

DATA SHEET

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS Mid-voltage

NPO/X7R 100 V TO 630 V 0.47 pF to 2.2 µF

RoHS compliant & Halogen Free

YAGEO

YAGEO

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

<u>SCOPE</u>

This specification describes Midvoltage NP0/X7R series chip capacitors with lead-free terminations.

APPLICATIONS

PCs, Hard disk, Game PCs Power supplies, Charger LCD panel ADSL, Modem

FEATURES

Supplied in tape on reel Nickel-barrier end termination RoHS compliant MSL class MSL I Halogen Free compliant

ORDERING INFORMATION - GLOBAL PART NUMBER, PHYCOMP

CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

CC <u>XXXX</u> <u>X</u> <u>X</u> <u>XXX</u> <u>X</u> <u>B</u> <u>X</u> <u>XXX</u> (1) (2) (3) (4) (5) (6) (7)

(I) SIZE - INCH BASED (METRIC)

0201 (0603) / 0402 (1005) / 0603 (1608) / 0805 (2012) / 1206 (3216) / 1210 (3225) 1808 (4520) / 1812 (4532) / 2220 (5750)

(2) TOLERANCE

 $C = \pm 0.25 \text{ pF}$ $D = \pm 0.5 \text{ pF}$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$

(3) PACKING STYLE

- R = Paper/PE taping reel; Reel 7 inch
- K = Blister taping reel; Reel 7 inch
- P = Paper/PE taping reel; Reel 13 inch
- F = Blister taping reel; Reel 13 inch

(4) TC MATERIAL

NPO X7R

(5) RATED VOLTAGE

- 0 = 100 V
- A = 200 V
- Y = 250 V
- B = 500 V
- Z = 630 V

(6) PROCESS

N = NP0

B = Class 2 MLCC

(7) CAPACITANCE VALUE

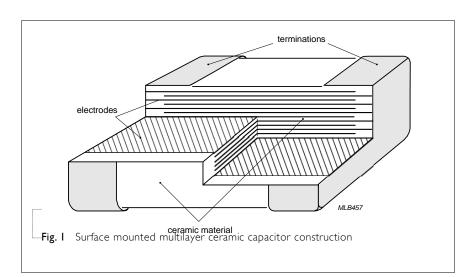
2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $|2| = |2 \times |0| = |20 \text{ pF}$

YAGEO

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V


CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig. I.

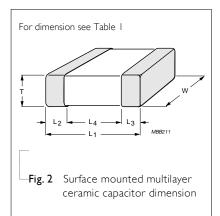

DIMENSION

 Table I
 For outlines see fig. 2

TYPE	L _I (mm)	\A (()		L ₂ / L ₃ (r	nm)	L ₄ (mm)
TIPE		W (mm)	T (MM)	min.	max.	min.
0201	0.6 ±0.03	0.3±0.03	0.3±0.03	0.10	0.20	0.20
0402	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15	0.30	0.40
0603	1.6 ±0.10	0.8 ±0.10	0.8 ±0.10	0.20	0.60	0.40
	20.1010		0.6 ±0.10			
0805	2.0 ±0.10	1.25 ±0.10	0.85 ±0.10	0.25	0.75	0.70
	2.0 ±0.20	1.25 ±0.20	1.25 ±0.20			
	2.2.1.0.15		0.6 ±0.10			
	3.2 ±0.15	1.6 ±0.15	0.85 ±0.10			
1206	2.2. + 0.20		1.25 ±0.20	0.25	0.75	1.40
	3.2 ±0.30	1.6 ±0.20	1.6 ±0.20			
	3.2 ±0.30	1.6 ±0.30	1.6 ±0.30			
	224020	2.5 ±0.20	0.85 ±0.10			
1210	3.2 ±0.20	2.5 ±0.20	1.25 ±0.20	0.25	0.75	1.40
1210	3.2 ±0.30	2.5 ±0.20	1.6 ±0.20	0.25	0.75	1.10
	5.2 ±0.50	2,5 ±0,20	2.0 ±0.20			
1808	4.5 ±0.40	2.0 ±0.30	1.25 ±0.20	0.25	0.75	2.20
			0.85 ±0.10			
1812	4.5 ±0.40	3.2 ±0.30	1.25 ±0.20	0.25	0.75	2.20
			1.60 ±0.20			
2020	5.7 ±0.40	5.0 ±0.30	2.0 ±0.20	0.25	0.75	3.40

