DESCRIPTION

The $\mathrm{LT}^{\circledR} 1211$ is a dual, single supply precision op amp with a 14 MHz gain-bandwidth product and a $7 \mathrm{~V} / \mu \mathrm{s}$ slew rate. The LT1212 is a quad version of the same amplifier. The DC precision of the LT1211/LT1212 eliminates trims in most systems while providing high frequency performance not usually found in single supply amplifiers.

The LT1211/LT1212 will operate on any supply greater than 2.5 V and less than 36 V total. These amplifiers are specified on single 3.3 V , single 5 V and $\pm 15 \mathrm{~V}$ supplies, and only require 1.3 mA of quiescent supply current per amplifier. The inputs can be driven beyond the supplies without damage or phase reversal of the output. The minimum output drive is 20 mA , ideal for driving low impedance loads.

APPLICATIONS

- 2.5V Full-Scale 12-Bit Systems: $V_{0 S} \leq 0.45 \mathrm{LSB}$
- 10V Full-Scale 16-Bit Systems: $\mathrm{V}_{0 S} \leq 1.8 \mathrm{LSB}$
- Active Filters
- Photo Diode Amplifiers
- DAC Current-to-Voltage Amplifiers
- Battery-Powered Systems

TYPICAL APPLICATION

Input Bias Current Cancellation

Input Current vs Input Voltage

ABSOLUTE MAXIMUM RATINGS
 (Note 1)

Total Supply Voltage (V^{+}to V^{-}) 36 V
Input Current .. $\pm 15 \mathrm{~mA}$
Output Short-Circuit Duration (Note 2) Continuous
Operating Temperature Range
LT1211C/LT1212C $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1211I/LT1212I........................ $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1211M (OBSOLETE) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Specified Temperature Range
LT1211C/LT1212C/
LT1211I/LT1212I (Note 6) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1211M (OBSOLETE) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature (Note 3)
Plastic Package (N8, S8, N, S) $150^{\circ} \mathrm{C}$
Ceramic Package (J8) (OBSOLETE)............. $175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)................ $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER		ORDER PART NUMBER
	LT1211CN8 LT1211ACN8		LT1211CS8 LT1211IS8
			S8 PART MARKING
$\mathrm{T}_{\mathrm{Jmax}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{N})$ J8 PACKAGE 8-LEAD CERDIP $\mathrm{T}_{\mathrm{JMAX}}=175^{\circ} \mathrm{C}, \theta_{\mathrm{JAA}}=100^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{J})$ OBSOLETE P Consider the N8 Package for	LT1211MJ8 LT1211AMJ8	8-LEAD PLASTIC SO $\mathrm{T}_{\mathrm{JMaX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{W}$	$\begin{aligned} & 1211 \\ & 1211 \mid \end{aligned}$
	ORDER PART NUMBER		ORDER PART NUMBER
$\mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=70^{\circ} \mathrm{C} / \mathrm{W}$	$\begin{aligned} & \text { LT1212CN } \\ & \text { LT1212IN } \end{aligned}$		$\begin{aligned} & \text { LT1212CS } \\ & \text { LT1212IS } \end{aligned}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.

AVAILABLE OPTIONS

				PACKAGE		
NUMBER OF OP AMPS	$\mathrm{T}_{\text {A }}$ RANGE	MAX $\mathrm{V}_{0 S}\left(25^{\circ} \mathrm{C}\right)$	MAX TC V ${ }_{\text {OS }}$ $\left(\Delta V_{0 S} / \Delta T\right)$	$\begin{aligned} & \text { CERAMIC (J) } \\ & \text { OBSOLETE } \end{aligned}$	PLASTIC DIP (N)	SURFACE MOUNT (S)
Two (Dual)	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$150 \mu \mathrm{~V}$	$1.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		LT1211ACN8	
		$275 \mu \mathrm{~V}$	$3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		LT1211CN8, LT1211IN8	
		$275 \mu \mathrm{~V}$	$6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$			LT1211CS8, LT1211IS8

