

17 Ω , +12 V / ± 5 V / +5 V / +3 V, 8-Ch / Dual 4-Ch High Performance Analog Multiplexers

DESCRIPTION

DG408LE, DG409LE The are monolithic analog multiplexers / demultiplexers designed to operate on single and dual supplies. Single supply voltage ranges from 3 V to 16 V while dual supply operation is recommended with \pm 3 V to \pm 8 V.

The DG408LE is an 8 channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3 bit binary address (A₀, A₁, A₂). The DG409LE is a dual 4 channel differential analog multiplexer designed to connect one of four differential inputs to a common dual output as determined by its 2 bit binary address (A₀, A₁). Break-before-make switching action to protect against momentary crosstalk between adjacent channels.

An on channel conducts current equally well in both directions. In the off state each channel blocks voltages up to the power supply rails. An enable (EN) function allows the user to reset the multiplexer / demultiplexer to all switches off for stacking several devices. All control inputs, address (Ax) and enable (EN) are TTL compatible over the full specified operating temperature range.

The DG408LE, DG409LE feature low on-resistance, fast switching time, and low leakage. They are ideal for data acquisition, control and automation, test instrument, and healthcare products. The DG408LE, DG409LE has an internal regulator powers the logic circuit. Such design reduces device power consumption and makes them ideal for battery operated applications.

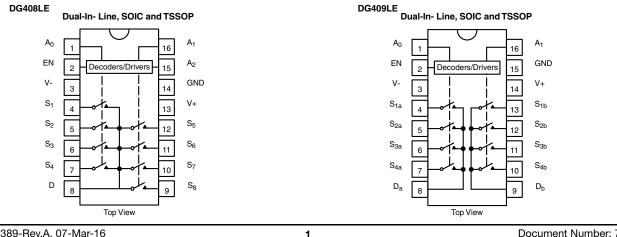
The DG408LE, DG409LE are available in TSSOP16, SOIC16, and QFN16 packages.

FEATURES

- Pin-for-pin compatibility with DG408, DG409, and DG508, DG509
- 3 V to 16 V single supply or ± 3 V to ± 8 V dual supply operation
- Low power consumption: 6 μA/max., EN = Vx = 5 V
- Lower on-resistance: R_{DS(on)} 17 Ω typ.
- Fast switching: t_{ON} 55 ns, t_{OFF} 36 ns
- · Break-before-make guaranteed
- Low leakage: I_{S(OFF)} 1 nA max.
- TTL, CMOS, LV logic (3 V) compatible
- -99 dB off-isolation and -98 dB crosstalk at 100 kHz
- Low parasitic capacitances: C_{S(OFF)} = 5.5 pF $C_{D(ON)} = 35 \text{ pF} (DG408 \text{LE})$
- ESD Protection:
 - ± 2.5 kV human body model
 - ± 100 V machine model
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

Note

This datasheet provides information about parts that are RoHS-compliant and / or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details.


BENEFITS

- High accuracy
- Single and dual power rail capacity
- Wide operating voltage range
- Simple logic interface

APPLICATIONS

- Automatic test equipment
- Data acquisition systems
- Meters and instruments
- Medical and healthcare systems
- Communication systems
- Audio and video signal routing
- Relav replacement
- Battery powered systems
- Computer peripherals
- · Audio and video signal routing

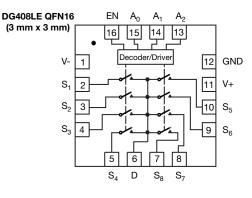
FUNCTIONAL BLOCK DIAGRAMS AND PIN CONFIGURATIONS

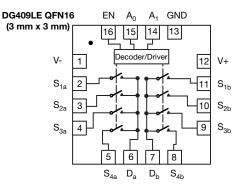
S16-0389-Rev.A, 07-Mar-16

For technical questions, contact: analogswitchsupport@vishay.com

Document Number: 78084

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT


HALOGEN


FREE

Vishay Siliconix

QFN OUTLINE

TRUTH TABLE (DG408LE)									
A ₂	A ₁	A ₀	EN	ON SWITCH					
Х	Х	Х	0	None					
0	0	0	1	1					
0	0	1	1	2					
0	1	0	1	3					
0	1	1	1	4					
1	0	0	1	5					
1	0	1	1	6					
1	1	0	1	7					
1	1	1	1	8					

TRUTH TABLE (DG409LE)								
A ₁	A ₀	EN	ON SWITCH					
Х	Х	0	None					
0	0	1	1					
0	1	1	2					
1	0	1	3					
1	1	1	4					

Note

• For low and high voltage levels for V_{AX} and V_{EN} consult "Digital Control" parameters for specific V+ operation.

