

+3 V/+5 V/±5 V, CMOS, 8-Channel Analog Multiplexer

Enhanced Product

ADG658-EP

FEATURES

±2 V to ±6 V dual supply 2 V to 12 V single supply <0.1 nA leakage currents (typical) 45 Ω typical on resistance over full signal range Rail-to-rail switching operation Single, 8 to 1 multiplexer 16-lead TSSOP package 0.01 µA typical supply current TTL/CMOS compatible inputs

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard) Military temperature range: -55°C to +125°C Controlled manufacturing baseline One assembly/test site One fabrication site Enhanced product change notification Qualification data available on request

APPLICATIONS

Automatic test equipment Data acquisition systems Battery-powered systems Communication systems Audio and video signal routing Relay replacement Sample-and-hold systems Industrial control systems

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

GENERAL DESCRIPTION

The ADG658-EP is a low voltage, CMOS analog multiplexer comprised of eight single channels. The ADG658-EP switches one of eight inputs (S1 to S8) to a common output, D, as determined by the 3-bit binary address lines A0, A1, and A2. An EN input enables or disables the device. When disabled, all channels are switched off.

The ADG658-EP is designed on an enhanced process that provides lower power dissipation yet gives high switching speeds. It can operate equally well as either a multiplexer or a demultiplexer, and has an input range that extends to the supplies. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels. All digital inputs have +0.8 V to +2.4 V logic thresholds, ensuring TTL/CMOS logic compatibility when using single +5 V or dual \pm 5 V supplies.

The ADG658-EP is available in a 16-lead TSSOP package.

Additional application and technical information can be found in the ADG658 data sheet.

PRODUCT HIGHLIGHTS

- 1. Single-supply and dual-supply operation. The ADG658-EP offers high performance and is fully specified and guaranteed with ±5 V, +5 V, and +3 V supply rails.
- 2. Military temperature range -55°C to +125°C.
- 3. Low supply current, typically $0.01 \mu A$.
- 4. 16-lead TSSOP package.

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

Rev. 0

ADG658-EP

TABLE OF CONTENTS

Features	1
Enhanced Product Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
Dual Supply	3

3
5
6
6
7
8
10
10

REVISION HISTORY

8/2017—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = –5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	+25°C	–55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		Vss to VDD	V	$V_{DD} = +4.5 V, V_{SS} = -4.5 V$
On Resistance, Ron	45		Ωtyp	Source voltage (V _s) = ± 4.5 V, source current (I _s) = 1 mA
	75	100	Ωmax	
On Resistance Match Between	1.3		Ωtyp	
Channels, ΔR _{on}	3	3.5	Ωmax	$V_{s} = 3.5 V, I_{s} = 1 mA$
On Resistance Flatness, R _{FLAT(ON)}	10		Ωtyp	$V_{DD} = +5 V, V_{SS} = -5 V$
	16	18	Ωmax	$V_{s} = \pm 3 V_{r} I_{s} = 1 mA$
LEAKAGE CURRENTS				$V_{DD} = +5.5 \text{ V}, \text{ V}_{SS} = -5.5 \text{ V}$
Source Off Leakage, Is (OFF)	±0.005		nA typ	Drain voltage (V _D) = ± 4.5 V, V _S = ∓ 4.5 V
	±0.2	±5	nA max	
Drain Off Leakage, I _D (OFF)	±0.005		nA typ	$V_D = \pm 4.5 \text{ V}, V_S = \mp 4.5 \text{ V}$
	±0.2	±5	nA max	
Channel On Leakage I _D , Is (ON)	±0.005		nA typ	$V_D = V_S = \pm 4.5 V$
	±0.2	±5	nA max	
DIGITAL INPUTS				
Input High Voltage, VINH		2.4	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	Input voltage $(V_{IN}) = V_{INL}$ or V_{INH}
		±1	μA max	
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ¹				
Transition Time, t _{TRANSITION}	80		ns typ	Load resistance (R_L) = 300 Ω , load capacitance (C_L) = 35 pl
	115	165	ns max	$V_S = 3 V$
EN On Time, t _{on} (EN)	80		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	115	165	ns max	$V_s = 3 V$
\overline{EN} Off Time, topp (\overline{EN})	30		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	45	55	ns max	$V_s = 3 V$
Break-Before-Make Time Delay, t _{BBM}	50	55	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		10	ns min	Source 1 voltage $(V_{s1}) = 3 V$, source 2 voltage $(V_{s2}) = 3 V$
Charge Injection	2	10	pC typ	$V_{s} = 0 V, R_{s} = 0 \Omega$
charge injection	4		pC typ	$C_L = 1 \text{ nF}$
Off Isolation	-90		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz$
Total Harmonic Distortion Plus Noise, THD + N	0.025		% typ	$R_L = 600 \Omega$, 2 V p-p, f = 20 Hz to 20 kHz
–3 dB Bandwidth	210		MHz	$R_L = 50 \Omega, C_L = 5 pF$
5 db bandwidth	210		typ	n = 50 12, Cl = 5 pi
Source Capacitance, Cs (OFF)	4		pF typ	f = 1 MHz
Drain Capacitance, C_D (OFF)	23		pF typ	f = 1 MHz
C_D, C_S (ON)	28		pF typ	f = 1 MHz
POWER REQUIREMENTS	-		1 71	$V_{DD} = +5.5 V, V_{SS} = -5.5 V$
Positive Power Supply Current, I _{DD}	0.01		μA typ	Digital inputs = 0 V or 5.5 V
		1	μA max	
	1	1 .	μιτιαλ	
Negative Power Supply Current, Iss	0.01		µA typ	Digital inputs = 0 V or 5.5 V

