FEATURES

$\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ dual supply
2 V to 12 V single supply
<0.1 nA leakage currents (typical)
45Ω typical on resistance over full signal range
Rail-to-rail switching operation
Single, 8 to 1 multiplexer
16-lead TSSOP package
$0.01 \mu \mathrm{~A}$ typical supply current
TTL/CMOS compatible inputs

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Military temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Controlled manufacturing baseline
One assembly/test site
One fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

Automatic test equipment
Data acquisition systems
Battery-powered systems
Communication systems
Audio and video signal routing
Relay replacement
Sample-and-hold systems
Industrial control systems

GENERAL DESCRIPTION

The ADG658-EP is a low voltage, CMOS analog multiplexer comprised of eight single channels. The ADG658-EP switches one of eight inputs (S 1 to S 8) to a common output, D , as determined by the 3-bit binary address lines A0, A1, and A2. An $\overline{\mathrm{EN}}$ input enables or disables the device. When disabled, all channels are switched off.
The ADG658-EP is designed on an enhanced process that provides lower power dissipation yet gives high switching speeds. It can operate equally well as either a multiplexer or a demultiplexer, and has an input range that extends to the supplies. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels. All digital inputs have +0.8 V to +2.4 V logic thresholds, ensuring TTL/CMOS logic compatibility when using single +5 V or dual $\pm 5 \mathrm{~V}$ supplies.
The ADG658-EP is available in a 16 -lead TSSOP package.
Additional application and technical information can be found in the ADG658 data sheet.

PRODUCT HIGHLIGHTS

1. Single-supply and dual-supply operation. The ADG658-EP offers high performance and is fully specified and guaranteed with $\pm 5 \mathrm{~V},+5 \mathrm{~V}$, and +3 V supply rails.
2. Military temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
3. Low supply current, typically $0.01 \mu \mathrm{~A}$.
4. 16-lead TSSOP package.

Rev. 0

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 O2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features 1
Enhanced Product Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
5 V Single Supply 3
2.7 V to 3.6 V Single Supply 5
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configurations and Function Descriptions 7
Typical Performance Characteristics 8
Outline Dimensions 10
Ordering Guide 10

REVISION HISTORY

8/2017-Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On Resistance Match Between Channels, Δ Ron On Resistance Flatness, Rflat(on)	$\begin{aligned} & 45 \\ & 75 \\ & 1.3 \\ & 3 \\ & 10 \\ & 16 \\ & \hline \end{aligned}$	V_{SS} to V_{DD} 100 3.5 18	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$V_{D D}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V}$ Source voltage $\left(\mathrm{V}_{\mathrm{s}}\right)= \pm 4.5 \mathrm{~V}$, source current $\left(\mathrm{I}_{\mathrm{s}}\right)=1 \mathrm{~mA}$ $\begin{aligned} & \mathrm{V}_{\mathrm{s}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{sS}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (OFF) Drain Off Leakage, ID (OFF) Channel On Leakage Io, Is (ON)	$\begin{aligned} & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Drain voltage }\left(\mathrm{V}_{\mathrm{D}}\right)= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VinL Input Current lind or linh Digital Input Capacitance, Cin	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$	$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 1 \end{gathered}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	Input voltage $\left(\mathrm{V}_{\text {IN }}\right)=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ Transition Time, ttransition $\overline{\mathrm{EN}}$ On Time, ton ($\overline{\mathrm{EN}})$ $\overline{\mathrm{EN}}$ Off Time, toff ($\overline{\mathrm{EN}}$) Break-Before-Make Time Delay, tввм Charge Injection Off Isolation Total Harmonic Distortion Plus Noise, THD + N -3 dB Bandwidth Source Capacitance, C_{S} (OFF) Drain Capacitance, C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	80 115 80 115 30 45 50 2 4 -90 0.025 210 4 23 28	165 165 55 10	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ pC max dB typ \% typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \text { Load resistance }\left(R_{\mathrm{L}}\right)=300 \Omega \text {, load capacitance }\left(\mathrm{C}_{\mathrm{L}}\right)=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$ Source 1 voltage $\left(\mathrm{V}_{51}\right)=3 \mathrm{~V}$, source 2 voltage $\left(\mathrm{V}_{\mathrm{s}^{2}}\right)=3 \mathrm{~V}$ $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega \\ & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega, 2 \mathrm{Vp-p,f=20Hz} \mathrm{to} \mathrm{20kHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS Positive Power Supply Current, IDD Negative Power Supply Current, Iss	0.01 0.01	1 1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V}$ Digital inputs $=0 \mathrm{~V}$ or 5.5 V Digital inputs $=0 \mathrm{~V}$ or 5.5 V