ORDERING INFORMATION									
TEMP. RANGE	CONFIGURATION	PACKAGE	PART NUMBER	MIN. ORDER / PACK. QUANTITY					
		16-pin TSSOP	DG408LEDQ-GE3	Tube 360 units					
		10-pin 1330F	DG408LEDQ-T1-GE3	Tape and reel, 3000 units					
	8 Channel	16 pin SOIC	DG408LEDY-GE3	Tube 500 units					
	Single Ended DG408LE	16-pin SOIC	DG408LEDY-T1-GE3	Tape and reel, 2500 units					
-40 °C to +85 °C	DOHOULL	16-pin QFN (3 mm x 3 mm) Variation 2	DG408LEDN-T1-GE4	Tape and reel, 2500 units					
Lead-free			DG409LEDQ-GE3	Tube 360 units					
		16-pin TSSOP	DG409LEDQ-T1-GE3	Tape and reel, 3000 units					
	Dual 4 Channel	16-pin SOIC	DG409LEDY-GE3	Tube 500 units					
	Differential DG409LE	10-pin 3010	DG409LEDY-T1-GE3	Tape and reel, 2500 units					
	DUHUBLE	16-pin QFN (3 mm x 3 mm) Variation 2	DG409LEDN-T1-GE4	Tape and reel, 2500 units					

Note

• -T1 indicates tape and reel, -GE3 indicates lead (Pb)-free and RoHS-compliant, NO -GE3 indicates standard tin/lead finish.

Exposed pad of QFN package can be connected to GND, V-, or left floating.

For technical questions, contact: <u>analogswitchsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

ABSOLUTE MAXIMUM RATINGS								
PARAMETER	LIMIT	UNIT						
V+ to V- ^e		18						
GND to V-		-18	V					
Digital Inputs ^a , V _S , V _D	(V-) - 0.3 to (V) + 0.3							
Current (any terminal)	30	mA						
Peak Current, S or D (pulsed at 1 ms, 10 %	100	- IIIA						
Storage Temperature	torage Temperature (D suffix)		°C					
	16-pin plastic TSSOP ^c	600						
Power Dissipation (package) ^b	16-pin narrow SOIC ^c	600	mW					
	16-pin miniQFN ^d	1385						
ESD Human Body Model (HBM); per ANSI /	2500	V						
Latch Up Current, per JESD78D	300	mA						

Notes

a. Signals on S_X, D_X, A_X, or EN exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

b. All leads soldered or welded to PC board.

c. Derate 8 mW/°C above 75 °C.

d. Derate 17.3 mW/°C above 70 °C

e. Also applies when V- = GND

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP. ^b	TYP. d		JFFIX o +85 °C	
		V+ = 12 V, ± 10 %, V- = 0 V V _{EN} = 0.8 V or 2.4 V ^f			MIN. °	MAX. °	U
Analog Switch	I			I		I	•
Analog Signal Range ^e	V _{ANALOG}		Full	-	0	12	V
Drain-Source	_	$V_{\rm D} = 10.8$ V, $V_{\rm D} = 2$ V or 9 V, $I_{\rm S} = 10$ mA	Room	17	-	23	
On-Resistance	R _{DS(on)}	sequence each switch on	Full	-	-	27	
R _{DS(on)} Matching Between Channels ^g	ΔR_{DS}	$V_{\rm D} = 10.8 \text{ V}, V_{\rm D} = 2 \text{ V} \text{ or } 9 \text{ V}$	Room	1	-	3	Ω
On-Resistance Flatness	R _{FLAT(on)}	I _S = 10 mA	Room	3		6.5	
			Room	-	-1	1	
Switch Off Leakage	IS(off)	V _{EN} = 0 V, V _D = 11 V or 1 V	Full	-	-5	5	1
Current ^a		V _S = 1 V or 11 V	Room	-	-1	1	
	I _{D(on)}		Full	-	-5	5	nA
Channel On Leakage			Room	-	-1	1	
Current ^a	I _{D(on)}	$V_{S} = V_{D} = 1 V \text{ or } 11 V$	Full	-	-5	5	
Digital Control				1		1	
Logic High Input Voltage	V _{INH}		Full	-	2.4	-	v
Logic Low Input Voltage	V _{INL}		Full	-	-	0.8	v
Input Current ^a	I _{IN}	V _{AX} = V _{EN} = 2.4 V or 0.8 V	Full	-	-1	1	μA
Dynamic Characteristics							
		V _{S1} = 8 V, V _{S8} = 0 V, (DG408LE)	Room	85	-	100	
Transition Time	t _{TRANS}	$V_{S1b} = 8 V, V_{S4b} = 0 V, (DG409LE)$ see figure 2	Full	-	-	110	
Break-Before-Make Time		V _{S(all)} = V _{DA} = 5 V see figure 4	Room	34	1	-	ns
	t _{OPEN}		Full	-	-	-	
			Room	55	-	72	
Enable Turn-On Time	t _{ON(EN)}	$V_{AX} = 0 V, V_{S1} = 5 V (DG408LE)$	Full	-	-	82	
		V _{AX} = 0 V, V _{S1b} = 5 V (DG409LE) see figure 3	Room	36	-	47	
Enable Turn-Off Time	t _{OFF(EN)}	see ligure 5	Full	-	-	50	
Charge Injection e (DG408LE)	_		Room	-11	-	-	_
Charge Injection ^e (DG409LE)	Q	C_L = 1 nF, V_{GEN} = 6 V, R_{GEN} = 0 Ω	Room	-10	-	-	рС
Off Isolation ^{e, h} (DG408LE)			Room	-99	_	_	
Off Isolation ^{e, h} (DG409LE)	OIRR		Room	-87	-	_	
Crosstalk ^e (DG408LE)		f = 100 kHz, $R_L = 50 \Omega$	Room	-98	-	_	dB
Crosstalk ^e (DG409LE)	X _{TALK}		Room	-109	-	-	-
Source Off Capacitance e (DG408LE)			Room	5.5	-	-	
Source Off Capacitance ^e (DG409LE)	C _{S(off)}	f = 1 MHz, V_S = 0 V, V_{EN} = 0 V	Room	5.5	-	-	
Drain Off Capacitance ^e (DG408LE)			Room	25	-	-	
Drain Off Capacitance ^e (DG409LE)	C _{D(off)}	f = 1 MHz, V _D = 2.4 V, V _{EN} = 0 V	Room	13.5	-	-	рF
Drain On Capacitance (DG408LE)	Cart	f = 1 MHz, V _D = 0 V, V _{EN} = 2.4 V	Room	35	-	-	
Drain On Ćapacitance ^e (DG409LE)	C _{D(on)}	(DG409LE only)	Room	23.5	-	-	
Power Supplies	1			1		1	1
Power Supply Range	V+			-	3	12	V
Power Supply Current	l+	$V_{EN} = V_A = 0 V \text{ or } 5 V$	Room	3.5		6	μA