¹ Guaranteed by design; not subject to production test.

5 V SINGLE SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	–55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to V _{DD}	V	$V_{DD} = 4.5 V, V_{SS} = 0 V$
On Resistance, Ron	85		Ωtyp	$V_s = 0 V$ to 4.5 V, $I_s = 1 mA$
	150	200	Ωmax	
On Resistance Match Between	4.5		Ωtyp	$V_s = 3.5 V$, $I_s = 1 mA$
Channels, ΔR _{on}	8	10	Ωmax	
On Resistance Flatness, R _{FLAT(ON)}	13	16	Ωtyp	$V_{DD} = 5 V$, $V_{SS} = 0 V$, $V_{S} = 1.5 V$ to $4 V$, $I_{S} = 1 mA$
LEAKAGE CURRENTS				$V_{DD} = 5.5 V$
Source Off Leakage, Is (OFF)	±0.005		nA typ	$V_{S} = 1 \text{ V}/4.5 \text{ V}, V_{D} = 4.5 \text{ V}/1 \text{ V}$
	±0.2	±5	nA max	
Drain Off Leakage, I _D (OFF)	±0.005		nA typ	$V_{S} = 1 \text{ V}/4.5 \text{ V}, V_{D} = 4.5 \text{ V}/1 \text{ V}$
	±0.2	±5	nA max	
Channel On Leakage I _D , Is (ON)	±0.005		nA typ	$V_{S} = V_{D} = 1 V \text{ or } 4.5 V$
	±0.2	±5	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±1	μA max	
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ¹				
Transition Time, transition	120		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	200	300	ns max	$V_S = 3 V$
EN On Time, ton (EN)	120		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	190	280	ns max	$V_S = 3 V$
EN Off Time, toff (EN)	35		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	50	70	ns max	$V_s = 3 V$
Break-Before-Make Time Delay, t _{BBM}	100		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		10	ns min	$V_{S1} = V_{S2} = 3 V$
Charge Injection	0.5		pC typ	$V_s = 2.5 V$, $R_s = 0 \Omega$, $C_L = 1 nF$
2	1		pC max	
Off Isolation	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$
–3 dB Bandwidth	180		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$
Source Capacitance, Cs (OFF)	5		pF typ	f = 1 MHz
Drain Capacitance, C _D (OFF)	29		pF typ	f = 1 MHz
C _D , C _S (ON)	30		pF typ	f = 1 MHz
POWER REQUIREMENTS		1		$V_{DD} = 5.5 V$
Positive Power Supply Current, IDD	0.01		μA typ	Digital inputs = $0 V \text{ or } 5.5 V$
		1	µA max	

¹ Guaranteed by design; not subject to production test.