OUTLINES

Product specification

 $\frac{1}{22}$

Table 2 S	izes from 02	201 to 0805								
CAP.	0201 100V	0402 ⊺00∨	0603 100 ∨	200 V	250 V	0805 100 ∨	200 V	250 V	500 V	630V
0.22 pF	1001	1001	100 1	200 1	200 (100 1	200 (200 (500 1	
0.47 pF										
0.56 pF										
0.68 pF										
0.82 pF										
I.0 pF										
I.2 pF										
I.5 pF										
I.8 pF										
2.2 pF										
2.7 pF										
3.3 pF										
3.9 pF										
4.7 pF										
5.6 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
6.8 pF	0.5±0.05	0.5±0.05	0.0±0.1	0.0±0.1	0.0±0.1	0.0±0.1	0.0±0.1	0.0±0.1	0.0±0.1	0.0±0.1
8.2 pF										
10 pF										
12 pF										
I5 pF										
18 pF										
22 pF										
27 pF										
33 pF										
39 pF										
47 pF 56 pF										
56 рг 68 рF										
66 рг 82 рF										
о2 рг 100 рF										

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage

ΝΟΤΕ

YAGEO

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request

4

22

Product specification

NP0/X7R 100 V to 630 V

Product specification

5

22

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 3 Sizes from 0603 to 0805 (continued)

CAP.	0402 100 ∨	0603 100 ∨	200 V	250 V	0805 100 V	200 V	250 V	500 V	630 V
120 5	100 ¥	100 ¥	200 ¥	250 V	100 ¥	200 V	250 V	500 ¥	000 1
120 pF									
150 pF						0.6± 0.1	0.6± 0.1	0.6± 0.1	0.6± 0.1
180 pF									
220 pF 270 pF									
			0.8± 0.1	0.8± 0.1					
330 pF	0.5± 0.05				0.6± 0.1			0.85±0.1	0.85±0.1
390 pF									
470 pF						0.85±0.1	0.85±0.1	_	
560 pF									
680 pF								1.25±0.2	1.25±0.2
820 pF									
I.0 nF		0.8± 0.1							
I.2 nF									
I.5 nF					0.85±0.1				
I.8 nF									
2.2 nF						1.25±0.2	1.25±0.2		
2.7 nF									
3.3 nF									
3.9 nF									
4.7 nF					1.25±0.2				
5.6 nF									
6.8 nF									
8.2 nF									
I0 nF									
I2 nF									
15 nF									
18 nF									
22 nF									

ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request

YAGEO		e-Mount C	eramic N	lultilayer	Capacito	Mid-ve	oltage NF	P0/X7R 100	V to 630 V	Decification
	nier da			Par Nira						
		<u>NGE & TH</u> 206 to 2 0		<u>for npu</u>						
CAP.	1206					1210				
	100 V	200 V	250 V	500 V	630 V	100 V	200 V	250 V	500 V	630
0.47 pF										
0.56 pF										
0.68 pF										
0.82 pF										
I.0 pF										
I.2 pF										
I.5 pF										
1.8 pF										
2.2 pF										
2.7 pF										
3.3 pF										
3.9 pF										
4.7 pF										
5.6 pF										
6.8 pF	0.6±0.1	0.6±0.1	0.6±0.1							
8.2 pF										
10 pF										
12 pF										
15 pF										
18 pF										
22 pF										
27 pF										
33 pF				0.6±0.1	1.25±0.2					
39 pF										
47 pF										
56 pF										1.25±
68 pF						1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	
82 pF										

ΝΟΤΕ

 ${\rm I.} \quad {\rm Values \ in \ shaded \ cells \ indicate \ thickness \ class \ in \ mm}$

2. Capacitance value of non E-12 series is on request

/ A	G	E	0

Product specification 7 22

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 5	Sizes from	1206 to	1210	(continued)
	51205 11 0111	1200 10	1210	(continued)

100 pF 120 pF 150 pF 180 pF 220 pF 270 pF 330 pF 390 pF	100 V .6±0.1	200 V 0.6±0.1	250 V 0.6±0.1	500 ∨ 0.6±0.1	630 V	100 V	200 V	250 V	500 V	630 V
120 pF 150 pF 180 pF 220 pF 270 pF 330 pF 390 pF	6+01	0.6±0.1	0.6±0.1	0.6±0.1						
150 pF 180 pF 220 pF 270 pF 330 pF 390 pF	6+01	0.6±0.1	0.6±0.1	0.6±0.1						
180 pF 220 pF 270 pF 330 pF 390 pF	6+01	0.6±0.1	0.6±0.1	0.6±0.1						
220 pF 270 pF 330 pF 390 pF	6+01	0.6±0.1	0.6±0.1	0.6±0.1						
270 pF 330 pF 390 pF	6+01	0.6±0.1	0.6±0.1	0.6±0.1						
330 pF 390 pF	6+01	0.6±0.1	0.6±0.1	0.6±0.1						
390 pF	6+01									
	6+01									1.25±0.2
170 5	6+01									
470 pF 0.					1.25±0.2					
560 pF										
680 pF		_					1.25±0.2	1.25±0.2	1.25±0.2	
820 pF										
I.0 nF		0.85±0.1	0.85±0.1	0.85±0.1						
I.2 nF						1.25±0.2				
I.5 nF										
I.8 nF				1.25±0.2						
2.2 nF										
2.7 nF 3.3 nF		1.25±0.2	1.25±0.2							
3.9 nF										
	85±0.1									
5.6 nF	.5±0.1									
6.8 nF					1.60±0.2					
8.2 nF										
1.2 I.2	25±0.2				1.60±0.2					
l2 nF										
15 nF										
18 nF										
22 nF						1.6±0.2				2.0±0.2