Notes

a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.

b. Room = 25 °C, Full = as determined by the operating temperature suffix.

c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

e. Guaranteed by design, not subject to production test.

f. V_{IN} = input voltage to perform proper function.

g. $\Delta R_{DS(on)} = R_{DS(on)} \max$. - $R_{DS(on)} \min$.

h. Worst case isolation occurs on Channel 4 do to proximity to the drain pin.

S16-0389-Rev.A, 07-Mar-16

4

Document Number: 78084

www.vishay.com

Vishay Siliconix

SPECIFICATIONS	(Dual Sup	ply V+ = 5 V, V - = -5 V)						
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP. ^b	TYP.d	D SU -40 °C te	UNIT		
		V+ = 5 V, ± 10 %, V- = -5 V V _{EN} = 0.6 V or 2.4 V ^f			MIN. c	MAX. c		
Analog Switch								
Analog Signal Range ^e	V _{ANALOG}		Full	-	-5	5	V	
Drain-Source	Baar	$V_{D} = \pm 3.5 \text{ V}, \text{ I}_{S} = 10 \text{ mA}$	Room	15	-	25	Ω	
On-Resistance	R _{DS(on)}	sequence each switch on	Full	-	-	30	52	
	la con		Room	-	-1	1		
Switch Off Leakage	I _{S(off)}	V+ = 5.5, V- = 5.5 V	Full	-	-5	5		
Current ^a		$V_{EN} = 0 \text{ V}, V_{D} = \pm 4.5 \text{ V}, V_{S} = \pm 4.5 \text{ V}$	Room	-	-1	1	nA	
	I _{D(off)}		Full	-	-5	5	ПА	
Channel On Leakage		V+ = 5.5 V, V- = -5.5 V	Room	-	-1	1		
Current ^a	I _{D(on)}	V_{EN} = 2.4 V, V_{D} = \pm 4.5 V, V_{S} = \pm 4.5 V	Full	-	-5	5		
Digital Control						•	•	
Logic High Input Voltage	V _{INH}		Full	-	2.4	-	v	
Logic Low Input Voltage	V _{INL}		Full	-	-	0.6	v	
Input Current ^a	I _{IN}	$V_{AX} = V_{EN} = 2.4 \text{ V or } 0.6 \text{ V}$	Full	-	-1	1	μA	
Dynamic Characteristics	;							
		$V_{S1} = 3.5 \text{ V}, V_{S8} = -3.5 \text{ V}, (DG408LE)$	Room	87	-	100	_	
Transition Time	t _{TRANS}	$V_{S1b} = 3.5 \text{ V}, V_{S4b} = -3.5 \text{ V}, (DG409LE)$ see figure 2	Full	-	-	120		
Break-Before-Make Time	+	$V_{S(all)} = V_{DA} = 3.5 V$	Room	84	1	-		
Dieak-Deloie-Iviake Time	topen	see figure 4	Full	-	-	-	ns	
Enable Turn-On Time	+		Room	58	-	73		
Enable rum-On nine	t _{ON(EN)}	$V_{AX} = 0 V, V_{S1} = 3.5 V (DG408LE)$	Full	-	-	80	-	
Enable Turn Off Time		$V_{AX} = 0 V, V_{S1b} = 3.5 V (DG409LE)$ see figure 3	Room	31	-	46		
Enable Turn-Off Time	t _{OFF(EN)}		Full	-	-	51	1	
Source Off Capacitance ^e (DG408LE)			Room	6	-	-		
Source Off Capacitance ^e (DG409LE)	C _{S(off)}	f = 1 MHz, V_S = 0 V, V_{EN} = 0 V	Room	5.5	-	-		
Drain Off Capacitance ^e (DG408LE)			Room	26	-	-	~ =	
Drain Off Capacitance ^e (DG409LE)	C _{D(off)}	f = 1 MHz, V_D = 0 V, V_{EN} = 0 V	Room	14	-	-	- pF	
Drain On Capacitance ^e (DG408LE)			Room	36	-	-		
Drain On Capacitance ^e (DG409LE)	C _{D(on)}	f = 1 MHz, V _D = 0 V, V _{EN} = 2.4 V	Room	24	-	-	1	

