

Freescale Semiconductor, Inc. Data Sheet: Technical Data Document Number: MC9S08LG32 Rev. 10, 04/2015

MC9S08LG32 Series with Addendum Covers: MC9S08LG32 and MC9S08LG16

Rev. 10 of the MC9S08LG32 Series data sheet (covering MC9S08LG32 and MC9S08LG16) has two parts:

- The addendum to revision 9 of the data sheet, immediately following this cover page.
- Revision 9 of the data sheet, following the addendum. The changes described in the addendum have not been implemented in the specified pages.

© 2015 Freescale Semiconductor, Inc. All rights reserved.

Freescale Semiconductor, Inc. Data Sheet Addendum

Document Number: MC9S08LG32AD Rev. 0, 04/2015

Addendum to Rev. 9 of the MC9S08LG32 Series Covers: MC9S08LG32 and MC9S08LG16

This addendum identifies changes to Rev. 9 of the MC9S08LG32 Series data sheet (covering MC9S08LG32 and MC9S08LG16). The changes described in this addendum have not been implemented in the specified pages.

1 Add min values for I_{IC} (DC injection current)

Location: Table 8. DC Characteristics, Page 14

In Table 8, "DC Characteristics," add min values for I_{IC} (row number 14) as follows:

Num	С	Characteristic		Symbol	Min	Typ ¹	Мах	Unit
14		DC injection current ^{5, 6, 7}	Single pin limit	I _{IC}	-0.2		2	mA
		$V_{IN} < V_{SS}$ (min)	Total MCU limit, includes sum of all stressed pins		-5	_	25	mA

2 Change the max value of t_{LPO} (low power oscillator period)

Location: Table 14. Control Timing, Page 29

In Table 14, "Control Timing," change the max value of t_{LPO} (row number 2) from 1300 to 1500 µs.

© 2015 Freescale Semiconductor, Inc. All rights reserved.

Freescale Semiconductor

Data Sheet: Technical Data

MC9S08LG32 Series Covers: MC9S08LG32 and MC9S08LG16

Features

- 8-bit HCS08 Central Processor Unit (CPU)
 - Up to 40 MHz CPU at 5.5 V to 2.7 V across temperature range of -40 °C to 85 °C and -40 °C to 105 °C
 - HCS08 instruction set with added BGND instruction
 - Support for up to 32 interrupt/reset sources
- On-Chip Memory
 - 32 KB or 18 KB dual array flash; read/program/erase over full operating voltage and temperature
 - 1984 byte random access memory (RAM)
 - Security circuitry to prevent unauthorized access to RAM and flash contents
- · Power-Saving Modes
 - Two low-power stop modes (stop2 and stop3)
 - Reduced-power wait mode
 - Peripheral clock gating register can disable clocks to unused modules, thereby reducing currents
 - Low power On-Chip crystal oscillator (XOSC) that can be used in low-power modes to provide accurate clock source to real time counter and LCD controller
 - $-100 \ \mu s \ typical \ wakeup \ time \ from \ stop3 \ mode$
- Clock Source Options
 - Oscillator (XOSC) Loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
 - Internal Clock Source (ICS) Internal clock source module containing a frequency-locked-loop (FLL) controlled by internal or external reference; precision trimming of internal reference allows 0.2% resolution and 2% deviation over temperature and voltage; supports bus frequencies from 1 MHz to 20 MHz.
- System Protection
 - COP reset with option to run from dedicated 1 kHz internal clock or bus clock
 - Low-voltage warning with interrupt
 - Low-voltage detection with reset
 - Illegal opcode detection with reset
 - Illegal address detection with reset
 - Flash and RAM protection
- Development Support
 - Single-wire background debug interface
 - Breakpoint capability to allow single breakpoint setting during in-circuit debugging and plus two more breakpoints in On-Chip debug module

80-LQFP Case 917A 14 mm × 14 mm 64-LQFP Case 840F 10 mm × 10 mm

48-LQFP Case 932 7 mm × 7mm

 On-Chip in-circuit emulator (ICE) debug module containing three comparators and nine trigger modes; eight deep FIFO for storing change-of-flow addresses and event-only data; debug module supports both tag and force breakpoints

MC9S08LG32

Peripherals

- LCD Up to 4 × 41 or 8 × 37 LCD driver with internal charge pump.
- ADC Up to 16-channel, 12-bit resolution, 2.5 μs conversion time, automatic compare function, temperature sensor, internal bandgap reference channel, runs in stop3 and can wake up the system, fully functional from 5.5 V to 2.7 V
- SCI Full duplex non-return to zero (NRZ), LIN master extended break generation, LIN slave extended break detection, wakeup on active edge
- SPI Full-duplex or single-wire bidirectional, double-buffered transmit and receive, master or slave mode, MSB-first or LSB-first shifting
- IIC With up to 100 kbps with maximum bus loading, multi-master operation, programmable slave address, interrupt driven byte-by-byte data transfer, supports broadcast mode and 10-bit addressing
- TPMx One 6 channel and one 2 channel, selectable input capture, output compare, or buffered edge or center-aligned PWM on each channel
- MTIM 8-bit counter with match register,, four clock sources with prescaler dividers, can be used for periodic wakeup
- RTC 8-bit modulus counter with binary or decimal based prescaler, three clock sources including one external source, can be used for time base, calendar, or task scheduling functions
- KBI One keyboard control module capable of supporting 8 × 8 keyboard matrix
- IRQ External pin for wakeup from low-power modes
- Input/Output
 - 39, 53, or 69 GPIOs
 - 8 KBI and 1 IRQ interrupt with selectable polarity
 - Hysteresis and configurable pullup device on all input pins, configurable slew rate and drive strength on all output pins.
- Package Options
 - 48-pin LQFP, 64-pin LQFP, and 80-pin LQFP

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

© Freescale Semiconductor, Inc., 2009-2011. All rights reserved.

Document Number: MC9S08LG32 Rev. 9, 09/2011

Table of Contents

Figure 17.Internal Oscillator Deviation from Trimmed Frequency 25 Figure 18.ADC Input Impedance Equivalency Diagram. 26 Figure 19.Reset Timing 29 Figure 23.SPI Master Timing (CPHA = 0) 32 Figure 27.4 MHz, Positive Polarity Pins 1 – 41 36 Figure 28.4 MHz, Positive Polarity Pins 42 - 80 36

(Case 840F, Doc #98ASS23234W) 45

(Case 932, Doc #98ASH00962A) 47

 (V_{REFH} = V_{DDAD}, V_{REFL} = V_{SSAD})
 27

 Table 14.Control Timing
 29

 Table 15.TPM Input Timing
 30

 Table 16.SPI Timing
 31

 Table 17.LCD Electricals, 3 V Glass
 34

 Table 18.Flash Characteristics
 34

 Table 19.Radiated Emissions, Electric Field
 35

 Table 20.Conducted Susceptibility, EFT/B
 35

 Table 21.Susceptibility Performance Classification
 38

 Table 23.Package Descriptions
 39

 Table 24.Revision History.
 48

Figure 33.80-pin LQFP Package Drawing

Figure 34.64-pin LQFP Package Drawing

Figure 35.48-pin LQFP Package Drawing

Table 10.Oscillator Electrical Specifications

Table 11.ICS Frequency Specifications

Table 13.12-bit ADC Characteristics

List of Tables

1		<u> </u>	nents	
2	Electr	rical Ch	naracteristics	10
	2.1	Introdu	uction	10
	2.2	Param	neter Classification	10
	2.3	Absolu	ute Maximum Ratings	10
	2.4	Therm	nal Characteristics	11
	2.5		Protection and Latch-Up Immunity	
	2.6		haracteristics	
	2.7		y Current Characteristics	
	2.8		nal Oscillator (XOSC) Characteristics	
	2.9		al Clock Source (ICS) Characteristics	
	2.9		Characteristics	
	2.11			
			Control Timing	
			2 TPM Module Timing	
			3 SPI Timing	
	2.12		Specifications	
	2.13	Flash	Specifications	34
	2.14	EMC F	Performance	35
		2.14.1	Radiated Emissions	35
		2.14.2	2 Conducted Transient Susceptibility	35
3	Order	ring Info	ormation	38
	3.1		e Numbering System	
4	Packa		ormation	
	4.1		anical Drawings	
		4.1.1	80-pin LQFP	
		4.1.2	64-pin LQFP	
		4.1.2	48-pin LQFP	+0 46
-	Devie			
5	Revis		story	+0
Lis	st of I	Figur	'es	
		-	08LG32 Series Block Diagram	3
			n LQFP	
			LQFP	
			LQFP	
			al Low-side Drive (sink) characteristics –	'
			xDSn = 1)	15
			al Low-side Drive (sink) characteristics –	
				15
			al High-side Drive (source) characteristics –	
				15
Fig	gure 8.	. Typica	al High-side Drive (source) characteristics –	
Lo	w Driv	e (PTx		16
Fig	gure 9.	. Typica	al Run I _{DD} for FBE Mode at 1 MHz	19
Fig	gure 10	0.Typic	al Run I _{DD} for FBE Mode at 20 MHz 2	20
			al Run I _{DD} for FEE Mode at 1 MHz 2	
Fig	oure 12	2.Tvpic	al Run I _{DD} for FEE Mode at 20 MHz 2	21
			al Stop2 I _{DD}	
			al Stop3 I _{DD}	
Fig	jure 1	5. Typic	al Crystal or Resonator Circuit: High Range and I	0\/
	, I		e/High Gain	
Fid		6 Typic	al Crystal or Resonator Circuit: Low Range/I	_0
		Power		24