2.7 V TO 3.6 V SINGLE SUPPLY

 V_{DD} = 2.7 to 3.6 V, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	+25°C	–55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to V _{DD}	V	$V_{DD} = 2.7 V, V_{SS} = 0 V$
On Resistance, R _{ON}	185		Ωtyp	$V_{s} = 0 V$ to 2.7 V, $I_{s} = 0.1 mA$
	300	400	Ωmax	
On Resistance Match Between	2		Ωtyp	$V_s = 1.5 V$, $I_s = 0.1 mA$
Channels, ΔR _{ON}	4.5	7	Ωmax	
LEAKAGE CURRENTS				$V_{DD} = 3.3 V$
Source Off Leakage, Is (OFF)	±0.005		nA typ	$V_{s} = 1 V/3 V, V_{D} = 3 V/1 V$
	±0.2	±5	nA max	
Drain Off Leakage, I _D (OFF)	±0.005		nA typ	$V_{s} = 1 V/3 V, V_{D} = 3 V/1 V$
3 · · · ·	±0.2	±5	nA max	
Channel On Leakage I _D , Is (ON)	±0.005		nA typ	$V_{s} = V_{D} = 1 V \text{ or } 3 V$
y	±0.2	±5	nA max	
DIGITAL INPUTS				1
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, VINL		0.5	V max	
Input Current				
Iinl or Iinh	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±1	μA max	
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ¹				
Transition Time, transition	200		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	370	490	ns max	$V_{s} = 1.5 V$
EN On Time, t _{on} (EN)	230		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	370	490	ns max	$V_{\rm S} = 1.5 \rm V$
EN Off Time, toff (EN)	50		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	80	110	ns max	$V_{\rm S} = 1.5 \rm V$
Break-Before-Make Time Delay, t _{BBM}	200		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
,,,,,,,,,,,,,,,,,,,		10	ns min	$V_{S1} = V_{S2} = 1.5 V$
Charge Injection	1		pC typ	$V_{s} = 1.5 V, R_{s} = 0 \Omega, C_{L} = 1 nF$
	2		pC max	
Off Isolation	-90		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz$
–3 dB Bandwidth	160		MHz typ	$R_L = 50 \Omega, C_L = 5 pF$
Source Capacitance, C _s (OFF)	5		pF typ	f = 1 MHz
Drain Capacitance, C_D (OFF)	29		pF typ	f = 1 MHz
C_D, C_S (ON)	30		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = 3.6 V$
Positive Power Supply Current, I _{DD}	0.01		μA typ	Digital inputs = 0 V or 3.6 V
	0.01	1	μA max	

¹ Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 4.

Parameter	Rating
V _{DD} to V _{SS}	13 V
V _{DD} to GND	–0.3 V to +13 V
Vss to GND	+0.3 V to -6.5 V
Analog Inputs ¹	V_{SS} – 0.3 V to V_{DD} + 0.3 V
Digital Inputs ¹	GND – 0.3 V to V _{DD} + 0.3 V or 10 mA, whichever occurs first
Peak Current, Sx or D	40 mA
(Pulsed at 1 ms, 10% duty cycle max)	
Continuous Current, Sx or D	20 mA
Operating Temperature Range	–55°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
θ _{JA} Thermal Impedance	
16-Lead TSSOP	150.4°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C
ESD (Human Body Model)	4.0 kV

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

 1 Overvoltages at Ax, $\overline{\text{EN}}$, Sx, or D are clamped by internal diodes. Current must be limited to the maximum ratings.

Table 5. Truth Table

A2	A1	AO	EN	Switch Condition	
X ¹	X ¹	X ¹	1	None	
0	0	0	0	1	
0	0	1	0	2	
0	1	0	0	3	
0	1	1	0	4	
1	0	0	0	5	
1	0	1	0	6	
1	1	0	0	7	
1	1	1	0	8	

¹ X means don't care

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. 16-Lead TSSOP Pin Configuration

Table 6. 16-Lead TSSOP Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 2, 4, 5, 12, 13, 14, 15	S1 to S8	Source Terminals. Can be an input or output.
3	D	Drain Terminal. Can be an input or output.
6	ĒN	Active Low Digital Input. When high, device is disabled and all switches are off. When low, Ax logic inputs determine on switch.
7	V _{ss}	Most Negative Power Supply Potential.
8	GND	Ground (0 V) Reference.
9, 10, 11	A0 to A2	Logic Control Inputs.
16	V _{DD}	Most Positive Power Supply Potential.

ADG658-EP

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. V_D (V_s) for Different Temperatures (Dual Supply)

Figure 4. On Resistance vs. V_D (V_S) for Different Temperatures (Single Supply)

Figure 5. On Resistance vs. V_D (Vs) for Different Temperatures (Single Supply)

Figure 6. Leakage Current vs. Temperature (Dual Supply)

Figure 7. Leakage Current vs. Temperature (Single Supply)

Enhanced Product

ADG658-EP

Figure 8. ton/toff *Time vs. Temperature (Dual Supply)*

Figure 9. t_{ON}/t_{OFF} Time vs. Temperature (Single Supply)

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 10. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG658TRUZ-EP	-55°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG658TRUZ-EP-RL7	-55°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

 1 Z = RoHS Compliant Part.

©2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D15981-0-8/17(0)

www.analog.com