Notes

a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.

b. Room = 25 °C, full = as determined by the operating temperature suffix.

c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.

d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

e. Guaranteed by design, not subject to production test.

f. V_{IN} = input voltage to perform proper function.

g. $\Delta R_{DS(on)} = R_{DS(on)} \max$. - $R_{DS(on)} \min$.

h. Worst case isolation occurs on channel 4 do to proximity to the drain pin.

5

SPECIFICATIONS (S	Single Sup	pply 5 V)							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP. ^b	TYP. ^d		JFFIX o +85 °C	UNIT		
		V+ = 5 V, ± 10 %, V- = 0 V V _{EN} = 0.6 V or 2.4 V ^f			MIN. °	MAX. °			
Analog Switch									
Analog Signal Range ^e	VANALOG		Full	-	0	5	V		
Drain-Source	R _{DS(on)}	$V_{+} = 4.5 V$, V_{D} or $V_{S} = 1 V$ or $3.5 V$,	Room	28	-	36			
On-Resistance	TDS(on)	I _S = 5 mA	Full	-	-	41			
R _{DS(on)} Matching Between Channels ^g	ΔR_{DS}	$V_{+} = 4.5 V, V_{D} = 1 V \text{ or } 3.5 V,$	Room	1	-	3	Ω		
On-Resistance Flatness	R _{FLAT(on)}	I _S = 5 mA	Room	-	-	4			
	I _{S(off)}		Room	-	-1	1			
Switch Off Leakage	¹ S(0ff)	V + = 5.5 V, V_S = 1 V or 4 V	Full	-	-5	5			
Current ^a		$V_D = 4 V \text{ or } 1 V$	Room	-	-1	1	nA		
	I _{D(off)}		Full	-	-5	5	114		
Channel On Leakage		V + = 5.5 V, V_D = V_S = 1 V or 4 V	Room	-	-1	1			
Current ^a	I _{D(on)}	sequence each switch on	Full	-	-5	5			
Digital Control									
Logic High Input Voltage	V _{INH}	V+ = 5 V	Full	-	2.4	-	V		
Logic Low Input Voltage	V _{INL}	V+ = 5 V	Full	-	-	0.6			
Input Current ^a	I _{IN}	$V_{AX} = V_{EN} = 2.4 \text{ V or } 0.6 \text{ V}$	Full	-	-1	1	μA		
Dynamic Characteristics									
			Room	113	-	135			
Transition Time	t _{TRANS}		Full	-	-	165			
Break-Before-Make Time	+	$V_{S(all)} = V_{DA} = 3.5 \text{ V},$	Room	75	1	-			
break-beiore-wake time	t _{OPEN}	see figure 4	Full	-	-	-	ns		
Enable Turn-On Time	t _{ON(EN)}	+	÷		Room	77	-	89	110
Enable Turn-On Time		$V_{AX} = 0 V, V_{S1} = 3.5 V (DG408LE)$	Full	-	-	110			
Enchle Turn Off Time		V _{AX} = 0 V, V _{S1b} = 3.5 V (DG409LE) see figure 3	Room	43	-	50	1		
Enable Turn-Off Time	t _{OFF(EN)}	3	Full	-	-	53			
Charge Injection e (DG408LE)	0		Room	-2	-	-			
Charge Injection e (DG409LE)	Q	$C_L = 1 \text{ nF}, R_{GEN} = 0 \Omega, V_{GEN} = 2.5 \text{ V}$	Room	-2	-	-	рС		
Off Isolation e, h (DG408LE)			Room	-100	-	-			
Off Isolation e, h (DG409LE)	OIRR		Room	-83	-	-			
Crosstalk ^e (DG408LE)	V	f = 100 kHz, R_L = 50 Ω	Room	-101	-	-	dB		
Crosstalk ^e (DG409LE)	X _{TALK}		Room	-108	-	-			
Source Off Capacitance ^e (DG408LE)	0		Room	6.5	-	-			
Source Off Capacitance ^e (DG409LE)	C _{S(off)}	f = 1 MHz, V_S = 0 V, V_{EN} = 0 V	Room	6.5	-	-			
Drain Off Capacitance ^e (DG408LE)		f = 1 MHz, V _D = 0 V, V _{EN} = 0 V	Room	30	-	-	ъF		
Drain Off Capacitance ^e (DG409LE)	C _{D(off)}	$v = v w v v_{\rm EN} = 0 v$	Room	16	-	-	pF		
Drain On Ćapacitance ^e (DG408LE)	C _{D(on)}	f = 1 MHz, V _D = 0 V, V _{EN} = 2.4 V	Room	40	-	-			
Drain On Capacitance ^e (DG409LE)	℃D(on)	$V \rightarrow V$, $V = 0$, $V = 2.4$ V	Room	26.5	-	-			

Notes

a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.

b. Room = $25 \,^{\circ}$ C, full = as determined by the operating temperature suffix.

c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

e. Guaranteed by design, not subject to production test.

f. V_{IN} = input voltage to perform proper function.

g. $\Delta R_{DS(on)} = R_{DS(on)} \text{ max.} - R_{DS(on)} \text{ min.}$

h. Worst case isolation occurs on channel 4 do to proximity to the drain pin.