AVAILAßLE OPTIONS

						PACKAGE		

5V ELECTRICAL CHARACTERISTICS

$V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	LT1211AC LT1211AM			$\begin{aligned} & \text { LT1211C/LT1211M } \\ & \text { LT1212C } \end{aligned}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			75	150		100	275	$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{Time}}$	Long-Term Input Offset Voltage Stability			0.5			0.6		$\mu \mathrm{V} / \mathrm{Mo}$
$\mathrm{I}_{0 \mathrm{~S}}$	Input Offset Current			5	20		5	30	nA
I_{B}	Input Bias Current			50	100		60	125	nA
	Input Noise Voltage	0.1 Hz to 10Hz		250			250		$n V_{\text {P-P }}$
e_{n}	Input Noise Voltage Density	$\begin{aligned} & \mathrm{f}_{0}=10 \mathrm{~Hz} \\ & \mathrm{f}_{0}=1000 \mathrm{~Hz} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 12.5 \\ & 12.0 \end{aligned}$			$\begin{aligned} & 12.5 \\ & 12.0 \end{aligned}$		$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
i_{n}	Input Noise Current Density	$\begin{aligned} & \mathrm{f}_{0}=10 \mathrm{~Hz} \\ & \mathrm{f}_{0}=1000 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 0.9 \\ & 0.2 \end{aligned}$			$\begin{aligned} & \hline 0.9 \\ & 0.2 \end{aligned}$		$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
	Input Resistance (Note 4)	Differential Mode Common Mode	10	$\begin{gathered} 40 \\ 500 \end{gathered}$		10	$\begin{gathered} 40 \\ 500 \end{gathered}$		$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
	Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$		10			10		pF
	Input Voltage Range		$\begin{gathered} 3.5 \\ 0 \end{gathered}$	$\begin{array}{r} 3.8 \\ -0.3 \end{array}$		$\begin{gathered} 3.5 \\ 0 \end{gathered}$	$\begin{array}{r} 3.8 \\ -0.3 \end{array}$		V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$ to 3.5 V	90	105		86	102		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 12.5 V	90	115		87	110		dB
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{0}=0.05 \mathrm{~V}$ to 3.7V, $\mathrm{R}_{\mathrm{L}}=500 \Omega$	250	560		250	560		V / mV
	Maximum Output Voltage Swing (Note 5)	$\begin{aligned} & \text { Output High, No Load } \\ & \text { Output High, } \text { I }_{\text {SOURCE }}=1 \mathrm{~mA} \\ & \text { Output High, } \text { I }_{\text {SOURCE }}=15 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.30 \\ & 4.20 \\ & 3.85 \end{aligned}$	$\begin{aligned} & 4.40 \\ & 4.30 \\ & 4.00 \end{aligned}$		$\begin{aligned} & 4.30 \\ & 4.20 \\ & 3.85 \end{aligned}$	$\begin{aligned} & \hline 4.40 \\ & 4.30 \\ & 4.00 \\ & \hline \end{aligned}$		V
		Output Low, No Load Output Low, $I_{\text {SINK }}=1 \mathrm{~mA}$ Output Low, $\mathrm{I}_{\text {IINK }}=15 \mathrm{~mA}$		$\begin{aligned} & 0.003 \\ & 0.047 \\ & 0.362 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.065 \\ & 0.500 \end{aligned}$		$\begin{aligned} & 0.003 \\ & 0.047 \\ & 0.362 \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.065 \\ & 0.500 \\ & \hline \end{aligned}$	V
10	Maximum Output Current	(Note 10)	± 20	± 50		± 20	± 50		mA
SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=-2$		4			4		$\mathrm{V} / \mathrm{\mu s}$
GBW	Gain-Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$		13			13		MHz
IS	Supply Current per Amplifier		0.9	1.3	1.8	0.9	1.3	1.8	mA
	Minimum Supply Voltage	Single Supply		2.2	2.5		2.2	2.5	V
	Full Power Bandwidth	$A_{V}=1, V_{0}=2.5 \mathrm{~V}_{P-P}$		300			300		kHz
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	$A_{V}=1,10 \%$ to $90 \%, V_{0}=100 \mathrm{mV}$		45			45		ns
OS	Overshoot	$A_{V}=1, V_{0}=100 \mathrm{mV}$		25			25		\%
tpd	Propagation Delay	$A_{V}=1, \mathrm{~V}_{0}=100 \mathrm{mV}$		36			36		ns
ts	Settling Time	$0.01 \%, A_{V}=1, \Delta V_{0}=2 \mathrm{~V}$		900			900		ns
	Open-Loop Output Resistance	$\mathrm{I}_{0}=0 \mathrm{~mA}, \mathrm{f}=5 \mathrm{MHz}$		75			75		Ω
THD	Total Harmonic Distortion	$\mathrm{A}_{\mathrm{V}}=1, \mathrm{~V}_{0}=1 \mathrm{~V}_{\text {RMS }}, 20 \mathrm{~Hz}$ to 20kHz		0.001			0.001		\%

3

5V ELECTRICAL CHARACTERISTICS

$V_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	LT1211AC			LT1211C/LT1212C			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{0 S}$	Input Offset Voltage			100	175		150	375	$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Input Offset Voltage Drift (Note 4)	8-Pin DIP Package 14-Pin DIP, SOIC Package		0.7	1.5		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 6 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IOS	Input Offset Current			5	25		10	35	nA
IB	Input Bias Current			60	110		70	135	nA
	Input Voltage Range		$\begin{aligned} & 3.4 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 3.5 \\ -0.1 \end{array}$		$\begin{aligned} & 3.4 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 3.5 \\ -0.1 \end{array}$		V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=0.1 \mathrm{~V}$ to 3.4V	89	105		85	102		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to 12.5 V	89	114		86	110		dB
A ${ }_{\text {VOL }}$	Large-Signal Voltage Gain	$\mathrm{V}_{0}=0.05 \mathrm{~V}$ to $3.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	150	430		150	430		V / mV
	Maximum Output Voltage Swing (Note 5)	Output High, No Load Output High, $\mathrm{I}_{\text {SOURCE }}=1 \mathrm{~mA}$ Output High, I SOURCE $=10 \mathrm{~mA}$	$\begin{aligned} & \hline 4.20 \\ & 4.10 \\ & 3.90 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.33 \\ & 4.23 \\ & 4.03 \end{aligned}$		$\begin{aligned} & \hline 4.20 \\ & 4.10 \\ & 3.90 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.33 \\ & 4.23 \\ & 4.03 \\ & \hline \end{aligned}$		
		Output Low, No Load Output Low, I $_{\text {SINK }}=1 \mathrm{~mA}$ Output Low, $\mathrm{I}_{\text {IINK }}=10 \mathrm{~mA}$		$\begin{aligned} & 0.004 \\ & 0.052 \\ & 0.290 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.070 \\ & 0.400 \end{aligned}$		$\begin{aligned} & 0.004 \\ & 0.052 \\ & 0.290 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.070 \\ & 0.400 \end{aligned}$	
Is	Supply Current per Amplifier		0.8	1.4	2.1	0.8	1.4	2.1	mA