[^0]
5 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On Resistance Match Between Channels, Δ Ron On Resistance Flatness, R flat(on)	$\begin{aligned} & 85 \\ & 150 \\ & 4.5 \\ & 8 \\ & 13 \end{aligned}$	$\begin{aligned} & 0 \text { to } V_{D D} \\ & 200 \\ & 10 \\ & 16 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (OFF) Drain Off Leakage, Io (OFF) Channel On Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{Is}_{\mathrm{s}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \end{aligned}$	± 5 ± 5 ± 5	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current linl or linh Digital Input Capacitance, Cin	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$	2.4 0.8 ± 1	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ Transition Time, ttransition $\overline{\mathrm{EN}}$ On Time, ton $(\overline{\mathrm{EN}})$ $\overline{\mathrm{EN}}$ Off Time, toff $(\overline{\mathrm{EN}})$ Break-Before-Make Time Delay, tввм Charge Injection Off Isolation -3 dB Bandwidth Source Capacitance, C_{S} (OFF) Drain Capacitance, C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 120 \\ & 200 \\ & 120 \\ & 190 \\ & 35 \\ & 50 \\ & 100 \\ & \\ & 0.5 \\ & 1 \\ & -90 \\ & 180 \\ & 5 \\ & 29 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 280 \\ & 70 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { ns typ } \\ & \text { ns max } \\ & \text { ns typ } \\ & \text { ns max } \\ & \text { ns typ } \\ & \text { ns max } \\ & \text { ns typ } \\ & \text { ns min } \\ & \text { pC typ } \\ & \text { pC max } \\ & \text { dB typ } \\ & \text { MHz typ } \\ & \text { pF typ } \\ & \text { pF typ } \\ & \text { pF typ } \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \\ & \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS Positive Power Supply Current, IDD	0.01	1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^1]
Enhanced Product

2.7 V TO 3.6 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=2.7$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$+25^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On Resistance Match Between Channels, Δ Ron	$\begin{aligned} & 185 \\ & 300 \\ & 2 \\ & 4.5 \end{aligned}$	0 to $V_{D D}$ 400 7	V Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0.1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0.1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (OFF) Drain Off Leakage, I_{D} (OFF) Channel On Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \end{aligned}$	± 5 ± 5 ± 5	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \end{aligned}$
DIGITAL INPUTS Input High Voltage, ViNH Input Low Voltage, VINL Input Current linl or linh Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$	$\begin{aligned} & 0.005 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0 \\ 0.5 \\ \\ \pm 1 \end{array}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ Transition Time, ttransition $\overline{\mathrm{EN}}$ On Time, ton ($\overline{\mathrm{EN}})$ $\overline{\mathrm{EN}}$ Off Time, toff $(\overline{\mathrm{EN}})$ Break-Before-Make Time Delay, tввм Charge Injection Off Isolation -3 dB Bandwidth Source Capacitance, Cs (OFF) Drain Capacitance, C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 200 \\ & 370 \\ & 230 \\ & 370 \\ & 50 \\ & 80 \\ & 200 \\ & 1 \\ & 1 \\ & 2 \\ & -90 \\ & 160 \\ & 5 \\ & 29 \\ & 30 \end{aligned}$	490 490 110 10	$\begin{aligned} & \text { ns typ } \\ & \text { ns max } \\ & \text { ns typ } \\ & \text { ns max } \\ & \text { ns typ } \\ & \text { ns max } \\ & \text { ns typ } \\ & \text { ns min } \\ & \text { pC typ } \\ & \text { pC max } \\ & \text { dB typ } \\ & \text { MHz typ } \\ & \text { pF typ } \\ & \text { pF typ } \\ & \text { pF typ } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, C_{\mathrm{L}}=1 \mathrm{nF} \\ & \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS Positive Power Supply Current, IDD	0.01	1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V} \mathrm{DD}=3.6 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V} \end{aligned}$

[^2]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 4.

Parameter	Rating
$V_{\text {DD }}$ to $V_{\text {SS }}$	13 V
$V_{\text {D }}$ to GND	-0.3 V to +13 V
$V_{\text {ss }}$ to GND	+0.3 V to -6.5 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{1}$	GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 10 mA , whichever occurs first
Peak Current, Sx or D (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max)	40 mA
Continuous Current, Sx or D	20 mA
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
θ_{JA} Thermal Impedance 16-Lead TSSOP	$150.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$
ESD (Human Body Model)	4.0 kV

${ }^{1}$ Overvoltages at $\mathrm{A}_{\mathrm{x}}, \overline{\mathrm{EN}}, \mathrm{Sx}$, or D are clamped by internal diodes. Current must be limited to the maximum ratings.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Table 5. Truth Table

A2	A1	A0	EN	Switch Condition
X^{1}	X^{1}	X^{1}	1	None
0	0	0	0	1
0	0	1	0	2
0	1	0	0	3
0	1	1	0	4
1	0	0	5	6
1	0	1	0	7
1	1	0	0	8
1	1	1	0	

[^3]
Enhanced Product

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. 16-Lead TSSOP Pin Configuration
Table 6. 16-Lead TSSOP Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,2,4,5,12,13$,	S1 to S8	Source Terminals. Can be an input or output.
14,15	D	Drain Terminal. Can be an input or output. 3
6	$\overline{\text { EN }}$	Active Low Digital Input. When high, device is disabled and all switches are off. When low, Ax logic inputs determine on switch.
7	VSS	Most Negative Power Supply Potential. 8
$9,10,11$	GND	Ground (0 V) Reference.
16	A0 to A2	Logic Control Inputs. Vost Positive Power Supply Potential.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures (Dual Supply)

Figure 4. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures (Single Supply)

Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures (Single Supply)

Figure 6. Leakage Current vs. Temperature (Dual Supply)

Figure 7. Leakage Current vs. Temperature (Single Supply)

Enhanced Product

Figure 8. ton/toff Time vs. Temperature (Dual Supply)

Figure 9. ton/toff Time vs. Temperature (Single Supply)

OUTLINE DIMENSIONS

Figure 10. 16-Lead Thin Shrink Small Outline Package [TSSOP] ($R U-16$)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG658TRUZ-EP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16-$ Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG658TRUZ-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^3]: ${ }^{1} \mathrm{X}$ means don't care

