
AVR-IO-M16, Отладочная плата изолированного ввода/вывода на базе микроконтроллера ATMEGA16

введение:

AVR-IO-M16 является небольшой, но мощной платой, идеально подходящей для небольших проектов автоматизации.

Плата имеет четыре реле с 10A / 250VAC возможностью переключения тока, четыре оптоизолированных цифровых входов и порт RS232. Одна из наших демонстрационных программных обеспечений показывает, насколько легко контролировать входы и выходы с помощью компьютера через порт RS-232.

Основные особенности:

- ATMega16-16AI AVR микроконтроллер
- ICSP 5x2 (10) контактный STKxxx совместимый разъем для внутрисхемного программирования с AVR-PG1, AVR-PG2, AVR-ISP500, AVR-ISP500-TINY, AVR-ISP500-ISO или другой совместимый с 10 выводным ICSP расположение
- 5х2-контактный JTAG разъем для внутрисхемного программирования с AVR-JTAG, AVR-JTAG-USB или другой совместимый с 10 выводным I JTAG расположение

- Светодиод состояния
- Схема сброса ZM33064
- -Схема кварцевого генератора 16МГц
- Регулятор напряжения + 5V, 7805 и фильтрующие конденсаторы
- Разъем питания
- DB9Разъем RS232, RS232 и схема интерфейса с Тх, Rx сигналами
- 4 изолированных входов оптрона с винтовыми клеммами
- Светодиоды состояния ввода
- 4 релейных выхода с 5A / 250VAC контактами и с винтовыми зажимами
- Индикаторы состояния выхода
- Один индикатор статуса пользователя
- Четыре крепежных отверстий 3,3 мм (0,13 ")
- FR-4, 1,5 MM (0,062
- Размеры 80х100 мм (3,9 х 3,15 ")

ВНИМАНИЕ:

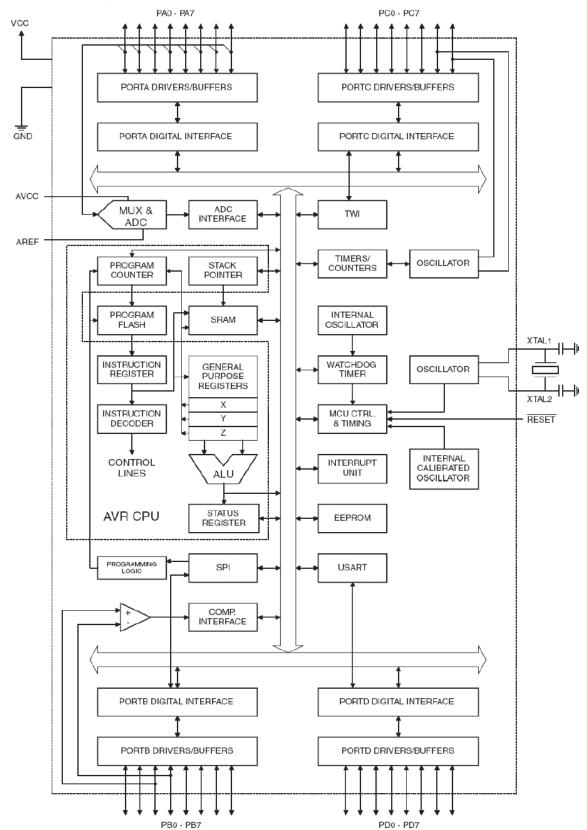
Плата AVR-IO-M16 поставляется в защитной антистатической упаковке. Плата не должна подвергаться воздействию высоких электростатических потенциалов. Общую практику работы с устройствами чувствительными к статическому электричеству следует применять при использовании этой платы.