S16-0389-Rev.A, 07-Mar-16

6 For technical questions, contact: <u>analogswitchsupport@vishav.com</u> Document Number: 78084

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

SPECIFICATIONS (Single Supply 3 V)									
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP. ^b	TYP.d		JFFIX o +85 °C	UNIT		
	OTINDOL	V+ = 3 V, ± 10 %, V- = 0 V V _{EN} = 0.4 V or 2 V ^f			MIN. °	MAX. °	UNIT		
Analog Switch									
Analog Signal Range ^e	V _{ANALOG}		Full	-	0	3	V		
Drain-Source	D	$V_{+} = 2.7 V, V_{D} = 0.5 \text{ or } 2.2 V,$	Room	63	-	80	Ω		
On-Resistance	R _{DS(on)}	I _S = 5 mA	Full	-	-	92	52		
	1		Room	-	-1	1			
Switch Off Leakage	I _{S(off)}	$V_{+} = 3.3 V, V_{S} = 2 \text{ or } 1 V, V_{D} = 1 \text{ or } 2 V$	Full	-	-5	5			
Current ^a		$v_{+} = 3.3 v, v_{S} = 2 01 v, v_{D} = 101 2 v$	Room	-	-1	1	~ ^		
	I _{D(off)}		Full	-	-5	5	nA		
Channel On Leakage		$V_{+} = 3.3 V, V_{D} = V_{S} = 1 V \text{ or } 2 V$	Room	-	-1	1			
Current ^a	I _{D(on)}	sequence each switch on	Full	-	-5	5			
Digital Control		· · · ·		•	•	•			
Logic High Input Voltage	V _{INH}		Full	-	2	-	M		
Logic Low Input Voltage	V _{INL}		Full	-	-	0.4	V		
Input Current ^a	I _{IN}	$V_{AX} = V_{EN} = 2.4 \text{ V or } 0.4 \text{ V}$	Full	-	-1	1	μA		
Dynamic Characteristics		•		•		•			
			Room	211	-	275			
Transition Time	t _{TRANS}		Full	-	-	300			
Break-Before-Make Time	tonnu	$V_{S(all)} = V_{DA} = 1.5 V,$	Room	209	1	-			
Dreak-Delore-Iviake Time	t _{OPEN}	see figure 4	Full	-	-	-	ns		
Enchla Turn On Time	1		Room	125	-	150			
Enable Turn-On Time	t _{ON(EN)}	$V_{AX} = 0 V, V_{S1} = 1.5 V (DG408LE)$	Full	-	-	180			
	1	V _{AX} = 0 V, V _{S1b} = 1.5 V (DG409LE) see figure 3	Room	45	-	75			
Enable Turn-Off Time	t _{OFF(EN)}	Jan	Full	-	-	95			
Charge Injection ^e (DG408LE)	0		Room	0	-	-	- 0		
Charge Injection ^e (DG409LE)	Q	$C_L = 1 \text{ nF}, R_{GEN} = 0 \Omega, V_{GEN} = 1.5 \text{ V}$	Room	-0.4	-	-	рС		
Off Isolation e, h (DG408LE)	0100		Room	-90	-	-			
Off Isolation e, h (DG409LE)	OIRR		Room	-95	-	-			
Crosstalk e (DG408LE)		f = 100 kHz, $R_L = 50 \Omega$	Room	-95	-	-	dB		
Crosstalk e (DG409LE)	X _{TALK}		Room	-93	-	-			
Source Off Capacitance e (DG408LE)	6		Room	7	-	-			
Source Off Capacitance ^e (DG409LE)	$C_{S(off)}$	f = 1 MHz, V _S = 0 V, V _{EN} = 0 V	Room	7	-	-			
Drain Off Capacitance ^e (DG408LE)	C _{D(off)}	f = 1 MHz, V _D = 0 V, V _{EN} = 0 V	Room	33	-	-	pF		
Drain Off Capacitance e (DG409LE)	Ο(OΠ)		Room	18	-	-	۲ '		
Drain On Capacitance ^e (DG408LE)	C _{D(on)}	f = 1 MHz, V _D = 0 V, V _{EN} = 2 V	Room	43	-	-			
Drain On Capacitance ^e (DG409LE)	- D(01)	, , , , , , Lin	Room	28	-	-			

Notes

a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.

b. Room = 25 °C, full = as determined by the operating temperature suffix.

c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

e. Guaranteed by design, not subject to production test.

f. V_{IN} = input voltage to perform proper function.

