

LM211, LM311

Voltage comparator with strobe

Datasheet - production data

The LM211, LM311 are voltage comparators that have low input currents.

They are also designed to operate over a wide range of supply voltages: from standard ± 15 V operational amplifier supplies down to the single ± 5 V supply used for IC logic.

Their output is compatible with RTL-DTL and TTL as well as MOS circuits and can switch voltages up to +50 V at output currents as high as 50 mA.

Features

- Maximum input current: 150 nA
- Maximum offset current: 20 nA
- Differential input voltage range: ±30 V
- Power consumption:135 mW at ±15 V
- Supply voltage: +5 V to ±15 V
- Output current: 50 mA

Table 1. Order codes

Part number	Temperature range	Package	Packing	Marking
LM211D/DT	-40 °C, +105 °C	SQ-8	Tube or tape & real	211
LM311D/DT	0 °C, +70 °C	30-0	Tube of tape & reel	311

June 2022

www.st.com

This is information on a product in full production.

Contents

6	Revision history
	5.1 SO-8 package information11
5	Package mechanical data 10
4	Typical application schematics9
3	Electrical characteristics5
2	Absolute maximum ratings & operating conditions
1	Schematic diagram

1 Schematic diagram

Strobe/balance Collector output R4 300Ω R3 300Ω P v_{cc}⁺ R8 750Ω R9 600Ω Q6 Q20 R2 1.3kΩ Q10 R5 70Ω R1 .3kΩ Q7 R6 1.2kΩ 1.2kΩ Q11 Q12 Q5 Q19 Q13 R10 4kΩ Q8 Q18 Q3 Q14 Q9 **h**h R 16 Q4 DI D2 SV SV R17 60Ω R11 130Ω Q21 Non-inverting I Q15 R15 450Ω Q23 R12 600Ω Q22 Q17 Inverting input Q2 R19 250Ω R18 200Ω R14 2kΩ Q16 R13 4Ω Emitter output or ground

Figure 1. Schematic diagram

2 Absolute maximum ratings & operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	36	V
V _{id}	Differential input voltage	±30	V
Vi	Input voltage ⁽¹⁾	±15	V
V ₍₁₋₄₎	Ground to negative supply voltage	30	V
V ₍₇₋₄₎	Output to negative supply voltage LM211 LM311	50 40	V
	Output short-circuit duration	10	S
	Voltage at strobe pin	V _{CC} ⁺ -5	V
Pd	Power dissipation ⁽²⁾ SO-8	710	mW
Тj	Junction temperature	+150	°C
T _{stg}	Storage temperature range	-65 to +150	°C
ESD	Human Body Model (HBM) Charged Device Model (CDM) Machine Model (MM)	800 1500 200	V

Table 2. Absolute maximum ratings (AMR)

 This rating applies for ±15V supplies. The positive input voltage limit is 30V above the negative. The negative input voltage is equal to the negative supply voltage or 30V below the positive supply, whichever is less.

2. P_d is calculated with $T_{amb} = +25^{\circ}C$, $T_i = +150^{\circ}C$ and $R_{thia} = 175^{\circ}C/W$ for the SO-8 package.

Table 3. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	5 to ±15	V
T _{oper}	Operating free-air temperature range LM211 LM311	-40 to +105 0 to +70	°C