Эксплуатационные требования:

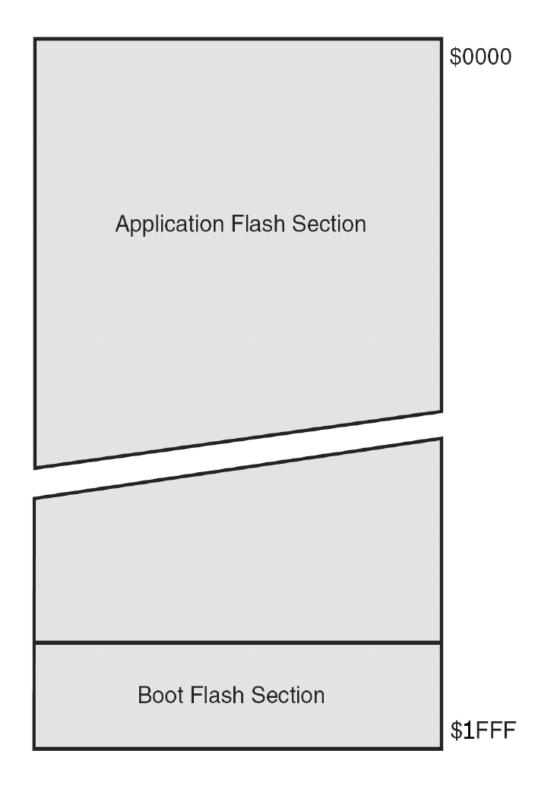
Кабели: RS232 прямой DB9 кабель (Примечание: это не нуль-модемный кабель)

Оборудование: Программатор: AVR-PG1, AVR-PG2, AVR-ISP500, AVR-ISP500-TINY, AVR-ISP500-ISO или другой совместимый инструмент; Отладчик: AVR-JTAG, AVR-JTAG-USB или другой совместимый инструмент;

Программное обеспечение: AVR Studio + WinAVR - бесплатный компилятор С и отладчик может быть загружен с avrfreaks.org веб-сайта. IAR IW для AVR - это коммерческое программное обеспечение для разработки программного обеспечения встроенных систем.


AVR-IO-M16 использует ATmega16 микроконтроллер от Atmel с учетом следующих особенностей:

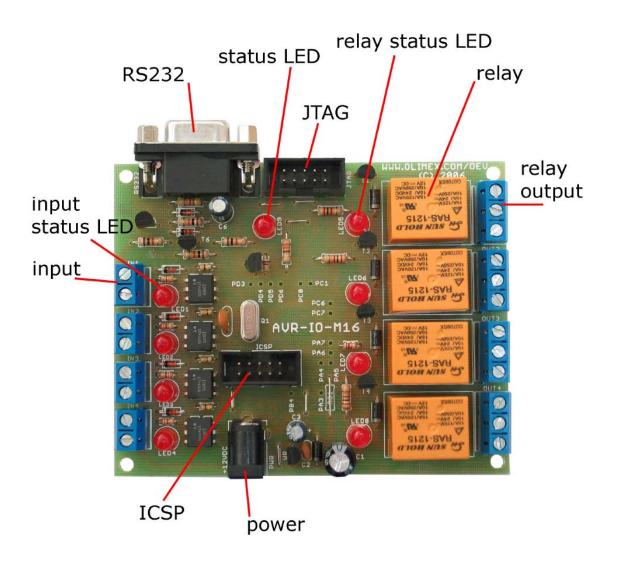
- Высокопроизводительный, маломощный 8-разрядный AVR-микроконтроллер
- Развитая RISC-архитектура
 - 131 мощных инструкций, большинство из которых выполняются за один машинный цикл
 - 32 8-разр. регистров общего назначения + регистры управления встроенной периферией
 - Полностью статическая работа
 - Производительность до 16 млн. операций в секунду при тактовой частоте 16 МГц
 - Встроенное умножающее устройство выполняет умножение за 2 машинных шикла
- Энергонезависимая память программ и данных
 - Износостойкость 16 кбайт внутрисистемной перепрограммируемой флэшпамяти: 1000 циклов запись/стирание