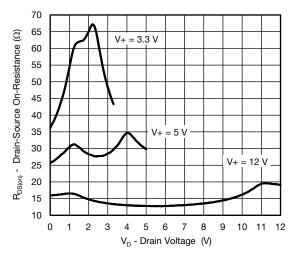
g. $\Delta R_{DS(on)} = R_{DS(on)} \max$. - $R_{DS(on)} \min$.

h. Worst case isolation occurs on channel 4 do to proximity to the drain pin.

S16-0389-Rev.A, 07-Mar-16

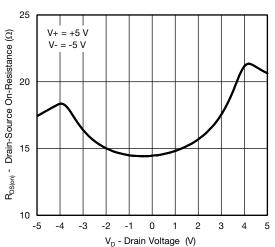
7

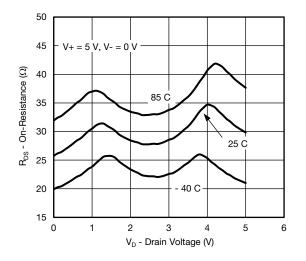
Document Number: 78084

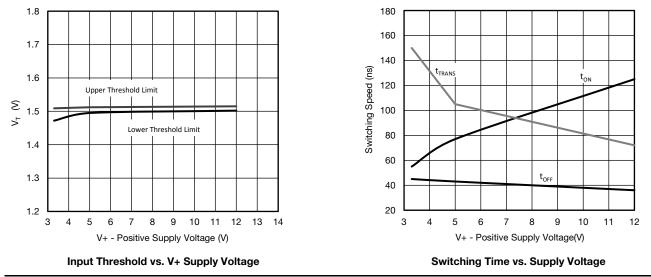

For technical questions, contact: analogswitchsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

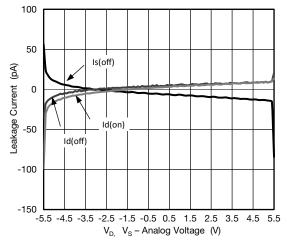
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

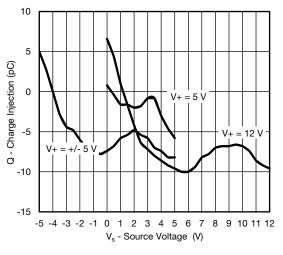

 $R_{DS(on)}\,vs.\,V_{D}$ and Power Supply


R_{DS(on)} vs. V_D and Temperature (Dual Supply)

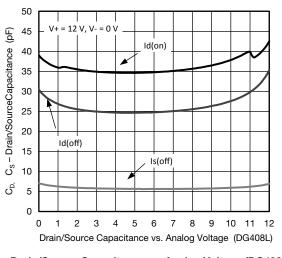
R_{DS(on)} vs. V_D and Power Supply


S16-0389-Rev.A, 07-Mar-16

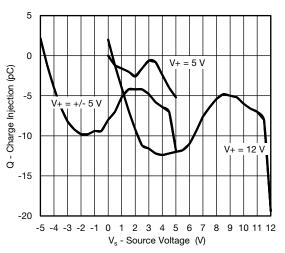
8

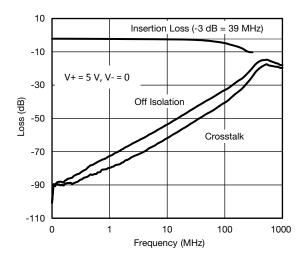

Document Number: 78084

For technical questions, contact: <u>analogswitchsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Leakage Current vs. Analog Voltage


Charge Injection vs. Analog Voltage (DG409LE)


Drain/Source Capacitance vs. Analog Voltage (DG408LE)

S16-0389-Rev.A, 07-Mar-16

9

Charge Injection vs. Analog Voltage (DG408LE)

Insertion Loss, Off Isolation, and Crosstalk vs. Frequency

SCHEMATIC DIAGRAM (Typical Channel)

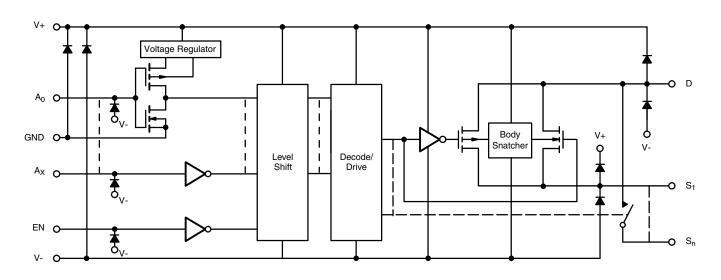
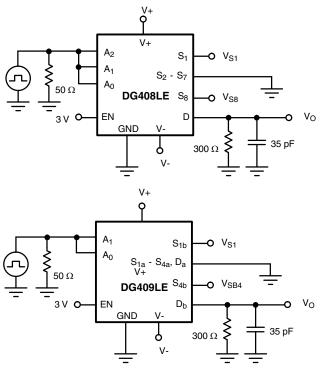
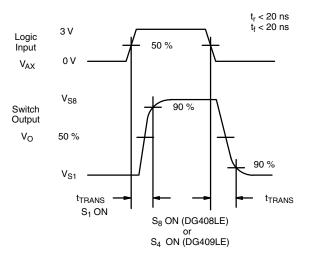
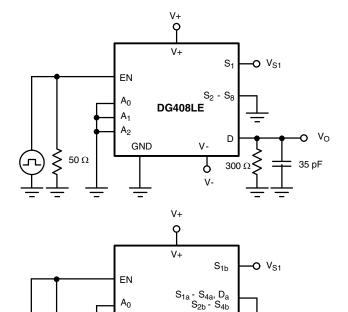