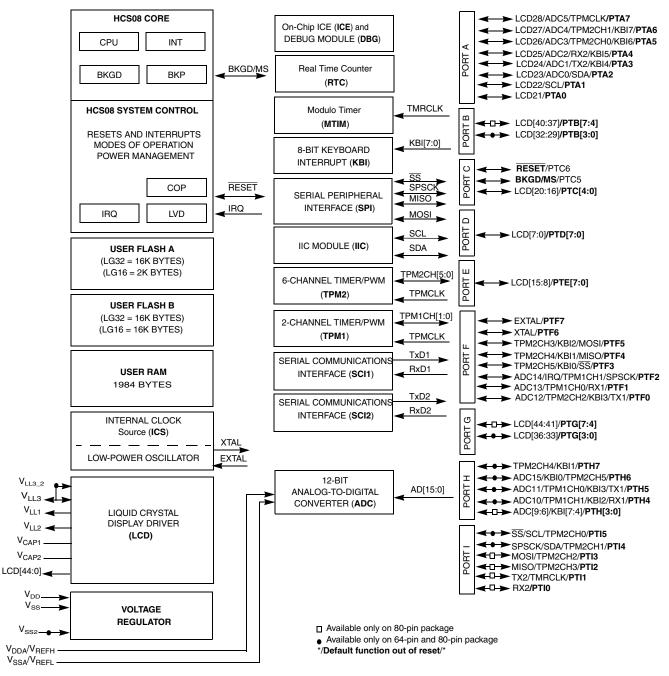


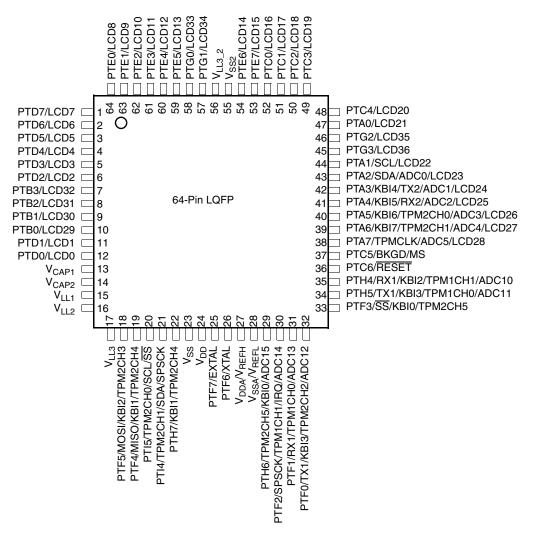
Figure 1. MC9S08LG32 Series Block Diagram

Feature		MC9S08LG32		MC9S0	08LG16	
Flash size (bytes)		32,768		18,432		
RAM size (bytes)			1984			
Pin quantity	80	64	48	64	48	
ADC	16 ch	12 ch	9 ch	12 ch	9 ch	
LCD	8 x 37 4 x 41	8 x 29 4 x 33	8 x 21 4 x 25	8 x 29 4 x 33	8 x 21 4 x 25	
ICE + DBG		•	yes		•	
ICS			yes			
IIC		yes				
IRQ		yes				
KBI			8 pin			
GPIOs	69	53	39	53	39	
RTC			yes			
MTIM			yes			
SCI1			yes			
SCI2			yes			
SPI			yes			
TPM1 channels			2			
TPM2 channels			6			
XOSC			yes			

Table 1. MC9S08LG32 Series Features by MCU and Package

1 Pin Assignments

This section shows the pin assignments for the MC9S08LG32 series devices. The priority of functions on a pin is in ascending order from left to right and bottom to top. Another view of pinouts and function priority is given in Table 2.


Figure 2. 80-Pin LQFP

NOTE

 V_{REFH}/V_{REFL} are internally connected to V_{DDA}/V_{SSA} .

Pin Assignments

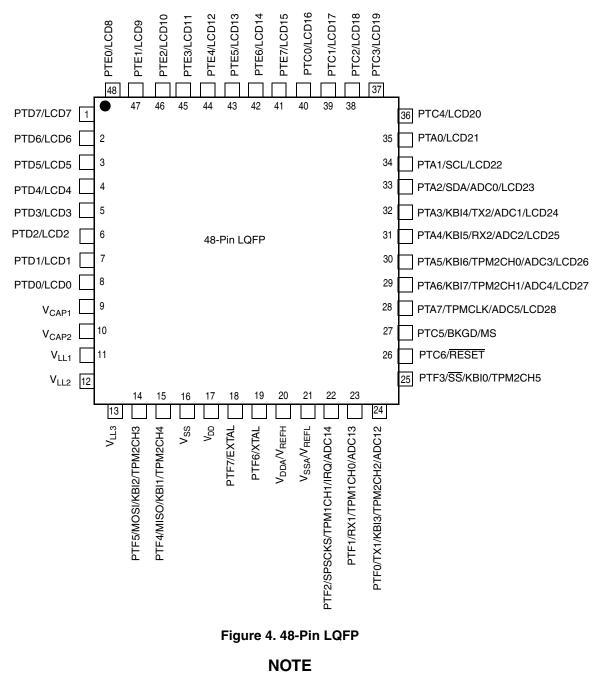


Figure 3. 64-Pin LQFP

NOTE

 V_{REFH}/V_{REFL} are internally connected to V_{DDA}/V_{SSA} .

 V_{REFH}/V_{REFL} are internally connected to V_{DDA}/V_{SSA} .

Pin Assignments

Packages			< Lowest Priority > Highest					
80	64	48	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4	
1	1	1	PTD7	LCD7	—	—	—	
2	2	2	PTD6	LCD6	—	_	_	
3	3	3	PTD5	LCD5	—	_	_	
4	4	4	PTD4	LCD4	—	—		
5	5	5	PTD3	LCD3	—	—	_	
6	6	6	PTD2	LCD2	—	—		
7	7	—	PTB3	LCD32	—	—	_	
8	8	—	PTB2	LCD31	—	—		
9	—	—	PTB7	LCD40	—	—		
10	—	—	PTB6	LCD39	—	—	_	
11	—	—	PTB5	LCD38	—	—		
12	—	—	PTB4	LCD37	—	—		
13	9	—	PTB1	LCD30		—	_	
14	10	—	PTB0	LCD29	—	—	_	
15	11	7	PTD1	LCD1	—	—	_	
16	12	8	PTD0	LCD0	—	—	_	
17	13	9	V _{CAP1}		—	—	_	
18	14	10	V _{CAP2}		—	_	—	
19	15	11	V _{LL1}		—	_	—	
20	16	12	V _{LL2}	_	—	—		
21	17	13	V _{LL3}	_	—	—	—	
22	18	14	PTF5	MOSI	KBI2	TPM2CH3	—	
23	19	15	PTF4	MISO	KBI1	TPM2CH4		
24	20	_	PTI5	TPM2CH0	SCL	SS		
25	21	—	PTI4	TPM2CH1	SDA	SPSCK		
26	—	—	PTI3	TPM2CH2	MOSI	—		
27	—	—	PTI2	TPM2CH3	MISO	—	—	
28	—	—	PTI1	TMRCLK	TX2	—	—	
29	—	—	PTI0	RX2		—	—	
30	22	—	PTH7	KBI1	TPM2CH4	—	—	
31	23	16	V _{SS}	_	—	—		
32	24	17	V _{DD}	_	—	—		
33	25	18	PTF7	EXTAL	—	—	_	
34	26	19	PTF6	XTAL	—	—	_	
35	27	20	V _{DDA}	V _{REFH}	—	—	_	
36	28	21	V _{SSA}	V _{REFL}	—	—	_	
37	29	—	PTH6	TPM2CH5	KBI0	ADC15	_	
38	30	22	PTF2	SPSCK	TPM1CH1	IRQ	ADC14	

Table 2. Pin Availability by Package Pin-Count

	Packages		< Lowest Priority> Highest					
80	64	48	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4	
39	31	23	PTF1	RX1	TPM1CH0	ADC13		
40	32	24	PTF0	TX1	KBI3	TPM2CH2	ADC12	
41	33	25	PTF3	SS	KBI0	TPM2CH5		
42	34	—	PTH5	TX1	KBI3	TPM1CH0	ADC11	
43	35	—	PTH4	RX1	KBI2	TPM1CH1	ADC10	
44	—	—	PTH3	KBI7	ADC9	_		
45	—	—	PTH2	KBI6	ADC8	_		
46	—	—	PTH1	KBI5	ADC7	—	—	
47	—	—	PTH0	KBI4	ADC6	_		
48	36	26	PTC6	RESET	—	—	—	
49	37	27	PTC5	BKGD/MS	—	—	—	
50	38	28	PTA7	TPMCLK	ADC5	LCD28	—	
51	39	29	PTA6	KBI7	TPM2CH1	ADC4	LCD27	
52	40	30	PTA5	KBI6	TPM2CH0	ADC3	LCD26	
53	41	31	PTA4	KBI5	RX2	ADC2	LCD25	
54	42	32	PTA3	KBI4	TX2	ADC1	LCD24	
55	43	33	PTA2	SDA	ADC0	LCD23		
56	44	34	PTA1	SCL	LCD22	_	—	
57	45	_	PTG3	LCD36	—	_	—	
58	46	—	PTG2	LCD35	—	_	—	
59	47	35	PTA0	LCD21	—	_	—	
60	48	36	PTC4	LCD20	—	_	—	
61	49	37	PTC3	LCD19	—	_	—	
62	50	38	PTC2	LCD18	—	_	—	
63	51	39	PTC1	LCD17	—	—	—	
64	52	40	PTC0	LCD16	—	—	—	
65	53	41	PTE7	LCD15	—	—		
66	54	42	PTE6	LCD14	—	—		
67	55	—	V _{SS2}		—			
68	56	—	V _{LL3_2}					
69	—	—	PTG7	LCD44				
70	—	—	PTG6	LCD43		—	—	
71	—	—	PTG5	LCD42		—	—	
72	—	—	PTG4	LCD41		—	—	
73	57	—	PTG1	LCD34		—	—	
74	58	—	PTG0	LCD33				
75	59	43	PTE5	LCD13	—	—	—	
76	60	44	PTE4	LCD12	—	_	—	

Table 2. Pin Availability by Package Pin-Count (continued)

MC9S08LG32 Series Data Sheet, Rev. 9

Freescale Semiconductor

Packages			< Lowest Priority> Highest				
80	64	48	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
77	61	45	PTE3	LCD11	—	—	—
78	62	46	PTE2	LCD10	_	_	
79	63	47	PTE1	LCD9	—	—	_
80	64	48	PTE0	LCD8	—	—	—

Table 2. Pin Availability by Package Pin-Count (continued)

2 Electrical Characteristics

2.1 Introduction

This section contains electrical and timing specifications for the MC9S08LG32 series of microcontrollers available at the time of publication.

2.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

	-
Р	Those parameters are guaranteed during production testing on each individual device.
с	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 3. Parameter Classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

2.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry that protects against damage due to high static voltage or electrical fields. However, it is advised that normal precautions should be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +5.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	Ι _D	±25 ±2	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table 4. Absolute Maximum Ratings

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages and use the largest of the two resistance values.

 $^2\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in an external power supply going out of regulation. Ensure that the external V_{DD} load will shunt current greater than maximum injection current, this will be of greater risk when the MCU is not consuming power. For instance, if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

2.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in On-Chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H –40 to +105	°C
Maximum junction temperature	TJ	125	°C
Thermal resistance Single-layer board 80-pin LQFP 64-pin LQFP 48-pin LQFP	θ_{JA}	61 71 80	°C/W
Thermal resistance Four-layer board 80-pin LQFP 64-pin LQFP 48-pin LQFP	θ_{JA}	48 52 56	°C/W

Table 5. Thermal Characteristics

The average chip-junction temperature (T_J) in °C can be obtained from:

MC9S08LG32 Series Data Sheet, Rev. 9

Freescale Semiconductor

where:

 $T_{A} = \text{Ambient temperature, °C}$ $\theta_{JA} = \text{Package thermal resistance, junction-to-ambient, °C/W}$ $P_{D} = P_{int} + P_{I/O}$ $P_{int} = I_{DD} \times V_{DD}, \text{Watts -- chip internal power}$

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273 \ ^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

K = P_D × (T_A + 273 °C) +
$$θ_{JA}$$
 × (P_D)² Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be taken to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for automotive grade integrated circuits. During the device qualification, ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless instructed otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human Body	Series resistance	R1	1500	Ω
Model	Storage capacitance	С	100	pF
	Number of pulses per pin	—	3	—
Latch-up	Minimum input voltage limit	—	-2.5	V
	Maximum input voltage limit	—	7.5	V

Table 6. ESD and Latch-Up Test Conditions

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	2500	_	V
2	Charge device model (CDM)	V _{CDM}	750	_	V
3	Latch-up current at $T_A = 85 \ ^{\circ}C$	I _{LAT}	±100	_	mA

Table 7. ESD and Latch-Up Protection Characteristics

Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

2.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	—	Operating Voltage	—	2.7	_	5.5	V
2	Ρ	Output high voltage — Low Drive (PTxDSn = 0) 5 V, ILoad = -2 mA 3 V, ILoad = -0.6 mA	V _{OH}	Vdd - 0.8 Vdd - 0.8			V
		Output high voltage — High Drive (PTxDSn = 1) V 5 V, ILoad = -10 mA 3 V, ILoad = -3 mA		Vdd - 0.8 Vdd - 0.8	_		
3	Ρ	Output low voltage — Low Drive (PTxDSn = 0) 5 V, ILoad = 2 mA 3 V, ILoad = 0.6 mA	V _{OL}	_		0.8 0.8	V
		Output low voltage — High Drive (PTxDSn = 1) 5 V, ILoad = 10 mA 3 V, ILoad = 3 mA			_	0.8 0.8	
4	Ρ	Output high current — Max total I _{OH} for all ports 5 V 3 V	I _{OHT}	_	_	100 60	mA
5	С	Output high current — Max total I _{OL} for all ports 5 V 3 V	I _{OLT}	_	_	100 60	mA
6	Ρ	Bandgap voltage reference	V _{BG}	_	1.225	—	V
7	Ρ	Input high voltage; all digital inputs	V _{IH}	0.65 x V _{DD}		—	V
8	Ρ	Input low voltage; all digital inputs	V _{IL}		_	$0.35 \times V_{DD}$	V
9	Ρ	Input hysteresis; all digital inputs	V _{hys}	0.06 x V _{DD}	_	—	mV
10	Ρ	Input leakage current; input only pins ² $V_{In} = V_{DD}$ or V_{SS}	I _{In}	_	0.1	1	μA
11	Ρ	High impedence (off-state) leakage current $V_{In} = V_{DD}$ or V_{SS}	ll _{oz} l	—	0.1	1	μA
12	Ρ	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
13	Ρ	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ

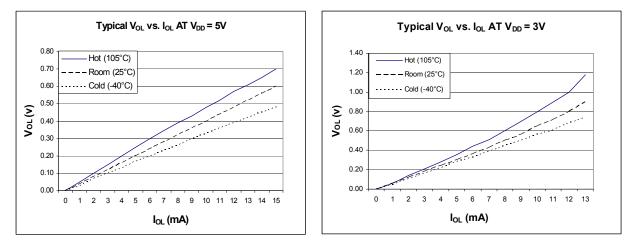
Table 8. DC Characteristics

Num	С		Characteristic		Symbol	Min	Typ ¹	Max	Unit
14	D	DC injection	Single pin limit		l _{IC}	_	—	2	mA
		current ^{5, 6, 7} $V_{IN} < V_{SS}, V_{IN} >$ V_{DD}	Total MCU limit, includes sun all stressed pins	n of		_	_	25	mA
15	С	Input Capacitance,	all non-supply pins		C _{In}		_	8	pF
16	С	RAM retention volta	age		V _{RAM}	2	_	_	V
17	Ρ	POR rearm voltage)		V _{POR}	0.9	1.4	2.0	V
18	D	POR rearm time			t _{POR}	10	—	_	μs
19	Ρ	Low-voltage detect	ion threshold — high range	V _{DD} falling V _{DD} rising	V _{LVD1}	3.9 4.0	4.0 4.1	4.1 4.2	V
20	Ρ	Low-voltage detect	ion threshold — low range	V _{DD} falling V _{DD} rising	V _{LVD0}	2.48 2.54	2.56 2.62	2.64 2.70	V
21	Ρ	Low-voltage warnir	ng threshold — high range 1	V _{DD} falling V _{DD} rising	V _{LVW3}	4.5 4.6	4.6 4.7	4.7 4.8	V
22	Ρ	Low-voltage warnir	ng threshold — high range 0	V _{DD} falling V _{DD} rising	V _{LVW2}	4.2 4.3	4.3 4.4	4.4 4.5	V
23	Ρ	Low-voltage warnir	ng threshold — low range 1	V _{DD} falling V _{DD} rising	V _{LVW1}	2.84 2.90	2.92 2.98	3.00 3.06	V
24	Ρ	Low-voltage warnir	ng threshold — low range 0	V _{DD} falling V _{DD} rising	V _{LVW0}	2.66 2.72	2.74 2.80	2.82 2.88	V
25	Ρ	Low-voltage inhibit	reset/recover hysteresis	5 V 3 V	V _{hys}		100 60	_	mV

Table 8. DC Characteristics (continued)

¹ Typical values are measured at 25 °C. Characterized, not tested

² Measured with $V_{In} = V_{DD}$ or Vss.


³ Measured with $V_{In} = V_{SS}$.

⁴ Measured with $V_{In} = V_{DD}$.

⁵ All functional non-supply pins, except for PTC6 are internally clamped to V_{SS} and V_{DD}.

- ⁶ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁷ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. For instance, if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

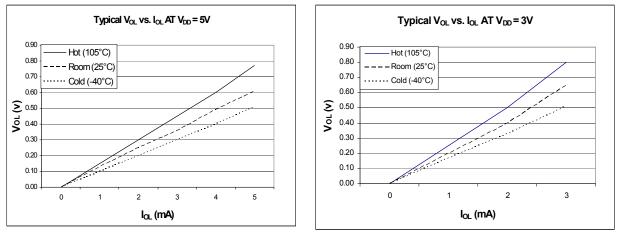


Figure 6. Typical Low-side Drive (sink) characteristics – Low Drive (PTxDSn = 0)

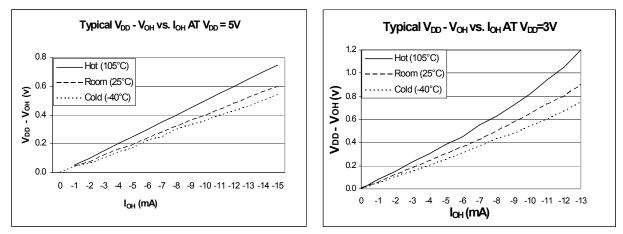


Figure 7. Typical High-side Drive (source) characteristics – High Drive (PTxDSn = 1)

MC9S08LG32 Series Data Sheet, Rev. 9

Freescale Semiconductor

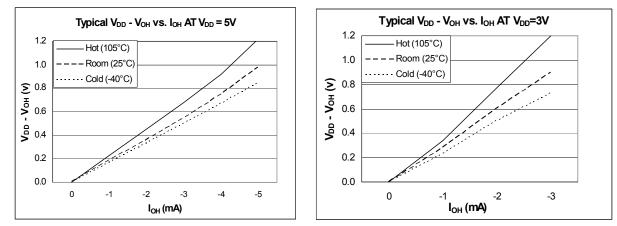


Figure 8. Typical High-side Drive (source) characteristics – Low Drive (PTxDSn = 0)