$V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$, unless otherwise noted. (Note 6)

SYMBOL	PARAMETER	CONDITIONS	LT1211AC			LT1211C/LT1212C LT1211I/LT1212\|			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			120	200		175	500	$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Input Offset Voltage Drift (Note 4)	8-Pin DIP Package 14-Pin DIP, SOIC Package		0.7	1.5		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current			10	30		20	50	nA
IB	Input Bias Current			70	120		80	145	nA
	Input Voltage Range		$\begin{aligned} & \hline 3.1 \\ & 0.2 \end{aligned}$	$\begin{gathered} 3.2 \\ 0 \end{gathered}$		$\begin{aligned} & \hline 3.1 \\ & 0.2 \end{aligned}$	$\begin{gathered} 3.2 \\ 0 \end{gathered}$		V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=0.2 \mathrm{~V}$ to 3.1 V	88	104		84	101		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 12.5 V	88	113		85	109		dB
A ${ }_{\text {VOL }}$	Large-Signal Voltage Gain	$\mathrm{V}_{0}=0.05 \mathrm{~V}$ to $3.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	100	390		100	390		V / mV
	Maximum Output Voltage Swing (Note 5)	Output High, No Load Output High, $I_{\text {SOURCE }}=1 \mathrm{~mA}$ Output High, I $_{\text {SOURCE }}=10 \mathrm{~mA}$	$\begin{aligned} & 4.15 \\ & 4.00 \\ & 3.80 \end{aligned}$	$\begin{aligned} & 4.25 \\ & 4.16 \\ & 3.96 \end{aligned}$		$\begin{aligned} & 4.15 \\ & 4.00 \\ & 3.80 \end{aligned}$	$\begin{aligned} & 4.25 \\ & 4.16 \\ & 3.96 \end{aligned}$		V V V
		$\begin{aligned} & \hline \text { Output Low, No Load } \\ & \text { Output Low, } \mathrm{I}_{\text {IINK }}=1 \mathrm{~mA} \\ & \text { Output Low, } \mathrm{I}_{\text {SINK }}=10 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.005 \\ & 0.053 \\ & 0.300 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.075 \\ & 0.420 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.005 \\ & 0.053 \\ & 0.300 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.075 \\ & 0.420 \\ & \hline \end{aligned}$	V V V
IS	Supply Current per Amplifier		0.7	1.5	2.2	0.7	1.5	2.2	mA

5V ELECTRICAL CHARACTERISTICS

$V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}, \mathrm{~V}_{0 U T}=0.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	LT1211AM			LT1211M			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{0 S}$	Input Offset Voltage			140	250		200	500	$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Input Offset Voltage Drift (Note 4)			0.7	1.5		1	3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IOS	Input Offset Current			15	40		25	75	nA
IB	Input Bias Current			75	130		85	160	nA
	Input Voltage Range		$\begin{aligned} & \hline 3.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 3.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 0.2 \end{aligned}$		V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=0.4 \mathrm{~V}$ to 3.1 V	87	104		81	101		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 12.5 V	87	113		84	109		dB
AvoL	Large-Signal Voltage Gain	$\mathrm{V}_{0}=0.05 \mathrm{~V}$ to 3.7V, $\mathrm{R}_{\mathrm{L}}=500 \Omega$	100	250		100	250		V / mV
	Maximum Output Voltage Swing (Note 5)	Output High, No Load Output High, $I_{\text {SOURCE }}=1 \mathrm{~mA}$ Output High, I $_{\text {SOURCE }}=10 \mathrm{~mA}$	$\begin{aligned} & 4.10 \\ & 3.95 \\ & 3.70 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 4.10 \\ & 3.90 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.10 \\ & 3.95 \\ & 3.70 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 4.10 \\ & 3.90 \end{aligned}$		V V V
		$\begin{array}{\|l} \hline \text { Output Low, No Load } \\ \text { Output Low, ISINK }=1 \mathrm{~mA} \\ \text { Output Low, I IINK }=10 \mathrm{~mA} \\ \hline \end{array}$		$\begin{aligned} & \hline 0.007 \\ & 0.060 \\ & 0.350 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.085 \\ & 0.500 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.007 \\ & 0.060 \\ & 0.350 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.085 \\ & 0.500 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Is	Supply Current per Amplifier		0.5	1.7	2.5	0.5	1.7	2.5	mA