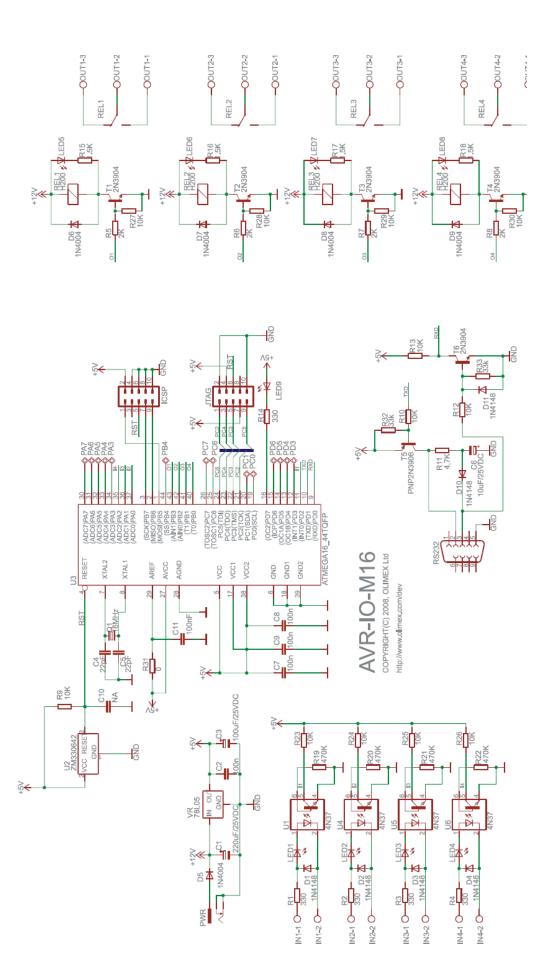

- Опциональный загрузочный сектор с отдельной программируемой защитой
- Внутрисистемное программирование встроенной загрузочной программой
- Гарантированная двухоперационность: возможность чтения во время записи
- Износостойкость 1024 байтов ЭСППЗУ: 100000 циклов запись/стирание
- Встроенное статическое ОЗУ емкостью 2 кбайт
- Программируемая защита кода программы
- JTAG (IEEE 1149.1 совместимый) интерфейс
- Отличительные особенности периферийных устройств
 - Два 8-разр. таймера-счетчика с раздельными предделителями и режимами сравнения
 - Два расширенных 16-разр. таймера-счетчика с отдельными предделителями, режимами сравнения и режимами захвата
 - Счетчик реального времени с отдельным генератором
 - Четыре 8-разр. каналов ШИМ
 - 8 мультиплексированных каналов 10-разрядного аналогово-цифрового преобразования
 - Двухпроводной последовательный интерфейс, ориентированный не передачу данных в байтном формате
 - Двойной программируемый последовательный USART
 - Ведущий/ведомый SPI интерфейс
 - Программируемый сторожевой таймер со встроенным генератором
 - Встроенный аналоговый компаратор
 - Сброс при подаче питания и программируемая схема сброса при снижении напряжения питания
 - Встроенный калиброванный RC-генератор
 - Внешние и внутренние источники прерываний
 - Шесть режимов снижения энергопотребления: холостой ход (Idle), уменьшение шумов АЦП, экономичный (Power-save), выключение (Power-down), дежурный (Standby) и расширенный дежурный (Extended Standby)
- Диапазон напряжения питания
 - от 4.5 до 5.5В

Диаграмма

Figure 2. Block Diagram

Карта памяти




Register File

Data Address Space

R0		\$0000
R1		\$0001
R2		\$0002
R29		\$001D
R30		\$001E
R31		\$001F
I/O Registers		
\$00	[\$0020
\$01		\$0021
\$02		\$0022
\$3D		\$005D
\$3E		\$005E
\$3F	L	\$005F
		Internal SRAM

IIItorriai Orii IIII	
\$0060	
\$0061	
\$085E	
\$085F	

Цепь питания:

Питание платы AVR-IO-M16 осуществляется через разъем питания. Необходимо 12В или +14В постоянного тока, что подается на положительный центральный вывод.

Потребление платы составляет около 20 мА без включения реле.

Схема сброса:

AVR-MT128 схема сброса сделана с ZM33064, с типичной порогом 4,5В. Когда напряжение падает ниже этого минимума, сбрасывает сброс.

Схема синхронизации:

Кварцевый резонатор 16 МГц подключен к ATmega16 выводу 7 (XTAL2) и выводу 8 (XTAL1).