2.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
1	С	Run supply current	RI _{DD}	20 MHz	3	16.38	27.85	mA	–40 °C to 85 °C
	С	FEI mode, all modules on					28.05		–40 °C to105 °C
	С			1 MHz		1.67	2.84		–40 °C to 85 °C
	С						2.87		–40 °C to105 °C
	Р			20 MHz	5	16.55	28.14	mA	–40 °C to 85 °C
	Р						28.35		–40 °C to105 °C
	С			1 MHz		1.77	3.01		–40 °C to 85 °C
	С						3.05		–40 °C to105 °C
2	Т	Run supply current	RI _{DD}	20 MHz	3	11.9	20.25	mA	–40 °C to 85 °C
	Т	FEI mode, all modules off					21.72		–40 °C to105 °C
	Т			1 MHz		1.16	1.95		–40 °C to 85 °C
	Т						1.98		–40 °C to105 °C
	Т			20 MHz	5	12.68	21.56	mA	–40 °C to 85 °C
	Т						23.12		–40 °C to105 °C
	Т			1 MHz		1.4	2.39		–40 °C to 85 °C
	Т						2.41		–40 °C to105 °C
3	Т	Wait mode supply current	WI _{DD}	20 MHz	3	7.9	13.42	mA	–40 °C to 85 °C
	Т	FEI mode, all modules off					13.59		–40 °C to105 °C
	Т			1 MHz		0.88	1.49		–40 °C to 85 °C
	Т						1.51		–40 °C to105 °C
	Р			20 MHz	5	8.13	13.81	mA	–40 °C to 85 °C
	Р						13.98		–40 °C to105 °C
	Т			1 MHz		1.12	1.91		–40 °C to 85 °C
	Т						1.94		–40 °C to105 °C
4	С	Stop2 mode supply current	S2I _{DD}	n/a	3	1.1	16.0	μA	–40 °C to 85 °C
	С						39.0		–40 °C to105 °C
	Р				5	1.2	18.7	μA	–40 °C to 85 °C
	Р						46.1		–40 °C to105 °C
5	С	Stop3 mode supply current No clocks active	S3I _{DD}	n/a	3	1.2	22.4	μA	–40 °C to 85 °C
	С	INU GUUKS AUTIVE					56.2		–40 °C to105 °C
	Р				5	1.32	25.5	μA	–40 °C to 85 °C
	Р						63.9		–40 °C to105 °C

Table 9. Supply Current Characteristics

Num	с	Par	ameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
6	Т	Stop2 adders:	RTC using LPO	_	n/a	3	210	_	nA	–40 °C to 105 °C
			RTC using low power crystal oscillator				4.25	_	μA	
			LCD ² with rbias (Low Gain)				1.2 ³	—		
			LCD ² with rbias (High Gain)				18 ⁴	—		
			LCD ² with Cpump				4.05 ³	—		–40 °C to 85 °C
			RTC using LPO			5	210	—	nA	–40 °C to 105 °C
			RTC using low power crystal oscillator				4.22	_	μA	
			LCD ² with rbias (Low Gain)				1.5 ³	_		
			LCD ² with rbias (High Gain)				32 ⁴	—		
			LCD ² with Cpump				7.12 ³			–40 °C to 85 °C
7	Т	Stop3 adders:	RTC using LPO	—	n/a	3	210	—	nA	–40 °C to 105 °C
			RTC using low power crystal oscillator				4.75	—	μA	
			LCD ² with rbias (Low Gain)				1.2 ³	—		
			LCD ² with rbias (High Gain)				18 ⁴	_		
			LCD ² with Cpump				4.35 ³	_		–40 °C to 85 °C
			RTC using LPO			5	230	—	nA	–40 °C to 105 °C
			RTC using low power crystal oscillator				4.74	—	μA	
			LCD ² with rbias (Low Gain)				1.5 ³	_		
			LCD ² with rbias (High Gain)				32 ⁴	_		
			LCD ² with Cpump				7.49 ³	—		–40 °C to 85 °C

Table 9.	Supply	Current	Characteristics	(continued)
----------	--------	---------	-----------------	-------------

Num	с	Parameter		Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
8	Т	Stop3 adders:	EREFSTEN = 1	_	n/a	3	4.58	_	μA	–40 °C to 105 °C
			IREFSTEN = 1				71.7			
			LVD				94.35			
			EREFSTEN = 1			5	4.61		μA	
			IREFSTEN = 1				71.69			
			LVD				107.34			

Table 9. Supp	ly Current	Characteristics	(continued)
---------------	------------	-----------------	-------------

¹ Typical values are measured at 25 °C. Characterized, not tested.

 $^2\,$ LCD configured for Charge Pump Enabled V_{LL3} connected to V_{DD}.

³ This does not include current required for 32 kHz oscillator.

⁴ This is the maximum current when all LCD inputs/outputs are used.

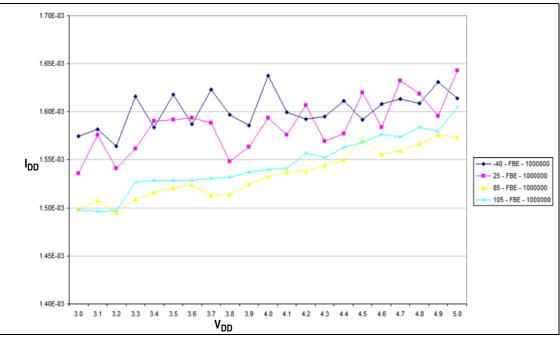


Figure 9. Typical Run I_{DD} for FBE Mode at 1 MHz

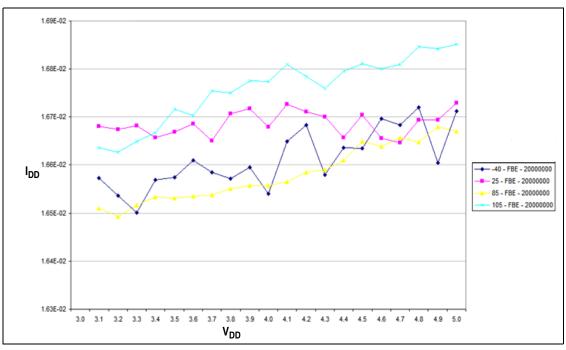


Figure 10. Typical Run I_{DD} for FBE Mode at 20 MHz

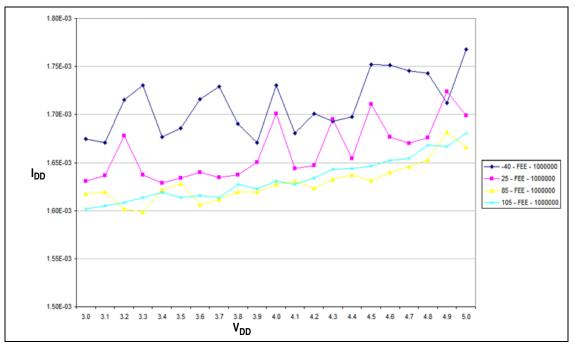


Figure 11. Typical Run I_{DD} for FEE Mode at 1 MHz

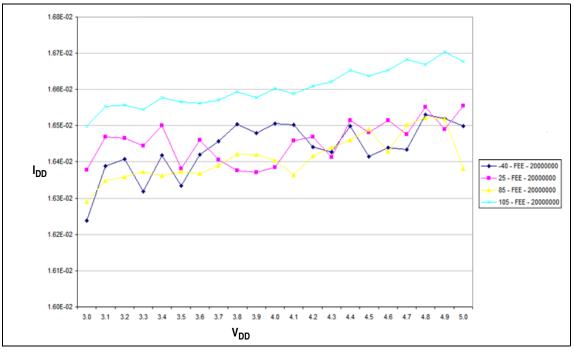


Figure 12. Typical Run $I_{\mbox{\scriptsize DD}}$ for FEE Mode at 20 MHz

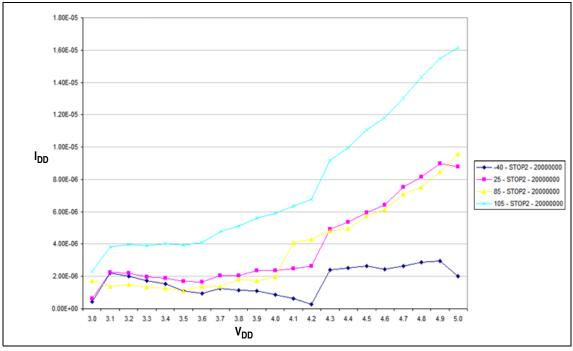


Figure 13. Typical Stop2 I_{DD}

MC9S08LG32 Series Data Sheet, Rev. 9

Freescale Semiconductor

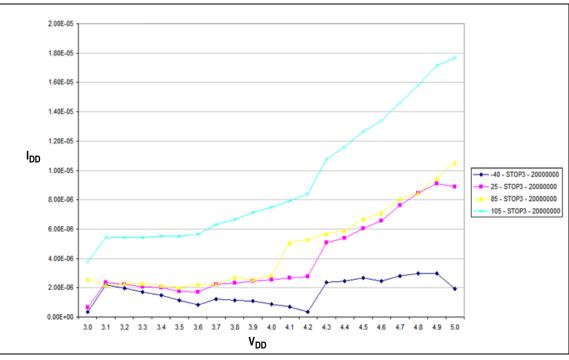


Figure 14. Typical Stop3 I_{DD}

2.8 External Oscillator (XOSC) Characteristics

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	D	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) • Low range (RANGE = 0) • High range (RANGE = 1) FEE or FBE mode ² • High range (RANGE = 1, HGO = 1) BLPE mode • High range (RANGE = 1, HGO = 0) BLPE mode	f _{lo} f _{hi} f _{hi-hgo} f _{hi-lp}	32 1 1 1		38.4 5 16 8	kHz MHz MHz MHz
2	D	Load capacitors	C ₁ C ₂		-	or resona ecommen	

Table 10. Oscillator Electrical Specifications (Temperature Range = -40 °C to 105 °C Ambient)

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
3	D	Feedback resistor • Low range (32 kHz to 100 kHz) • High range (1 MHz to 16 MHz)	R _F	_	10 1		MΩ
4	D	Series resistor • Low range, low gain (RANGE = 0, HGO = 0) • Low range, high gain (RANGE = 0, HGO = 1)	R _S		0 100		kΩ
5	D	Series resistor • High range, low gain (RANGE = 1, HGO = 0) • High range, high gain (RANGE = 1, HGO = 1) ≥8 MHz 4 MHz 1 MHz			0 0 0	0 10 20	kΩ
6	Т	Crystal start-up time ^{3, 4} • Low range (HGO = 0) • Low range (HGO = 1) • High range (HG0 = 0) ⁵ • High range (HG0 = 1) ⁵	^t CSTL-LP ^t CSTL-HGO ^t CSTH-LP ^t CSTH-HGO		500 3570 4 4		ms
7	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) • FEE or FBE mode ² • BLPE mode	f _{extal}	0.03125 0		5 40	MHz

Table 10. Oscillator Electrical Specifications (Temperature Range = -40 °C to 105 °C Ambient) (continued)

¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

² When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ This parameter is characterized and not tested on each device.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal

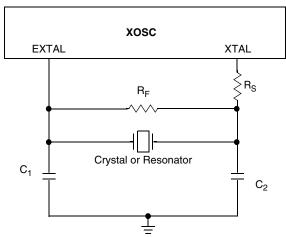
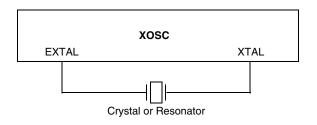



Figure 15. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

2.9 Internal Clock Source (ICS) Characteristics

Num	С	Character	istic	Symbol	Min	Typ ¹	Мах	Unit
1	Ρ	Average internal reference freque at VDD = 5.0 V and temperature		f _{int_ft}	_	32.768	—	kHz
2	С	Average internal reference frequ	iency — user trimmed	f _{int_t}	31.25	_	39.0625	kHz
3	С	Internal reference start-up time		t _{IRST}		60	100	μS
4			Low range (DRS = 00)	f _{dco_t}	16	—	20	MHz
	Р	trimmed ²	Mid range (DRS = 01)		32	—	40	
5	Р	DCO output frequency ²	Low range (DRS = 00)	f _{dco_DMX32}	—	19.92	—	MHz
	Ρ	Reference = 32768 Hz and DMX32 = 1	Mid range (DRS = 01)		_	39.85	—	
6	С	Resolution of trimmed DCO out voltage and temperature (using		$\Delta f_{dco_res_t}$	—	±0.1	±0.2	%f _{dco}
7	С	Resolution of trimmed DCO out voltage and temperature (not us	out frequency at fixed ing FTRIM) ³	$\Delta f_{dco_res_t}$	_	±0.2	±0.4	%f _{dco}
8	Р	Total deviation of trimmed DCO voltage and temperature	output frequency over	Δf_{dco_t}	_	-1.0 to +0.5	±2	%f _{dco}
9	С	Total deviation of trimmed DCO fixed voltage and temperature ra	Δf_{dco_t}	_	±0.5	±1	%f _{dco}	
10	С	FLL acquisition time ^{3, 4}		t _{Acquire}		—	1	mS
11	С	Long term jitter of DCO output c interval) ⁵	ock (averaged over 2 ms	C _{Jitter}	—	0.02	0.2	%f _{dco}

¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This parameter is characterized and not tested on each device.

⁴ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁵ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in the crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

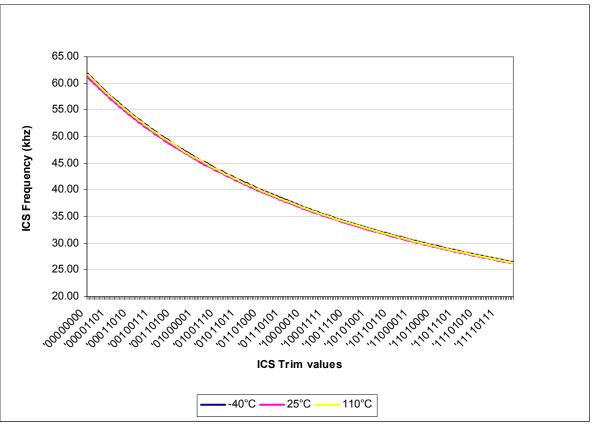


Figure 17. Internal Oscillator Deviation from Trimmed Frequency

2.10 ADC Characteristics

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply voltage	Absolute	V _{DDAD}	2.7	_	5.5	V	—
	Delta to V _{DD} (V _{DD} – V _{DDAD}) ²	ΔV_{DDAD}	-100	0	+100	mV	—
Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSAD}) ²	ΔV_{SSAD}	-100	0	+100	mV	—
Ref Voltage High	_	V _{REFH}	-	-	—	V	V _{REFH} shorted to V _{DDAD}
Ref Voltage Low	_	V _{REFL}	-	-	—	V	V _{REFL} shorted to V _{SSAD}
Input Voltage	_	V _{ADIN}	V _{REFL}		V _{REFH}	V	—
Input Capacitance	_	C _{ADIN}	_	4.5	5.5	pF	_

Table 12. 12-bit ADC Operating Conditions

Freescale Semiconductor

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Input Resistance	—	R _{ADIN}	_	5	7	kΩ	_
Analog Source Resistance	12-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}			2 5	kΩ	External to MCU
	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz				5 10		
	8-bit mode (all valid f _{ADCK})		_	_	10		
ADC	High Speed (ADLPC = 0)	f _{ADCK}	0.4	_	8.0	MHz	—
Conversion Clock Freq.	Low Power (ADLPC = 1)		0.4	—	4.0		

Table 12. 12-b	oit ADC Operating	Conditions	(continued)
----------------	-------------------	------------	-------------

¹ Typical values assume V_{DDAD} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

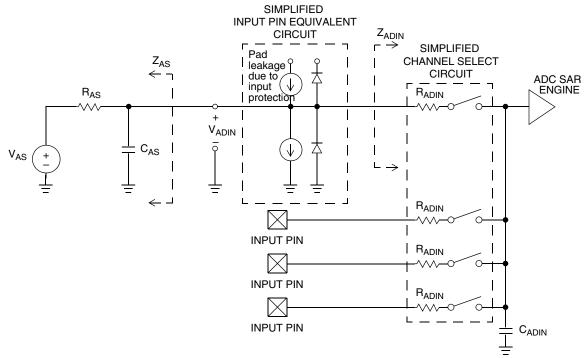


Figure 18. ADC Input Impedance Equivalency Diagram

Num	С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
1	Т	Supply Current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDAD}	_	195		μΑ	
2	Т	Supply Current ADLPC = 1 ADLSMP = 0 ADCO = 1	_	I _{DDAD}	_	347	_	μΑ	_
3	Т	Supply Current ADLPC = 0 ADLSMP = 1 ADCO = 1	_	I _{DDAD}	_	407	_	μΑ	_
4	Р	Supply Current ADLPC = 0 ADLSMP = 0 ADCO = 1	_	I _{DDAD}	_	0.755	1	mA	_
5	_	Supply Current	Stop, Reset, Module Off	Iddad		0.011	1	μA	—
6	Р	ADC	High Speed (ADLPC=0)	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} =
		Asynchronous Clock Source	Low Power (ADLPC=1)		1.25	2	3.3		1/f _{ADACK}
7	С	Conversion	Short sample (ADLSMP=0)	t _{ADC}	_	20	_	ADCK	chapter in the LG32
		Time (Including sample time)	Long sample (ADLSMP=1)		_	40	—	cycles	
8	С	Sample Time	Short sample (ADLSMP=0)	t _{ADS}	_	3.5	_	ADCK	Reference Manual for
			Long sample (ADLSMP=1)			23.5		cycles	conversion time variances
9	Т	Total	12-bit mode	E _{TUE}	—	±3.0	—	LSB ²	Includes
	Р	Unadjusted Error	10-bit mode		—	±1	±2.5		quantization
	Т		8-bit mode		_	±0.5	±1		
10	Т	Differential	12-bit mode	DNL	—	±1.75	—	LSB ²	
	Ρ	Non-Linearity	10-bit mode ³		_	±0.5	±1.0		
	Т		8-bit mode ³		—	±0.3	±0.5		
11	Т	Integral	12-bit mode	INL	_	±1.5	_	LSB ²	
	Ρ	Non-Linearity	10-bit mode		—	±0.5	±1		
	Т		8-bit mode			±0.3	±0.5		
12	Т	Zero-Scale Error	12-bit mode	E _{ZS}		±1.5		LSB ²	$V_{ADIN} = V_{SSAD}$
	Ρ		10-bit mode			±0.5	±1.5		
	Т		8-bit mode			±0.5	±0.5		

Table 13. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

	1							1	
Num	С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
13	Т	Full-Scale	12-bit mode	E _{FS}		±1		LSB ²	$V_{ADIN} = V_{DDAD}$
	Р	Error	10-bit mode	1	_	±0.5	±1		
	Т		8-bit mode			±0.5	±0.5		
14	D	Quantization	12-bit mode	EQ		-1 to 0		LSB ²	—
	Error	10-bit mode			—	±0.5			
			8-bit mode			—	±0.5		
15	D	Input Leakage	12-bit mode	E _{IL}		±1		LSB ²	Pad leakage4*
		Error	10-bit mode			±0.2	±2.5		R _{AS}
			8-bit mode	1		±0.1	±1		
16	С	Temp Sensor	–40 °C to 25 °C	m		1.646		mV/°C	_
		Slope	25 °C to 125°C	1	_	1.769	_		
17	С	Temp Sensor Voltage	25 °C	V _{TEMP25}		701.2		mV	_

Table 13. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$) (continued)

¹ Typical values assume V_{DDAD} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^{N}$

³ Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

2.11 AC Characteristics

This section describes timing characteristics for each peripheral system.

2.11.1 Control Timing

Table 14	. Control	Timing
----------	-----------	--------

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
1	D	Bus frequency $(t_{cyc} = 1/f_{Bus})$	f _{Bus}	dc		20	MHz
2	D	Internal low power oscillator period	t _{LPO}	700		1300	μs
3	D	External reset pulse width ²	t _{extrst}	100	_	_	ns
4	D	Reset low drive	t _{rstdrv}	66 x t _{cyc}	—	_	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ³	t _{MSH}	100	_	_	μS
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
8	D	Keyboard interrupt pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
9	С	Port rise and fall time — (load = 50 pF) ^{5, 6} Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} t _{Fall}		3 30	_	ns

¹ Typical values are based on characterization data at $V_{DD} = 5.0$ V, 25 °C unless otherwise stated.

 2 This is the shortest pulse that is guaranteed to be recognized as a reset pin request.

 3 To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.

⁴ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.

 5 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40 °C to 105 °C.

⁶ Except for LCD pins in Open Drain mode.