$\pm 15 V$ ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{OV}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	LT1211AC LT1211AM			LT1211C/LT1211M LT1212C			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			125	400		150	550	$\mu \mathrm{V}$
Ios	Input Offset Current			5	20		5	30	nA
B	Input Bias Current			45	95		50	120	nA
	Input Voltage Range		$\begin{array}{r} 13.5 \\ -15.0 \end{array}$	$\begin{array}{r} 13.8 \\ -15.3 \end{array}$		$\begin{array}{r} 13.5 \\ -15.0 \end{array}$	$\begin{array}{r} 13.8 \\ -15.3 \end{array}$		V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=-15 \mathrm{~V}$ to 13.5 V	90	105		86	102		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	90	113		87	110		dB
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{0}=0 \mathrm{~V}$ to $\pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	1200	5000		1200	5000		V / mV
	Maximum Output Voltage Swing	Output High, ISOURCE $=15 \mathrm{~mA}$	13.8	14.0		13.8	14.0		V
		Output Low, $\mathrm{I}_{\text {SINK }}=15 \mathrm{~mA}$	-14.4	-14.6		-14.4	-14.6		V
${ }_{0}$	Maximum Output Current	(Note 10)	± 20	± 50		± 20	± 50		mA
SR	Slew Rate	$A_{V}=-2$ (Note 7)	5	7		5	7		$\mathrm{V} / \mathrm{\mu S}$
GBW	Gain-Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	8	14		8	14		MHz
IS	Supply Current per Amplifier		0.9	1.8	2.5	0.9	1.8	2.5	mA
	Channel Separation	$\mathrm{V}_{0}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	128	140		128	140		dB
	Minimum Supply Voltage	Equal Split Supplies		± 1.2	± 2.0		± 1.2	± 2.0	V
	Full Power Bandwidth	$\mathrm{A}_{V}=1, \mathrm{~V}_{0}=20 \mathrm{~V}_{\text {P-P }}$		60			60		kHz
	Settling Time	$0.01 \%, A_{V}=1, \Delta V_{0}=10 \mathrm{~V}$		2.2			2.2		$\mu \mathrm{S}$

$\pm 15 V$ ELECTRICAL CHARACTERISTICS

$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{0 U T}=0 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	LT1211AC			LT1211C/LT1212C			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			150	425		200	650	$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Input Offset Voltage Drift (Note 4)	8-Pin DIP Package 14-Pin DIP, SOIC Package		0.7	1.5		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 6 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current			10	20		10	35	nA
I_{B}	Input Bias Current			55	100		60	125	nA
	Input Voltage Range		$\begin{array}{r} 13.4 \\ -14.9 \end{array}$	$\begin{array}{r} 13.5 \\ -15.1 \end{array}$		$\begin{array}{r} 13.4 \\ -14.9 \end{array}$	$\begin{array}{r} 13.5 \\ -15.1 \end{array}$		V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=-14.9 \mathrm{~V}$ to 13.4V	89	104		85	101		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	89	112		86	108		dB
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{0}=0 \mathrm{~V}$ to $\pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	1000	3500		1000	3500		V / mV
	Maximum Output Voltage Swing	Output High, ISOURCE $=10 \mathrm{~mA}$	13.8	14.0		13.8	14.0		V
		Output Low, $\mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$	-14.5	-14.7		-14.5	-14.7		V
IS	Supply Current per Amplifier		0.8	2.1	2.9	0.8	2.1	2.9	mA

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathbf{0 V}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$, unless otherwise noted. (Note 6)

SYMBOL	PARAMETER	CONDITIONS	LT1211AC			LT1211C/LT1212C LT1211I/LT1212I			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{0 S}$	Input Offset Voltage			175	450		250	700	$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Input Offset Voltage Drift (Note 4)	8-Pin DIP Package 14-Pin DIP, SOIC Package		0.7	1.5		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
Ios	Input Offset Current			10	25		10	40	nA
IB	Input Bias Current			55	100		60	130	nA
	Input Voltage Range		$\begin{array}{r} 13.1 \\ -14.8 \end{array}$	$\begin{array}{r} 13.2 \\ -15.0 \end{array}$		$\begin{array}{r} 13.1 \\ -14.8 \end{array}$	$\begin{array}{r} 13.2 \\ -15.0 \end{array}$		V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=-14.8 \mathrm{~V}$ to 13.1V	88	103		84	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	88	111		85	107		dB
AvoL	Large-Signal Voltage Gain	$\mathrm{V}_{0}=0 \mathrm{~V}$ to $\pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	1000	3000		1000	3000		V / mV
	Maximum Output Voltage Swing	Output High, ISOURCE $=10 \mathrm{~mA}$	13.7	13.9		13.7	13.9		V
		Output Low, $\mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$	-14.5	-14.7		-14.5	-14.7		V
Is	Supply Current per Amplifier		0.7	2.2	3.0	0.7	2.2	3.0	mA

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathbf{O V}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	LT1211AM			LT1211M			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			200	500		300	800	$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{0 S}}{\Delta \mathrm{~T}}$	Input Offset Voltage Drift (Note 4)			0.7	1.5		1	3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current			10	40		10	60	nA
I_{B}	Input Bias Current			55	110		60	140	nA
	Input Voltage Range		$\begin{array}{r} 13.1 \\ -14.6 \end{array}$	$\begin{array}{r} 13.2 \\ -14.8 \end{array}$		$\begin{array}{r} 13.1 \\ -14.6 \end{array}$	$\begin{array}{r} 13.2 \\ -14.8 \end{array}$		V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=-14.6 \mathrm{~V}$ to 13.1 V	87	103		81	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	87	111		84	107		dB
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{0}=0 \mathrm{~V}$ to $\pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	800	1500		800	1500		V / mV
	Maximum Output Voltage Swing	Output High, ISOURCE $=10 \mathrm{~mA}$	13.6	13.8		13.6	13.8		V
		Output Low, $\mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$	-14.3	-14.5		-14.3	-14.5		V
IS	Supply Current per Amplifier		0.5	2.3	3.4	0.5	2.3	3.4	mA

3.3V ELECTRICAL CHARACTERISTICS

$V_{S}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}, \mathrm{~V}_{0 U T}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. (Note 8)

SYMBOL	PARAMETER	CONDITIONS	LT1211AC LT1211AM			LT1211C/LT1211M LT1212C			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{0 S}$	Input Offset Voltage			75	150		100	275	$\mu \mathrm{V}$
	Input Voltage Range (Note 9)		$\begin{gathered} 1.8 \\ 0 \end{gathered}$	$\begin{array}{r} 2.1 \\ -0.3 \end{array}$		$\begin{gathered} 1.8 \\ 0 \end{gathered}$	$\begin{array}{r} 2.1 \\ -0.3 \end{array}$		V
	Maximum Output Voltage Swing	Output High, No Load Output High, $I_{\text {SOURCE }}=1 \mathrm{~mA}$ Output High, I $_{\text {SOURCE }}=15 \mathrm{~mA}$	$\begin{aligned} & 2.60 \\ & 2.50 \\ & 2.15 \end{aligned}$	$\begin{aligned} & 2.70 \\ & 2.60 \\ & 2.30 \end{aligned}$		$\begin{aligned} & 2.60 \\ & 2.50 \\ & 2.15 \end{aligned}$	$\begin{aligned} & \hline 2.70 \\ & 2.60 \\ & 2.30 \\ & \hline \end{aligned}$		V V V
		Output Low, No Load		0.003	0.006		0.003	0.006	V
		Output Low, $\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$		0.047	0.065		0.047	0.065	V
		Output Low, $\mathrm{I}_{\text {SINK }}=15 \mathrm{~mA}$		0.362	0.500		0.362	0.500	V
10	Maximum Output Current		± 20	± 50		± 20	± 50		mA

$V_{S}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}, \mathrm{~V}_{0 U T}=0.5 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise noted. (Note 8)

SYMBOL	PARAMETER	CONDITIONS	LT1211AC			LT1211C/LT1212C			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\underline{0 S}$	Input Offset Voltage			100	175		150	375	$\mu \mathrm{V}$
	Input Voltage Range (Note 9)		$\begin{aligned} & 1.7 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 1.4 \\ -0.1 \end{array}$		$\begin{aligned} & 1.7 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 1.8 \\ -0.1 \end{array}$		V
	Maximum Output Voltage Swing	Output High, No Load Output High, $I_{\text {SOURCE }}=1 \mathrm{~mA}$ Output High, $I_{\text {SOURCE }}=10 \mathrm{~mA}$	$\begin{aligned} & 2.50 \\ & 2.40 \\ & 2.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.63 \\ & 2.53 \\ & 2.33 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.50 \\ & 2.40 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 2.63 \\ & 2.53 \\ & 2.33 \\ & \hline \end{aligned}$		V V V
		Output Low, No Load Output Low, ISINK $=1 \mathrm{~mA}$ Output Low, $\mathrm{I}_{\text {IINK }}=10 \mathrm{~mA}$		$\begin{aligned} & \hline 0.004 \\ & 0.052 \\ & 0.290 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.070 \\ & 0.400 \end{aligned}$		$\begin{aligned} & \hline 0.004 \\ & 0.052 \\ & 0.290 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.070 \\ & 0.400 \end{aligned}$	V V V

$V_{S}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}, \mathrm{~V}_{0 U T}=0.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$, unless otherwise noted. (Notes 6, 8)

SYMBOL	PARAMETER	CONDITIONS	LT1211AC			LT1211C/LT1212C LT1211I/LT1212I			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
V ${ }_{\text {OS }}$	Input Offset Voltage			120	200		175	500	$\mu \mathrm{V}$
	Input Voltage Range (Note 9)		$\begin{aligned} & 1.4 \\ & 0.2 \end{aligned}$	$\begin{gathered} 1.5 \\ 0 \end{gathered}$		$\begin{aligned} & \hline 1.4 \\ & 0.2 \end{aligned}$	$\begin{gathered} 1.5 \\ 0 \end{gathered}$		$\begin{aligned} & V \\ & V \end{aligned}$
	Maximum Output Voltage Swing	Output High, No Load Output High, $\mathrm{I}_{\text {SOURCE }}=1 \mathrm{~mA}$ Output High, ISOURCE $=10 \mathrm{~mA}$	$\begin{aligned} & 2.45 \\ & 2.30 \\ & 2.10 \end{aligned}$	$\begin{aligned} & 2.55 \\ & 2.46 \\ & 2.26 \end{aligned}$		$\begin{aligned} & 2.45 \\ & 2.30 \\ & 2.10 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.55 \\ & 2.46 \\ & 2.26 \\ & \hline \end{aligned}$		
		Output Low, No Load		0.005	0.008		0.005	0.008	V
		Output Low, $\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$		0.053	0.075		0.053	0.075	V
		Output Low, $\mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$		0.300	0.420		0.300	0.420	V