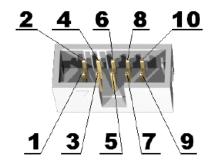
ВХОД / ВЫХОД:

Четыре оптоизолированных цифровых входов IN1-IN4.

Четыре светодиода красный, индикатор состояния для цифровых входов - от LED1 до LED 4.

Четыре реле - от REL1 до REL2.

Четыре светодиода красного цвета для реле - от LED5 до LED8.


Один красный светодиод состояния пользователя с именем LED9, подключен к ATMEGA16 выводу 16

Описание разъемов

JTAG:

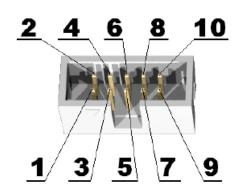
Номер вывода Наименование сигнала

1	PC2(TCK)
2	GND
3	PC4(TDO)
4	+5∨
5	PC3(TMS)
6	RST
7	+5∨
8	NC
9	PC5(TDI)
10	GND

Этот разъем позволяет программировать и отлаживать с помощью AVR-JTAG или другого совместимого инструмента.

TDI: Тестовый ввод данных. Последовательный ввод данных сдвигом в регистр инструкции или регистр данных (цепи сканирования).

TDO: Тестовый вывод данных. Последовательный вывод данных из регистра инструкции или регистра данных.

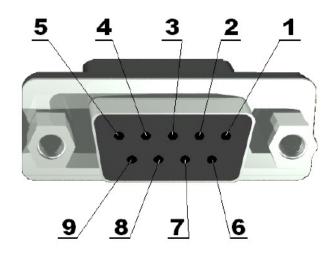

TMS: – Выбор режим тестирования. Данный вывод используется для навигации по цифровому автомату TAP-контроллера.

TDI: Тестовый ввод данных. Последовательный ввод данных сдвигом в регистр инструкции или регистр данных (цепи сканирования).

ICSP:

Номер вывода Наименование сигнала

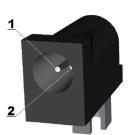
1	MOSI
2	+5V
3	NC
4	GND
5	RST
6	GND
7	SCK
8	GND
9	MISO


Этот разъем позволяет программировать с помощью AVR-PG1, AVR-PG2 или другого совместимого инструмента.

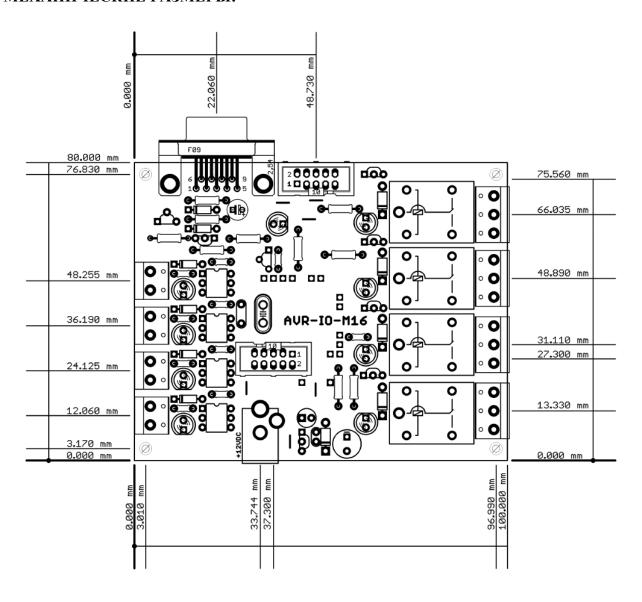
SCK – вход/выход (синхронизация) часов. Это сигнал синхронизации.

RS232:

Номер вывода Наименование сигнала


1	NC
2	TXD
3	RXD
4	NC
5	GND
6	NC
7	NC
8	NC
9	NC

PWR:


Номер вывода Наименование сигнала

1	PWR
2	GND

Должно подаваться + (12В-14В) постоянного тока на вывод 1.

МЕХАНИЧЕСКИЕ РАЗМЕРЫ:

