER IMPROVES INHERENT TRADE-OFF OF SETTLING TIME VS NOISE FILTERING. SMALL SIGNAL DC STEPS SETTLE WITH A 20 ms TIME CONSTANT FOR AN 8 Hz NOISE BANDWIDTH. LARGE STEP SIGNALS (>10mV) CAUSE S1 TO TURN ON, SPEEDING UP THE TIME CONSTANT TO 1ms, FOR IMPROVED SETTLING. AS THE OUTPUT SETTLES BACK TO WITHIN $10 \mathrm{mV}, 51$ TURNS OFF AGAIN, RESTORING THE 20ms TIME CONSTANT, FOR IMPROVED FILTERING.

600345 F04
Figure 4. Adaptive Filter

Figure 5. Precision 1.25 A Current Source

LT6003/LT6004/LT6005

PACKAGE DESCRIPTION
DC Package
4-Lead Plastic DFN ($2 \mathrm{~mm} \times 2 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1724 Rev B)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDEDED

1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILUIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE

S5 Package

5-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1635)

PER IPC CALCULATOR

1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR 5. MOLD FLASH SHALL NOT EXCEED 0.254 mm 5. MOLD FLASH SHALL NOT EXCEED 0.254 mm
5. JEDEC PACKAGE REFERENCE IS MO-193

PACKAGE DESCRIPTION

DD Package
8 -Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698)

BOTTOM VIEW—EXPOSED PAD

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE

MS8 Package
8-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1660 Rev F)

17

LT6003/LT6004/LT6005

PACKAGE DESCRIPTION
DHC Package
16-Lead Plastic DFN ($5 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1706)

GN Package

16-Lead Plastic SSOP (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1641)

REVISIOC HISTORY (Revision history begins at Rev D)

| REV | DATE | DESCRIPTION | PAGE NUMBER |
| :---: | :---: | :--- | :---: | :---: |
| D | $3 / 11$ | Changed package description from TSSOP to SSOP in Description, Absolute Maximum Ratings, Pin Configuration,
 and Order Information | 1 to 3 |

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

LT6003/LT6004/LT6005

TYPICAL APPLICATION

Gain of -50 Ultralow Power Precision Gas Sensor Amplifier

S1, S2 ARE NORMALLY CLOSED ($\mathrm{N}=\mathrm{LOW}$). S3 IS NORMALLY OPEN ($\mathrm{N}=\mathrm{LOW}$). A1's OUTPUT OFFSET IS STORED ON C1. WHEN A READING IS DESIRED, SWITCHES REVERSE STATE, AND A2 ACTS AS A DIFFERENCE AMPLIFIER FROM THE STORED OFFSET. NULL PHASE SHOULD BE ASSERTED 200ms OR MORE. A2 SETTLES 50ms AFTER READ PHASE IS ASSERTED, WITH WORST CASE ROOM TEMPERATURE DROOP RATE IS $0.8 \mu \mathrm{~V} / \mathrm{ms}$ DOMINATED BY ANALOG SWITCH LEAKAGE CURRENT.

600345 TA02

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1490A/LT1491A	$50 \mu \mathrm{~A}$ Dual/Quad Over-The-Top ${ }^{\oplus}$ Rail-to-Rail Input and Output Op Amps	$950 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$, Gain Bandwidth $=200 \mathrm{kHz}$
LT1494/LT1495/ LT1496	1.5 A A Max Single/Dual/Quad Over-The-Top Precision Rail-to-Rail Input and Output Op Amps	$375 \mu \mathrm{~V}$ V OS (MAX), Gain Bandwidth $=2.7 \mathrm{kHz}$
LT1672/LT1673/ LT1674	$2 \mu \mathrm{~A}$ Max, AV ≥ 5, Single/Dual/Quad Over-The-Top Precision Rail-to-Rail Input and Output Op Amps	Gain of 5 Stable, Gain Bandwidth $=12 \mathrm{kHz}$
LT1782	Micropower, Over-The-Top, SOT-23, Rail-to-Rail Input and Output Op Amps	SOT-23, $800 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$, $\mathrm{I}_{\mathrm{S}}=55 \mu \mathrm{~A}_{(\text {MAX })}$, Gain Bandwidth $=200 \mathrm{kHz}$, Shutdown Pin
LT2178/LT2179	17 μ A Dual/Quad Single Supply Op Amps	$120 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$, Gain Bandwidth $=60 \mathrm{kHz}$
$\begin{aligned} & \text { LT6000/LT6001/ } \\ & \text { LT6002 } \end{aligned}$	1.8V, 16 $\mu \mathrm{A}$ Max Single/Dual/Quad Precision Rail-to-Rail Op Amps	$600 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$, Gain Bandwidth $=50 \mathrm{kHz}$, Shutdown

Over-The-Top is a registered trademark of Linear Technology Corporation.

[^0]: $\boldsymbol{\mathcal { Y }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