$\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise noted. (Note 8)

SYMBOL	PARAMETER	CONDITIONS	LT1211AM			LT1211M			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			130	250		200	500	$\mu \mathrm{V}$
	Input Voltage Range (Note 9)		$\begin{aligned} & 1.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 1.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.2 \end{aligned}$		V
	Maximum Output Voltage Swing	Output High, No Load Output High, $I_{\text {SOURCE }}=1 \mathrm{~mA}$ Output High, I SOURCE $=10 \mathrm{~mA}$	$\begin{aligned} & 2.40 \\ & 2.25 \\ & 2.00 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.40 \\ & 2.20 \end{aligned}$		$\begin{aligned} & 2.40 \\ & 2.25 \\ & 2.00 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.40 \\ & 2.20 \end{aligned}$		V V V
		Output Low, No Load Output Low, $\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$ Output Low, $I_{\text {SINK }}=10 \mathrm{~mA}$		$\begin{aligned} & 0.007 \\ & 0.060 \\ & 0.350 \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.085 \\ & 0.500 \end{aligned}$		$\begin{aligned} & \hline 0.007 \\ & 0.060 \\ & 0.350 \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.085 \\ & 0.500 \end{aligned}$	V V V

ELECTRICAL CHARACTERISTICS

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.
Note 3: T_{J} is calculated from the ambient temperature T_{A} and power dissipation P_{D} according to the following formulas:

LT1211MJ8, LT1211AMJ8:	$T_{J}=T_{A}+\left(P_{D} \times 100^{\circ} \mathrm{C} / \mathrm{W}\right)$
LT1211CN8, LT1211ACN8:	$\mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{PD}_{\mathrm{D}} \times 100^{\circ} \mathrm{C} / \mathrm{W}\right)$
LT1211CS8:	$\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \times 150^{\circ} \mathrm{C} / \mathrm{W}\right)$
LT1212CN:	$\mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \times 70^{\circ} \mathrm{C} / \mathrm{W}\right)$
LT1212CS:	$\mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \times 100^{\circ} \mathrm{C} / \mathrm{W}\right)$

Note 4: This parameter is not 100% tested.
Note 5: Guaranteed by correlation to 3.3 V and $\pm 15 \mathrm{~V}$ tests.

Note 6: The LT1211C/LT1212C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and are designed, characterized and expected to meet these extended temperature limits, but are not tested at $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. The LT1211//LT1212I are guaranteed to meet the extended temperature limits.
Note 7: Slew rate is measured between $\pm 8.5 \mathrm{~V}$ on an output swing of $\pm 10 \mathrm{~V}$ on $\pm 15 \mathrm{~V}$ supplies.
Note 8: Most LT1211/LT1212 electrical characteristics change very little with supply voltage. See the 5 V tables for characteristics not listed in the 3.3 V table.

Note 9: Guaranteed by correlation to 5 V and $\pm 15 \mathrm{~V}$ tests.
Note 10: Guaranteed by correlation to 3.3 V tests.

TYPICAL PERFORMANCE CHARACTERISTICS

Distribution of Input Offset Voltage

Distribution of Offset Voltage Drift with Temperature

Distribution of Offset Voltage Drift with Temperature

Distribution of Input Offset Voltage

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

$\pm 15 \mathrm{~V}$ Small-Signal Response

$$
V_{S}= \pm 15 \mathrm{~V}
$$

$$
A_{V}=1
$$

1211/12 G28

$\pm 15 \mathrm{~V}$ Large-Signal Response

$2 \mu \mathrm{~s} / \mathrm{DIV}$
$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
$V_{S}= \pm$
$A_{V}=1$
1211/12 G29
$\pm 15 \mathrm{~V}$ Large-Signal Response

Settling Time to 0.01\% vs Output Step

TYPICAL PGRFORMANCE CHARACTERISTICS

APPLICATIONS INFORMATION

Supply Voltage

The LT1211/LT1212 op amps are fully functional and all internal bias circuits are in regulation with 2.2 V of supply. The amplifiers will continue to function with as little as 1.5 V , although the input common-mode range and the phase margin are about gone. The minimum operating supply voltage is guaranteed by the PSRR tests which are done with the input common mode equal to 500 mV and a minimum supply voltage of 2.5 V . The LT1211/LT1212 are guaranteed over the full $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ range with a minimum supply voltage of 2.5 V .
The positive supply pin of the LT1211/LT1212 should be bypassed with a small capacitor (about $0.01 \mu \mathrm{~F}$) within an inch of the pin. When driving heavy loads and for good settling time, an additional $4.7 \mu \mathrm{~F}$ capacitor should be used. When using split supplies, the same is true for the negative supply pin.