Fig. 1

TEST CIRCUITS



THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

TEST CIRCUITS

DG409LE

 D_b

<u>___</u>300 Ω≶

V-

δ

V-

A₁

50 Ω

Л

GND

_

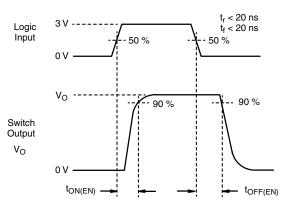


Fig. 3 - Enable Switching Time

 V_{O}

0

35 pF

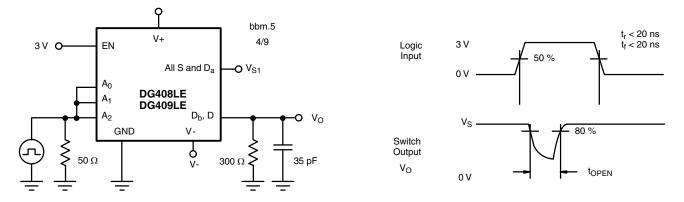


Fig. 4 - Break-Before-Make Interval

For technical questions, contact: <u>analogswitchsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

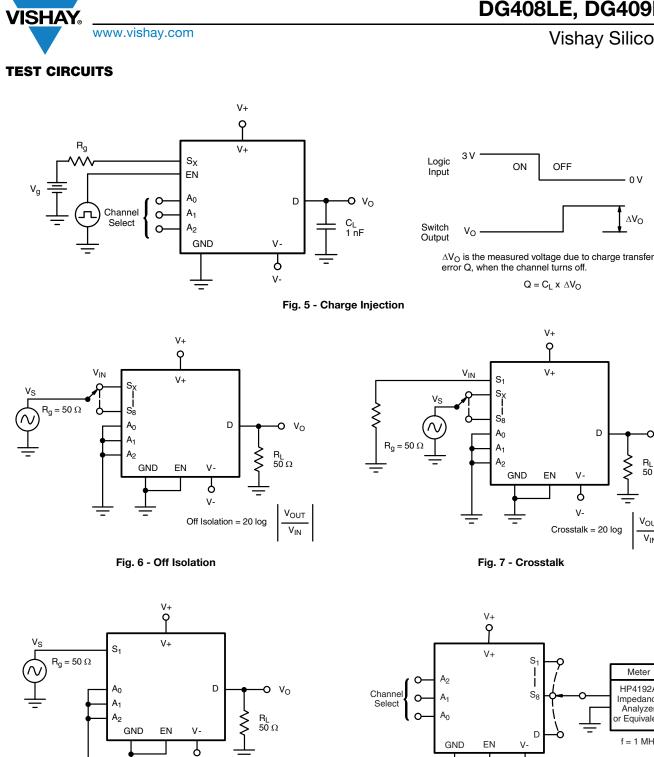
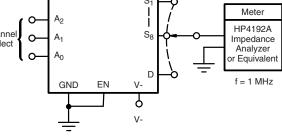


Fig. 9 - Source Drain Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?78084


VOUT

VIN

Insertion Loss = 20 log

٧

Fig. 8 - Insertion Loss

DG408LE, DG409LE

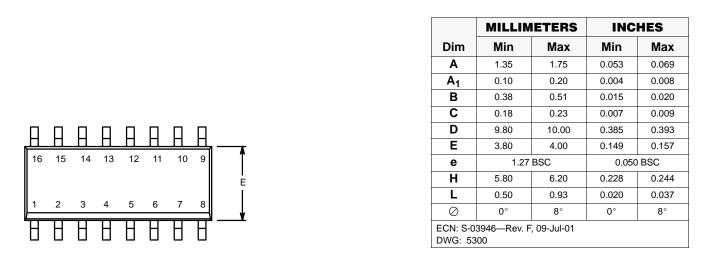
Vishay Siliconix

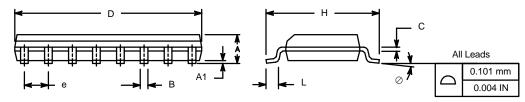
Vo

0

RL 50 Ω

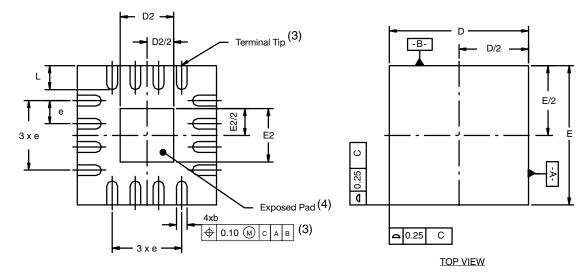
VOUT

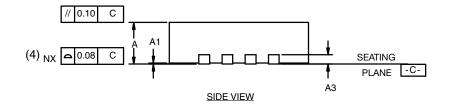

VIN



Package Information Vishay Siliconix

SOIC (NARROW): 16-LEAD


JEDEC Part Number: MS-012



QFN-16 Lead (3 x 3)

BOTTOM VIEW

Notes

⁽¹⁾ All dimensions are in millimeters.