3 Electrical characteristics

Cumhal	Devenuetov	Conditions	LM211			LM311			Unit
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Omt
V _{io}	Input offset voltage $^{(1)}$	$\begin{array}{l} R_{S} \leq \; 50 \mathrm{k} \Omega \\ T_{amb} = +25^{\circ} \mathrm{C} \\ T_{min} \leq \; T_{amb} \; \leq \; T_{max} \end{array}$		0.7	3 4		2	7.5 10	mV
I _{io}	Input offset current ⁽¹⁾	T_{amb} = +25°C $T_{min} \le T_{amb} \le T_{max}$		4	10 20		6	50 70	nA
I _{ib}	Input bias current (1)	$\begin{array}{l} {T_{amb}} = +25^{\circ}{C} \\ {T_{min}} \leq {T_{amb}} \ \leq {T_{max}} \end{array}$		60	100 150		100	250 300	nA
A _{vd}	Large signal voltage gain		40	200		40	200		V/mV
I _{CC} ⁺ I _{CC} ⁻	Supply currents	Positive Negative		5.1 4.1	6 5		5.1 4.1	7.5 5	mA
V _{icm}	Input common mode voltage range	$T_{min} \le T_{amb} \le T_{max}$	-14.5	+13.8 -14.7	+13	-14.5	+13.8 -14.7	+13	۷
V _{OL}	Low level output voltage	$T_{amb} = +25^{\circ}C, I_{O} =$ 50mA, V _i ≤ -5mV $T_{amb} = +25^{\circ}C, I_{O} =$		0.75	1.5				
		50mA, $V_i \le -10mV$ $T_{min} \le T_{amb} \le T_{max}$ $V_{CC}^+ \ge +4.5V$, $V_{CC}^- = 0$		0.23	0.4		0.75	1.5	v
		$I_O = 8mA$, $V_i \le -6m$			•••				
		$\begin{array}{l} T_{min} \leq T_{amb} \leq T_{max} \\ V_{CC}{}^+ \geq +4.5V, \ V_{CC}{}^- = 0 \\ I_O = 8mA, \ V_i \leq \ -10mV \end{array}$					0.23	0.4	
I _{ОН}		$\begin{array}{l} T_{amb} = +25^{\circ}C \\ Vi \geq +5mV, \ V_{O} = +35V \end{array}$		0.2	10				nA
	High level output current	T_{amb} = +25°C Vi ≥ +10mV, V _O = +35V					0.2	50	nA
		$\begin{array}{l} T_{min} \leq \; T_{amb} \leq \; T_{max} \\ Vi \geq +5mV, \; V_{O} = +35V \end{array}$		0.1	0.5				μΑ
Istrobe	Strobe current			3			3		mA
t _{re}	Response time (2)			200			200		ns

Table 4. V_{CC+} = ±15 V, T_{amb} = +25 °C (unless otherwise specified)

 The offset voltage, offset current and bias current specifications apply for any supply voltage from a single +5 V supply up to ±15 V supplies. The offset voltages and offset currents given are the maximum values required to drive the output down to +1 V or up to +14 V with a 1 mA load current. Thus, these parameters define an error band and take into account the worst-case of voltage gain and input impedance.

2. The response time specified is for a 100 mV input step with 5 mV overdrive.

DocID4848 Rev 5

4 Typical application schematics

TYPICAL APPLICATIONS

CRYSTAL OSCILLATOR

100KHz FREE RUNNING MULTIVIBRATOR

LOW VOLTAGE ADJUSTABLE REFERENCE SUPPLY

TTL INTERFACE WITH HIGH LEVEL LOGIC

AUXILIARY CIRCUITS

5 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

5.1 SO-8 package information

Figure 2. SO-8 package outline

	_							
	Dimensions							
Symbol	Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А	1.35	-	1.75	0.053	-	0.069		
A1	0.10	-	0.25	0.004	-	0.010		
A2	1.10	-	1.65	0.043	-	0.065		
В	0.33	-	0.51	0.013	-	0.020		
С	0.19	-	0.25	0.007	-	0.010		
D	4.80	-	5.00	0.189	-	0.197		
E	3.80	-	4.00	0.150	-	0.157		
е	-	1.27	-	-	0.050	-		
Н	5.80	-	6.20	0.228	-	0.244		
h	0.25	-	0.50	0.010	-	0.020		
L	0.40	-	1.27	0.016	-	0.050		
k		8° (max.)			8° (max.)			
ddd	-	-	0.10	-	-	0.004		

Table 5. SO-8 package mechanical data

11/13

6 Revision history

Date	Revision	Changes
01-Jun-2002	1	Initial release.
02-Jan-2006	2	Table 3. on page 5 updated. Formatting changes throughout.
01-Mar-2006	3	Pin connections updated on page 1.
26-Sep-2006	4	Corrected description under title on cover page.
08-Jun-2022	5	Added ESD parameter in Table 2.

Table 6. Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to *www.st.com/trademarks*. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