Power Dissipation

The LT1211/LT1212 amplifiers combine high speed and large output current drive into very small packages. Because these amplifiers work over a very wide supply range, it is possible to exceed the maximum junction temperature under certain conditions. To insure that the LT1211/ LT1212 are used properly, calculate the worst case power dissipation, define the maximum ambient temperature, select the appropriate package and then calculate the maximum junction temperature.
The worst case amplifier power dissipation is the total of the quiescent current times the total power supply voltage plus the power in the IC due to the load. The quiescent supply current of the LT1211/LT1212 has a positive temperature coefficient. The maximum supply current of each amplifier at $125^{\circ} \mathrm{C}$ is given by the following formula:

$$
\mathrm{I}_{\mathrm{SMAX}}=2.5+0.036 \bullet\left(\mathrm{~V}_{S}-5\right) \text { in } \mathrm{mA}
$$

V_{S} is the total supply voltage.
The power in the IC due to the load is a function of the output voltage, the supply voltage and load resistance. The worst case occurs when the output voltage is at half supply, if it can go that far, or its maximum value if it cannot reach half supply.

For example, calculate the worst case power dissipation while operating on $\pm 15 \mathrm{~V}$ supplies and driving a 500Ω load.

$$
\begin{aligned}
\mathrm{I}_{\text {SMAX }} & =2.5+0.036 \cdot(30-5)=3.4 \mathrm{~mA} \\
\mathrm{P}_{\text {DMAX }} & =2 \cdot \mathrm{~V}_{\mathrm{S}} \cdot \mathrm{I}_{\mathrm{SMAX}}+\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\text {OMAX }}\right) \cdot \mathrm{V}_{\text {OMAX }} / \mathrm{R}_{\mathrm{L}} \\
\mathrm{P}_{\text {DMAX }} & =2 \cdot 15 \mathrm{~V} \times 3.4 \mathrm{~mA}+(15 \mathrm{~V}-7.5 \mathrm{~V}) \cdot 7.5 \mathrm{~V} / 500 \\
& =0.102+0.113=0.215 \mathrm{~W} \text { per Amp }
\end{aligned}
$$

If this is the quad LT1212, the total power in the package is four times that, or 0.860 W . Now calculate how much the die temperature will rise above the ambient. The total power dissipation times the thermal resistance of the package gives the amount of temperature rise. For this example, in the SO surface mount package, the thermal resistance is $100^{\circ} \mathrm{C} / \mathrm{W}$ junction-to-ambient in still air.

$$
\begin{aligned}
\text { Temperature Rise } & =\mathrm{P}_{\mathrm{DMAX}} \bullet \theta_{\mathrm{JA}}=0.860 \mathrm{~W} \cdot 100^{\circ} \mathrm{C} / \mathrm{W} \\
& =86^{\circ} \mathrm{C}
\end{aligned}
$$

The maximum junction temperature allowed in the plastic package is $150^{\circ} \mathrm{C}$. Therefore the maximum ambient allowed is the maximum junction temperature less the temperature rise.

$$
\text { Maximum Ambient }=150^{\circ} \mathrm{C}-86^{\circ} \mathrm{C}=64^{\circ} \mathrm{C}
$$

That means the SO quad can only be operated at or below $64^{\circ} \mathrm{C}$ on $\pm 15 \mathrm{~V}$ supplies with a 500Ω load.

As a guideline to help in the selection of the LT1211/ LT1212, the following table describes the maximum supply voltage that can be used with each part based on the following assumptions:

1. The maximum ambient is $70^{\circ} \mathrm{C}$ or $125^{\circ} \mathrm{C}$ depending on the part rating.
2. The load is 500Ω, includes the feedback resistors.
3. The output can be anywhere between the supplies.

PART	MAX SUPPLIES	MAX POWER AT MAX T $_{\mathbf{A}}$
LT1211MJ8	19.5 V or $\pm 16.4 \mathrm{~V}$	500 mW
LT1211CN8	25.2 V or $\pm 18.0 \mathrm{~V}$	800 mW
LT1211CS8	20.3 V or $\pm 17.1 \mathrm{~V}$	533 mW
LT1212CN	21.0 V or $\pm 17.8 \mathrm{~V}$	1143 mW
LT1212CS	17.3 V or $\pm 14.4 \mathrm{~V}$	800 mW

13

APPLICATIONS InFORMATION

Inputs

Typically, at room temperature, the inputs of the LT1211/ LT1212 can common mode 400 mV below ground (V^{-}) and to within 1.2 V of the positive supply with the amplifier still functional. However the input bias current and offset voltage will shift as shown in the characteristic curves. For full precision performance, the common-mode range should be limited between ground $\left(\mathrm{V}^{-}\right)$and 1.5 V below the positive supply.
When either of the inputs is taken below ground $\left(\mathrm{V}^{-}\right)$by more than about 700 mV , that input bias current will increase dramatically. The current is limited by internal 100Ω resistors between the input pins and diodes to each supply. The output will remain low (no phase reversal) for inputs 1.3 V below ground $\left(\mathrm{V}^{-}\right)$. If the output does not have to sink current, such as in a single supply system with a 1 k load to ground, there is no phase reversal for inputs up to 8 V below ground.
There are no clamps across the inputs of the LT1211/ LT1212 and therefore each input can be forced to any voltage between the supplies. The input current will remain constant at about 60 nA over most of this range. When an input gets closer than 1.5 V to the positive supply, that input current will gradually decrease to zero until the input goes above the supply, then it will increase due to the previously mentioned diodes. If the inverting input is held more positive than the noninverting input by 200 mV or more, while at the same time the noninverting input is within 300 mV of ground $\left(\mathrm{V}^{-}\right)$, then the supply current will increase by 1 mA and the noninverting input current will increase to about $10 \mu \mathrm{~A}$. This should be kept in mind in comparator applications where the inverting input stays above ground $\left(\mathrm{V}^{-}\right)$and the noninverting input is at or near ground $\left(V^{-}\right)$.