⁽²⁾ N is the total number of terminals.

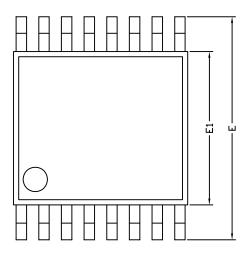
⁽³⁾ Dimension b applies to metallized terminal and is measured between 0.25 and 0.30 mm from terminal tip.

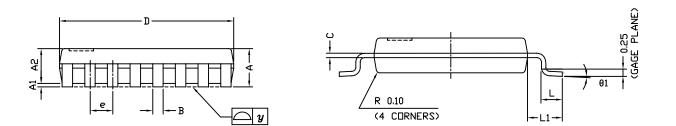
⁽⁴⁾ Coplanarity applies to the exposed heat sink slug as well as the terminal.

⁽⁵⁾ The pin #1 identifier may be either a mold or marked feature, it must be located within the zone indicated.

			VARIA	TION 1	DN 1				VARIATION 2			
DIM.	м	ILLIMETE	RS		INCHES		MILLIMETERS			INCHES		
	MIN.	NOM	MAX.	MIN.	NOM	MAX.	MIN.	NOM	MAX.	MIN.	NOM	MAX.
А	0.80	0.90	1.00	0.031	0.035	0.039	0.80	0.90	1.00	0.031	0.035	0.039
b	0.18	0.23	0.30	0.007	0.009	0.012	0.18	0.25	0.30	0.007	0.010	0.012
D	2.90	3.00	3.10	0.114	0.118	0.122	2.90	3.00	3.10	0.114	0.118	0.122
D2	1.00	1.15	1.25	0.039	0.045	0.049	1.50	1.70	1.80	0.059	0.067	0.071
E	2.90	3.00	3.10	0.114	0.118	0.122	2.90	3.00	3.10	0.114	0.118	0.122
E2	1.00	1.15	1.25	0.039	0.045	0.049	1.50	1.70	1.80	0.059	0.067	0.071
е		0.50 BSC			0.020 BSC	;	0.50 BSC			0.020 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020	0.30	0.40	0.50	0.012	0.016	0.020
ECN: T16-0233-Rev. D, 09-May-16 DWG: 5899												

Revision: 09-May-16

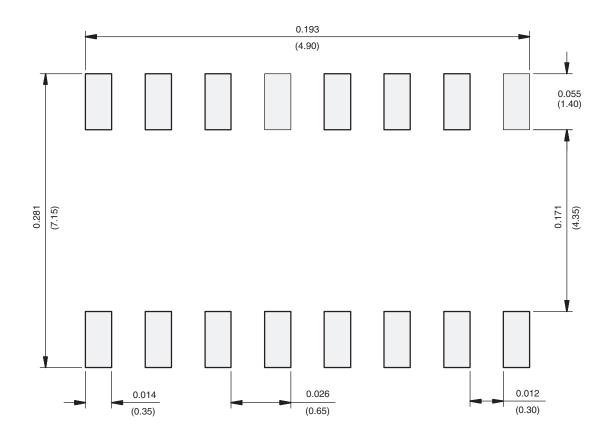

1



Package Information

Vishay Siliconix

TSSOP: 16-LEAD

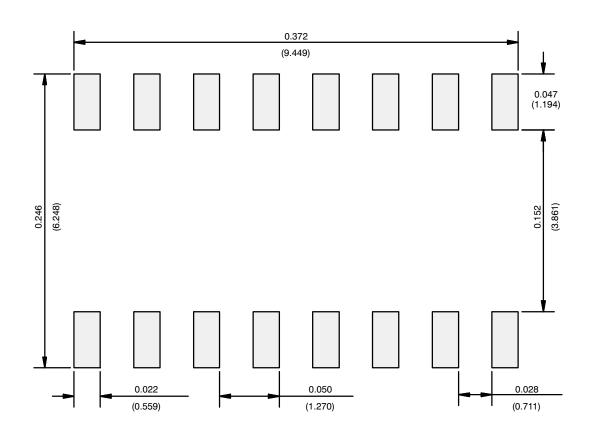

	DIMENSIONS IN MILLIMETERS								
Symbols	Min	Nom	Max						
A	-	1.10	1.20						
A1	0.05	0.10	0.15						
A2	-	1.00	1.05						
В	0.22	0.28	0.38						
С	-	0.127	-						
D	4.90	5.00	5.10						
E	6.10	6.40	6.70						
E1	4.30	4.40	4.50						
е	-	0.65	-						
L	0.50	0.60	0.70						
L1	0.90	1.00	1.10						
у	-	-	0.10						
θ1	0°	3°	6°						
ECN: S-61920-Rev. D, 23 DWG: 5624	-Oct-06								

PAD Pattern

Vishay Siliconix

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)


Revision: 02-Sep-11

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

www.vishay.com 24

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.