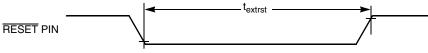


Figure 19. Reset Timing

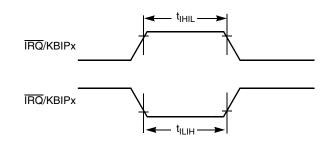


Figure 20. IRQ/KBIPx Timing

2.11.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 15. TPM Input Timing

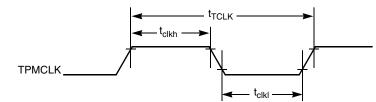


Figure 21. Timer External Clock

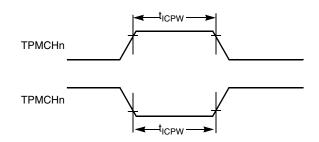


Figure 22. Timer Input Capture Pulse

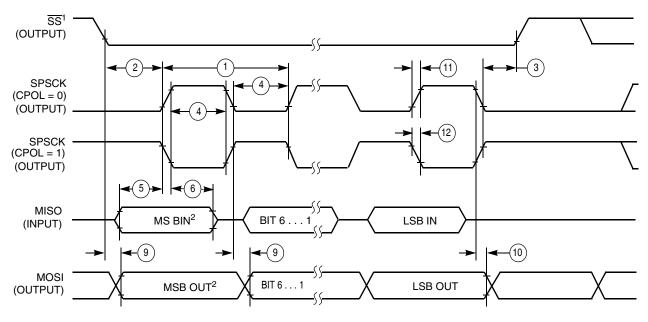
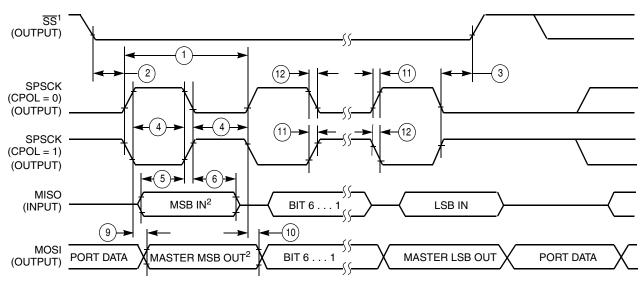

2.11.3 SPI Timing

Table 16 and Figure 23 through Figure 26 describe the timing requirements for the SPI system.

No.	С	Function	Symbol	Min	Max	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	t _{spsck}	2 4	2048 —	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1	_	t _{SPSCK} t _{cyc}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{cyc}
4	D	Clock (SPSCK) high or low time Master Slave	^t wspsck	t _{cyc} – 30 t _{cyc} – 30	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25		ns ns
7	D	Slave access time	t _a	—	1	t _{cyc}
(8)	D	Slave MISO disable time	t _{dis}	_	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		25 25	ns ns
(10)	D	Data hold time (outputs) Master Slave	tно	0 0		ns ns
(1)	D	Rise time Input Output	t _{RI} t _{RO}		t _{cyc} – 25 25	ns ns
(12)	D	Fall time Input Output	t _{FI} t _{FO}	—	t _{cyc} – 25 25	ns ns

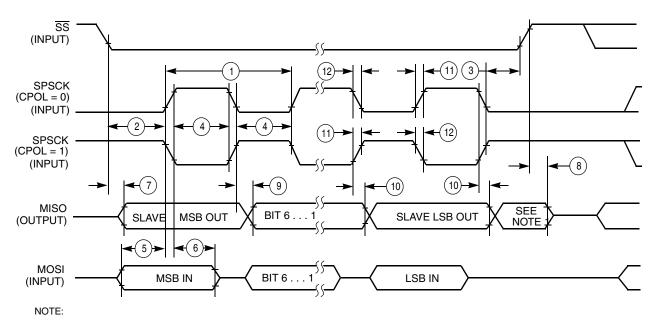
Table 16. SPI Timing



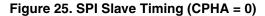
NOTES:

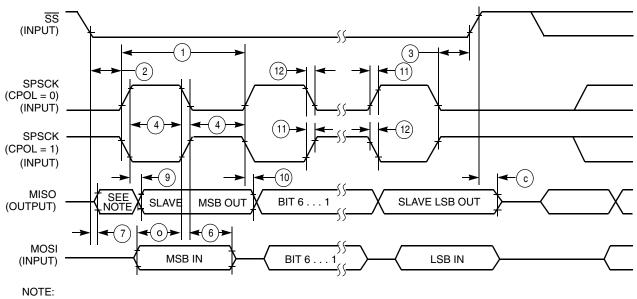
1. SS output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.


NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).


2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.



1. Not defined but normally MSB of character just received.

1. Not defined but normally LSB of character just received

Figure 26. SPI Slave Timing (CPHA = 1)

MC9S08LG32 Series Data Sheet, Rev. 9

Freescale Semiconductor

2.12 LCD Specifications

Table 17. LCD Electricals, 3 V Glass

С	Characteristic	Symbol	Min	Тур	Мах	Units
D	VLL3 Supply Voltage	VLL3	2.7	_	5.5	V
D	LCD Frame Frequency	f _{Frame}	28	30	64	Hz
D	LCD Charge Pump Capacitance	C _{LCD}	—	100	100	pF
D	LCD Bypass Capacitance	C _{BYLCD}	—	100	100	
D	LCD Glass Capacitance	C _{glass}	_	2000	8000	

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage for program/erase -40 °C to 85 °C	V _{prog/erase}	2.7		5.5	V
D	Supply voltage for read operation	V _{Read}	2.7		5.5	V
D	Internal FCLK frequency ¹	f _{FCLK}	150		200	kHz
D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μs
С	Byte program time (random location) ²	t _{prog}			t _{Fcyc}	
С	Byte program time (burst mode) ²	t _{Burst}			t _{Fcyc}	
С	Page erase time ²	t _{Page}		4000		t _{Fcyc}
С	Mass erase time ²	t _{Mass}		20,000		t _{Fcyc}
D	Byte program current ³	R _{IDDBP}	_	4	—	mA
D	Page erase current ³	R _{IDDPE}	_	6	_	mA
с	Program/erase endurance ⁴ T _L to T _H = -40 °C to + 85 °C T = 25 °C		10,000	 100,000		cycles
С	Data retention ⁵	t _{D_ret}	15	100	_	years

Table 18. Flash Characteristics

¹ The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with $V_{DD} = 5.0 \text{ V}$, bus frequency = 4.0 MHz.

⁴ Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to *Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory.*

⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25 °C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to *Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.*

2.14 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

2.14.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East).

The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels.

Parameter	Symbol	Conditions	Frequency	f _{OSC} /f _{BUS}	Level ¹ (Max)	Unit
Radiated emissions,	V _{RE_TEM}	V _{DD} = 5.5 T _A = +25 °C Package type =	0.15 – 50 MHz	4 MHz crystal 16 MHz bus	10	dBμV
electric field			50 – 150 MHz		14	
		80 LQFP	150 – 500 MHz		8	
			500 – 1000 MHz		5	
			IEC Level		L	—
			SAE Level		2	—

Table 19. Radiated Emissions, Electric Field

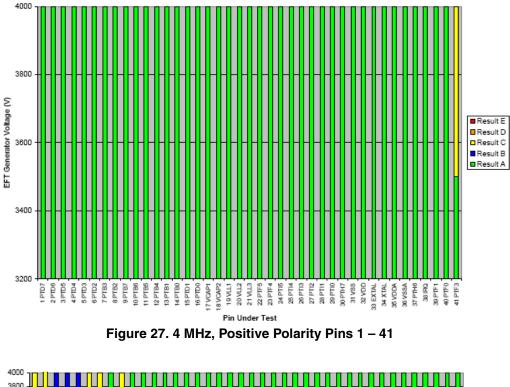
¹ Data based on qualification test results.

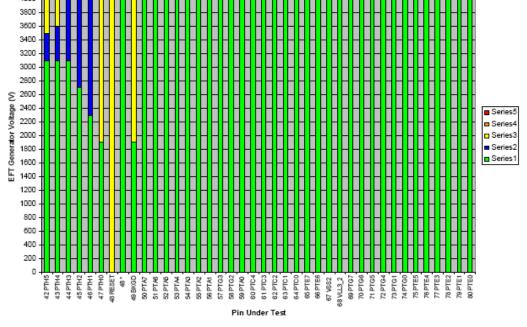
2.14.2 Conducted Transient Susceptibility

Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale test method. The measurement is performed with the microcontroller installed on a custom EMC evaluation board and running specialized EMC test software designed in compliance with the test method. The conducted susceptibility is determined by injecting the transient susceptibility signal on each pin of the microcontroller. The transient waveform and injection methodology is based on IEC 61000-4-4 (EFT/B). The transient voltage required to cause performance degradation on any pin in the tested configuration is greater than or equal to the reported levels unless otherwise indicated by footnotes below Table 20.

Parameter	Symbol	Conditions	f _{OSC} /f _{BUS}	Result	Amplitude ¹ (Min)	Unit
Conducted susceptibility, electrical	V _{CS EFT}	V _{DD} = 5.5	4 kHz crystal	А	>4.0 ²	kV
fast transient/burst (EFT/B)		$T_{A} = +25 \text{ °C}$	4 MHz bus	В	>4.0 ³	
		Package type = 80-pin LQFP		С	>4.0 ⁴	
				D	>4.0	

¹ Data based on qualification test results. Not tested in production.


² Exceptions as covered in footnotes 3 and 4.

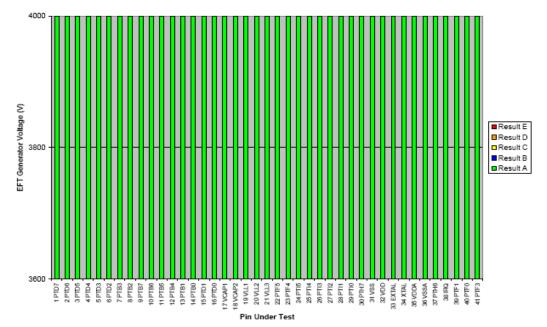

NP

Electrical Characteristics

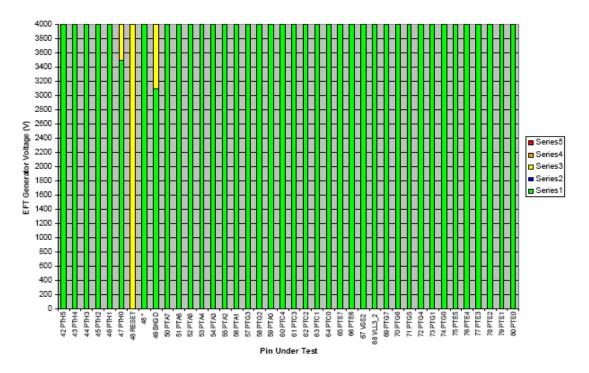
- ³ Except pins PHT1, PTH2, PTH3, PTH4, PTH5. See figures below for values.
- ⁴ Except pins PTF3, PTH5, PTH4, PHT0, Reset, and BKGD. See figures below for values.