Output

The output of the LT1211/LT1212 will swing to within 0.60 V of the positive supply with no load. The open-Ioop output resistance, when the output is driven hard into the
positive rail, is about 100Ω as the output starts to source current; this resistance drops to about 25Ω as the current increases. Therefore when the output sources 1 mA , the output will swing to within 0.7 V of the positive supply. While sourcing 20 mA , it is within 1.1 V of the positive supply.
The output of the LT1211/LT1212 will swing to within 3 mV of the negative supply while sinking zero current. Thus, in a typical single supply application with the load going to ground, the output will go to within 3 mV of ground. The open-loop output resistance when the output is driven hard into the negative rail is about 44Ω at low currents and reduces to about 24Ω at high currents. Therefore, when the output sinks 1 mA , the output is about 42 mV above the negative supply and while sinking 20 mA , it is about 480 mV above it.

The output of the LT1211/LT1212 has reverse-biased diodes to each supply. If the output is forced beyond either supply, unlimited currents will flow. If the current is transient and limited to several hundred mA, no damage will occur.

Feedback Components

Because the input currents of the LT1211/LT1212 are less than 125 nA , it is possible to use high value feedback resistors to set the gain. However, care must be taken to insure that the pole that is formed by the feedback resistors and the input capacitance does not degrade the stability of the amplifier. For example, if a single supply, noninverting gain of two is set with two 20k resistors, the LT1211/LT1212 will probably oscillate. This is because the amplifier goes open-loop at 3 MHz (6dB of gain) and has 50° of phase margin. The feedback resistors and the 10 pF input capacitance generate a pole at 1.6 MHz that introduces 63° of phase shift at 3 MHz ! The solution is simple; use lower value resistors or add a feedback capacitor of 10 pF or more.

APPLICATIONS INFORMATION

Comparator Applications

Sometimes it is desirable to use an op amp as a comparator. When operating the LT1211/LT1212 on a single 3.3V or 5 V supply, the output interfaces directly with most TTL and CMOS Iogic.
The response time of the LT1211/LT1212 is a strong function of the amount of input overdrive as shown in the
following photos. These amplifiers are unity-gain stable op amps and not fast comparators, therefore, the logic being driven may oscillate due to the long transition time. The output can be speeded up by adding 20 mV or more of hysteresis (positive feedback), but the offset is then a function of the input direction.

LT1211 Comparator Response (-) $20 \mathrm{mV}, 10 \mathrm{mV}, 5 \mathrm{mV}, 2 \mathrm{mV}$ Overdrives

SIMPLIFIED SCHEmATIC

TYPICAL APPLICATIONS

1A Voltage-Controlled Current Source

1A Voltage-Controlled Current Sink

PACKAGG DESCRIPTION

J8 Package
8-Lead CERDIP (Narrow . 300 Inch, Hermetic)
(Reference LTC DWG \# 05-08-1110)

OBSOLETE PACKAGE

CTIINEAR

N8 Package
8-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)

N Package
14-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)

PACKAGE DESCRIPTION

S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006 " (0.152 mm) PER SIDE
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED $0.010^{\prime \prime}$ (0.254 mm) PER SIDE

S Package

16-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010{ }^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

Information furnished by Linear Technology Corporation is believed to be accurate and reliable However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

TYPICAL APPLICATION

Single Supply, 100kHz, 4th Order Butterworth Lowpass Filter

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1213/LT1214	$28 \mathrm{MHz}, 12 \mathrm{~V} / \mu \mathrm{s}$, Single Supply Dual and Quad Precision Op Amps	Twice as Fast as LT1211
LT1215/LT1216	$23 \mathrm{MHz}, 50 \mathrm{~V} / \mu \mathrm{s}$, Single Supply Dual and Quad Precision Op Amps	Seven Times LT1211 Slew Rate
LT1498/LT1499	$10 \mathrm{MHz}, 6 \mathrm{~V} / \mu \mathrm{s}$, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps	Rail-to-Rail LT1211
LT1630/LT1631	$30 \mathrm{MHz}, 10 \mathrm{~V} / \mu \mathrm{s}$, Dual/Quad Rail-to-Rail Input and Output Precision Op Amps	Rail-to-Rail LT1213
LT1632/LT1633	$45 \mathrm{MHz}, \mathrm{45V/} \mathrm{\mu s}, \mathrm{Dual/Quad} \mathrm{Rail-to-Rail} \mathrm{Input} \mathrm{and} \mathrm{Output} \mathrm{Precision} \mathrm{Op} \mathrm{Amps}$	Rail-to-Rail LT1215