Individual performance of each pin is shown in Figure 27, Figure 28, Figure 29, and Figure 30.




Note:

RESET retested with 0.1 μF capacitor from pin to ground is Class A compliant as shown by 48*.


Figure 28. 4 MHz, Positive Polarity Pins 42 – 80

Note:

RESET retested with 0.1 μ F capacitor from pin to ground is Class A compliant as shown by 48*. Figure 30. 4 MHz, Negative Polarity Pins 42 – 80

MC9S08LG32 Series Data Sheet, Rev. 9

Ordering Information

The susceptibility performance classification is described in Table 21.

Result		Performance Criteria
A	No failure	The MCU performs as designed during and after exposure.
В	Self-recovering failure	The MCU does not perform as designed during exposure. The MCU returns automatically to normal operation after exposure is removed.
С	Soft failure	The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the RESET pin is asserted.
D	Hard failure	The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the power to the MCU is cycled.
E	Damage	The MCU does not perform as designed during and after exposure. The MCU cannot be returned to proper operation due to physical damage or other permanent performance degradation.

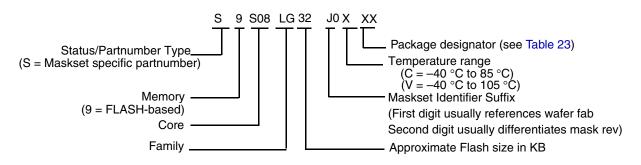
Table 21. Susceptibility Performance Classification

3 Ordering Information

This section contains ordering information for MC9S08LG32 and MC9S08LG16 devices.

Device Number ¹	Memory		Tomporature Dongo (°C)	LCD Mode	Available Packages ²	
Device Number	FLASH	RAM	– Temperature Range (°C)	Operation	Available Fackages	
			Auto			
S9S08LG32J0CLK	32 KB	1984	-40 °C to +85 °C	Charge Pump	80-pin LQFP	
S9S08LG32J0CLH					64-pin LQFP	
S9S08LG32J0CLF					48-pin LQFP	
S9S08LG32J0VLK	32 KB	1984	-40 °C to +105 °C	Register Bias	80-pin LQFP	
S9S08LG32J0VLH					64-pin LQFP	
S9S08LG32J0VLF	1				48-pin LQFP	
S9S08LG16J0VLH	18 KB	1984			64-pin LQFP	
S9S08LG16J0VLF					48-pin LQFP	
			IMM			
MC9S08LG32CLK	32 KB	1984	-40 °C to + 85 °C	Charge Pump	80-pin LQFP	
MC9S08LG32CLH					64-pin LQFP	
MC9S08LG32CLF					48-pin LQFP	
MC9S08LG16CLH	18 KB	1984	1		64-pin LQFP	
MC9S08LG16CLF					48-pin LQFP	

Table 22. Device Numbering System


See the *MC9S08LG32 Reference Manual* (document MC9S08LG32RM), for a complete description of modules included on each device.

² See Table 23 for package information.

3.1 Device Numbering System

Example of the device numbering system:

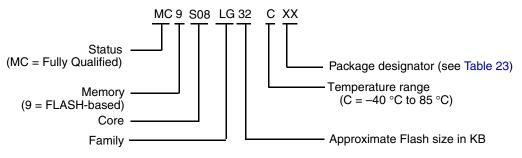
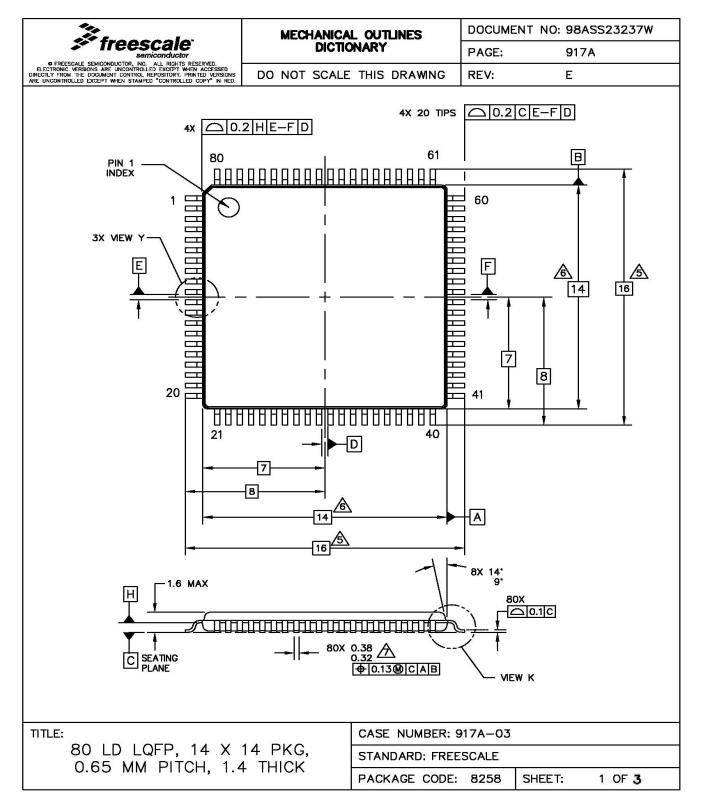


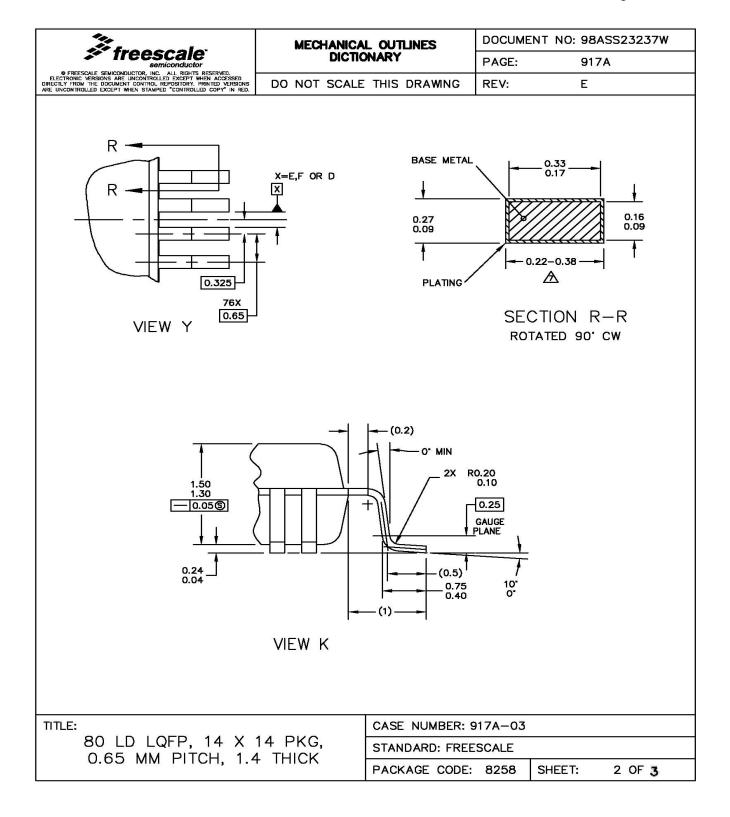
Figure 32. Device Number Example for IMM Parts

4 Package Information

Table 2	3. Package	Descriptions
---------	------------	--------------

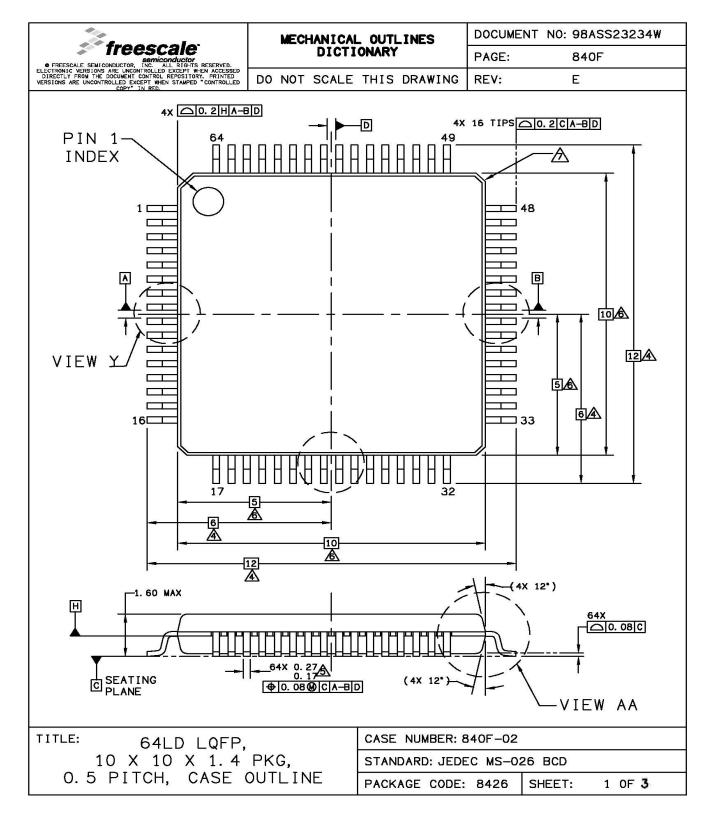

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
80	Low Quad Flat Package	LQFP	LK	917A	98ASS23237W
64	Low Quad Flat Package	LQFP	LH	840F	98ASS23234W
48	Low Quad Flat Package	LQFP	LF	932	98ASH00962A

4.1 Mechanical Drawings


The following pages are mechanical drawings for the packages described in Table 23. For the latest available drawings please visit our web site (http://www.freescale.com) and enter the package's document number into the keyword search box.

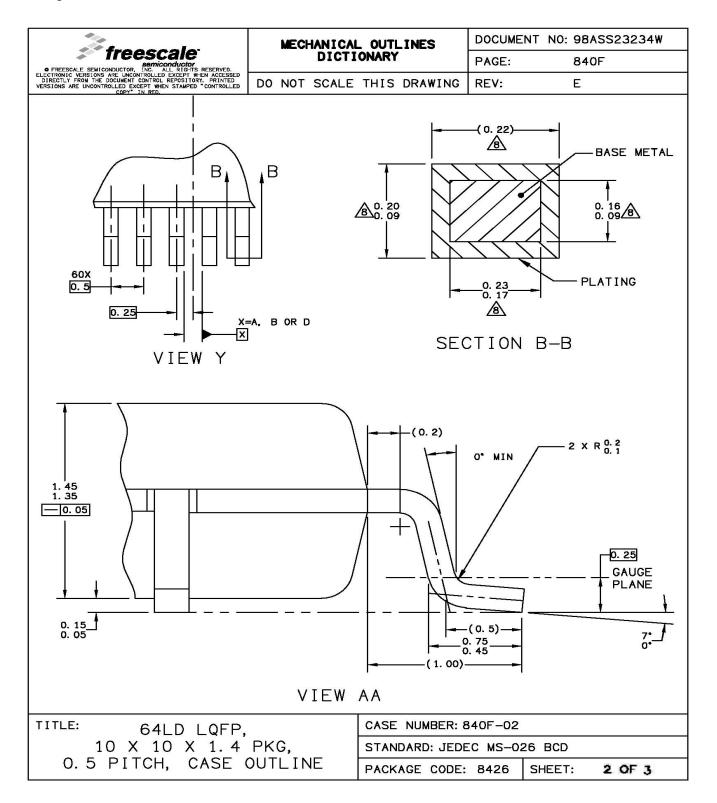
4.1.1 80-pin LQFP

MC9S08LG32 Series Data Sheet, Rev. 9


N

34.	MECHANICAL OUTLINES DICTIONARY		DOCUMENT NO: 98ASS23237W						
freescale semiconductor			PAGE:	917/	٩				
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	Е					
NOTES:									
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.									
2. CONTROLLING DIMENSION : N	ILIMETER.								
3. DATUM PLANE H IS LOCATED WHERE THE LEAD EXITS THE									
4. DATUM E, F AND D TO BE I	DETERMINED AT DA	TUM PLANE H.							
A DIMENSIONS TO BE DETERMIN	NED AT SEATING PI	LANE C.							
DIMENSIONS DO NOT INCLUD PER SIDE. DIMENSIONS DO I DATUM PLANE H.									
DIMENSION DOES NOT INCLUI CAUSE THE LEAD WIDTH TO ADJACENT LEAD OR PROTRU	EXCEED 0.46. MI								
TITLE:		CASE NUMBER: 9	17A-03						
80 LD LQFP, 14 X		STANDARD: FREE							
0.65 MM PITCH, 1.4		PACKAGE CODE:	8258	SHEET:	3 OF 3				

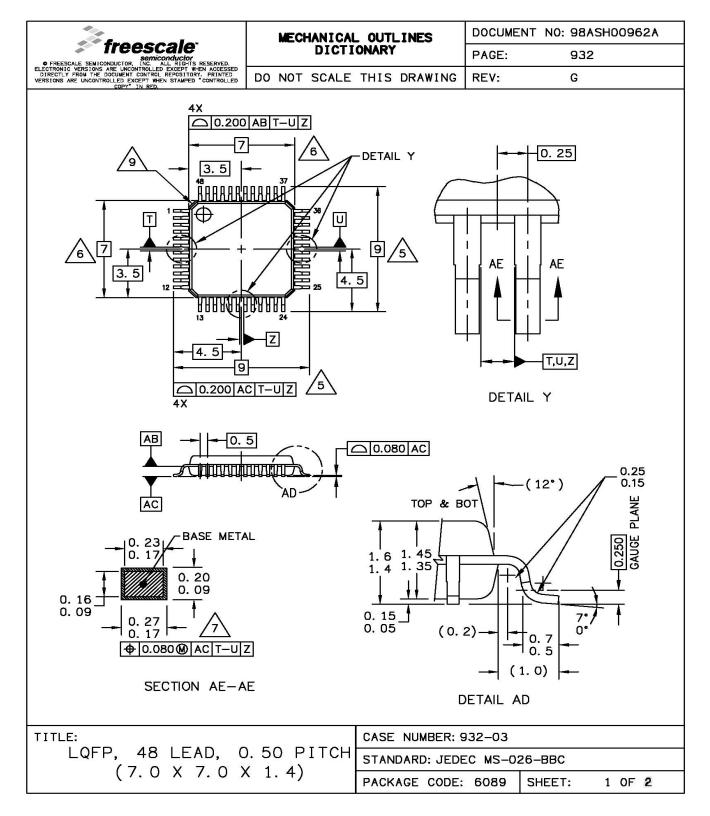
Figure 33. 80-pin LQFP Package Drawing (Case 917A, Doc #98ASS23237W)



4.1.2 64-pin LQFP

MC9S08LG32 Series Data Sheet, Rev. 9

	MECHANICAL OUTLINES	DOCUMENT NO: 98ASS23234W							
FREESCALE SEMICONDUCTOR INC. ALL RIGHTS RESERVED. FREESCALE SEMICONDUCTOR INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FRUI THE DOCUMENT CONTROL REPOSITION, FRINTED	DICTIONARY		PAGE:	840F					
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	E					
NOTES:									
1. DIMENSIONS ARE IN MILLIMETERS.									
2. DIMENSIONING AND TO	LERANCING PER	ASME Y14.5M-19	994.						
3. DATUMS A, B AND D T	O BE DETERMINE	D AT DATUM PLA	NE H.						
A DIMENSIONS TO BE DE	TERMINED AT SE	ATING PLANE C.							
THIS DIMENSION DOES PROTRUSION SHALL NO BY MORE THAN 0.08 m LOCATED ON THE LOWE PROTRUSION AND ADJA	T CAUSE THE LE m AT MAXIMUM M R RADIUS OR TH	AD WIDTH TO EX ATERIAL CONDIT E FOOT. MINIMU	CEED TH ION. DA JM SPACE	E UPPER LIMIT MBAR CANNOT BE BETWEEN					
THIS DIMENSION DOES IS 0.25 mm PER SIDE DIMENSION INCLUDING	. THIS DIMENSI	ON IS MAXIMUM							
A EXACT SHAPE OF EACH	CORNER IS OPT	IONAL.							
	A THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.25 mm FROM THE LEAD TIP.								
TITLE: 64LD LQFP,	,	CASE NUMBER: 8	40F-02						
10 X 10 X 1.4	PKG,	STANDARD: JEDE	C MS-02						
0.5 PITCH, CASE	OUILINE	PACKAGE CODE:	8426	SHEET: 3 OF 3					


Figure 34. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W)

MC9S08LG32 Series Data Sheet, Rev. 9

NP

4.1.3 48-pin LQFP

Package Information

	MECHANICAL OUTLINES	OUTLINES	DOCUMENT NO: 98ASH00962A				
• FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	DICTIONARY		PAGE:	932			
COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	G			
NOTES:							
1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M-1994.							
2. CONTROLLING DIMENSI	ON: MILLIMETER	₹.					
3. DATUM PLANE AB IS WITH THE LEAD WHEF OF THE PARTING LINI	RE THE LEAD E						
4. DATUMS T, U, AND Z	TO BE DETERN	INED AT DATUM	M PLAN	E AB.			
5 dimensions to be di	ETERMINED AT	SEATING PLANE	AC.				
6. DIMENSIONS DO NOT PROTRUSION IS 0.250 MOLD MISMATCH AND	D PER SIDE. DIN	MENSIONS DO IN	ICLUDE				
A THIS DIMENSION DOES SHALL NOT CAUSE T				DAMBAR PROTRUSION			
8. MINIMUM SOLDER PLA	TE THICKNESS	SHALL BE 0.00	76.				
9. EXACT SHAPE OF EAG	CH CORNER IS	OPTIONAL.					
TITLE: LQFP, 48 LEAD, C) 50 PITCH	CASE NUMBER: 9					
(7.0×7.0)		STANDARD: JEDE					
		PACKAGE CODE:	6089	SHEET: 2 OF 2			

Figure 35. 48-pin LQFP Package Drawing (Case 932, Doc #98ASH00962A)

Revision History

5 Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web are the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://www.freescale.com

The following revision history table summarizes changes contained in this document.

Table 24. Revision History

Revision	Date	Description of Changes
1	8/2008	First Initial release.
2	9/2008	Second Initial Release.
3	11/2008	Alpha Customer Release.
4	2/2009	Launch Release.
5	4/2009	Added EMC Radiated Emission and Transient Susceptibility data in Table 19 and Table 20.
6	4/2009	Updated EMC performance data.
7	8/2009	Updated auto part numbers, changed TCLK, T0CH0, T0CH1, T1CH0, T1CH1, T1CH2, T1CH3, T1CH3, T1CH3, T1CH4, and T1CH5 to TPMCLK, TPM0CH0, TPM0CH1, TPM1CH0, TPM1CH1, TPM1CH2, TPM1CH3, TPM1CH4, and TPM1CH5, and changed the maximum LCD frame frequency to 64 Hz.
8	8/2011	Updated Table "ICS Frequency Specifications (Temperature Range = $-40 \times C$ to $105 \times C$ Ambient)". Changed the value of row 8 column C from C to P.
9	9/2011	Updated Table "ICS Frequency Specifications (Temperature Range = $-40 \times C$ to $105 \times C$ Ambient)". Removed Footnote from Row 8. Updated the Revision History

THIS PAGE INTENTIONALLY BLANK

MC9S08LG32 Series Data Sheet, Rev. 9

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. All rights reserved.

© 2009, 2011,2015 Freescale Semiconductor, Inc.

Document Number: MC9S08LG32 Rev. 10 04/2015