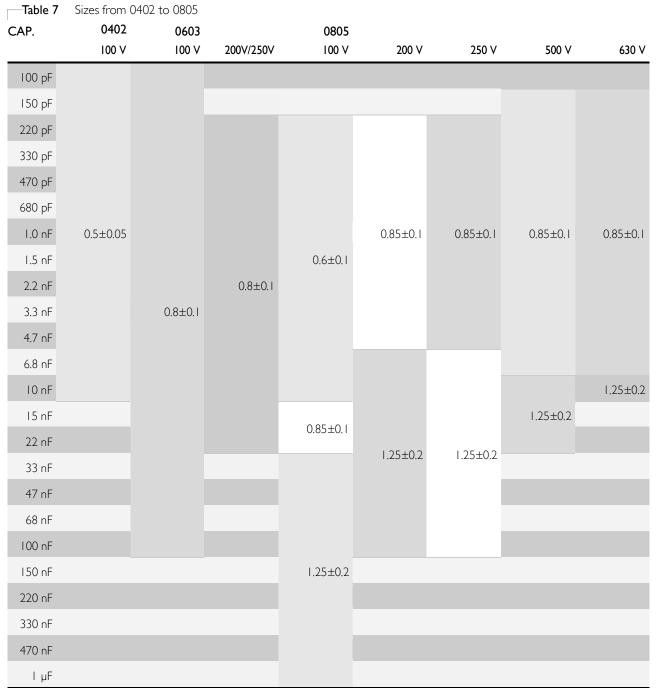
ΝΟΤΕ

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

	Surface-	Mount Ceramic	Multilayer Capaci	tors Mid-voltage	NP0/X7R 100 V to 630	v
	NCE DAN	CE 9. TUICUMER	CEND NON			
- Table 6 Si		<u>ge & Thicknes</u>	<u>s fok nru</u>			
AP.	200 1012	1812				
		100 V	200 V	250 V	500 V	630V
	0 pF					
	2 pF					
	5 pF					
	8 pF					
	2 pF					
	.7 pF					
	3 pF					
	9 pF					
	7 pF					
	6 pF					
	8 pF					
	2 pF 10 pF					
	юрг .0 pF					
	0 pF					
	0 pF					
	.0 pF					
	ю рг Ю рF					
	0 pF					1.25±0.2
	0 pF					
	′0 рF					
	0 pF				1.25±0.2	
	0 pF					
	.0 pF					
	l nF					
1.	.2 nF			1.25±0.2		
Ι.	.5 nF		1.25±0.2			
Ι.	.8 nF					
2.	.2 nF					
2.	.7 nF	1.25±0.2				
	.3 nF					
	.9 nF					
	.7 nF					
	.6 nF					
	.8 nF					
	.2 nF					
	0 nF					
	2 nF					
	5 nF					
	8 nF 2 nF					I.6±0.2

ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm


2. Capacitance value of non E-12 series is on request

YAGEO

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

CAPACITANCE RANGE & THICKNESS FOR X7R

ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm

- 2. Capacitance value of non E-6 series is on request
- 3. For special ordering code, please contact local sales force before order
- 4. For product with 5% tolerance, please contact local sales force before order

9

22

Product specification

YAGEC						1	1	1	Product speci	fication $\frac{10}{22}$
CAPACIT		:e-Mount (Ange & Ti			Capacitors	Mid-volt	age NP0/2	x7r 100 V	to 630 V	22
Table 8		n 1206 to 12		1011 31314						
CAP.	1206					1210				
	100 V	200 V	250 V	500 ∨	630 V	100 V	200 V	250 V	500 V	630V
100 pF										
150 pF					_					
220 pF										
330 pF										
470 pF										
680 pF										
I.0 nF										
I.5 nF		0.85±0.1	0.85±0.1	1 25 1 2 2	1.25±0.2					
2.2 nF				1.25±0.2						
3.3 nF 4.7 nF	0.85±0.1									
6.8 nF							0.85±0.1	0.85±0.1		1.25±0.2
10 nF										1,23±0,2
I5 nF						0.85±0.1			1.25±0.2	
22 nF										I.6±0.2
33 nF				1.6±0.2	1.6±0.2					
47 nF		1.25±0.2	1.25±0.2							2.0±0.2
68 nF							1.25±0.2	1.25±0.2		
100 nF		1.6±0.2	1.6±0.2						2.0±0.2	
150 nF	1.25±0.2									
220 nF										
330 nF						1.25±0.2				
470 nF										
680 nF	1.6±0.2									
ΙμF						2.0±0.2				
2.2 µF										

ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-6 series is on request

3. For product with 5% tolerance, please contact local sales force before order

	Surface	-Mount Ce	ramic Mul	tilayer Cap	acitors	Mid-voltage
		NGE & THI		<u>r X7r</u>		
Table 9		1808 to 1812				2020
CAP.	1812 100 V	200 V	250 V	500 V	630 V	2020 630 V
100 pF						
150 pF						
220 pF						
330 pF						
470 pF						
680 pF						
I.0 nF						
I.5 nF						
2.2 nF						
3.3 nF						
4.7 nF					1.35±0.2	
6.8 nF		0.85±0.1	0.85±0.1			
10 nF	0.85±0.1			1.25±0.2		
15 nF						
22 nF						
33 nF						
47 nF					1.6±0.2	
68 nF		1.25±0.2			1.0±0.2	
100 nF		1.23±0.2	1.25±0.2	1.6±0.2		
I 50 nF	1.25±0.2					2.0±0.2
220 nF	1.23±0.2					2.0±0.2
330 nF		1.6±0.2	1.6±0.2			
470 nF						
680 nF	I.6±0.2					

ΝΟΤΕ

ΙμF

YAGEO

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before order

Product specification 11

22

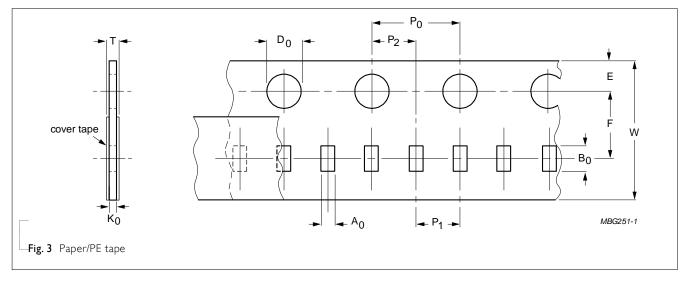
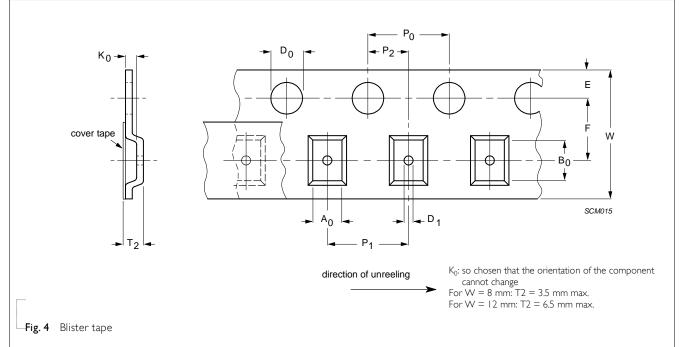

THICKNESS CLASSES AND PACKING QUANTITY

Table 10

					QUANTI	TY PER REEL		
SIZE	THICKNESS	PACKIN	IG CODE.		Ø180	MM / 7 INCH	Ø330 MM	1 / 13 INCH
CODE	CLASSIFICATION	7 INCH	13 INCH	TAPE WIDTH	Paper	Blister	Paper	Blister
0201	0.3 ±0.03 mm	R	Р	8 mm	15,000		50,000	
0402	0.5 ±0.05 mm	R	Р	8 mm	10,000		50,000	
0603	0.8 ±0.1 mm	R	Р	8 mm	4,000		15,000	
-	0.6 ±0.1 mm	R	Р	8 mm	4,000		20,000	
0805	0.8 / 0.85 ±0.1 mm	R	Р	8 mm	4,000		15,000	
	1.25 ±0.2 mm	К	F	8 mm		3,000		10,000
-	0.6 ±0.1 mm	R	Р	8 mm	4,000		20,000	
-	0.8 / 0.85 ±0.1 mm	R	Р	8 mm	4,000		15,000	
1206	1.00 / 1.15 ±0.1 mm	К	F	8 mm		3,000		10,000
1200	1.25 ±0.2 mm	К	F	8 mm		3,000		10,000
	1.6 ±0.15 mm	К	F	8 mm		2,500		10,000
	1.6 ±0.2 mm	К	F	8 mm		2,000		8,000
	0.6 / 0.7 ±0.1 mm	К	F	8 mm		4,000		15,000
-	0.85 ±0.1 mm	К	F	8 mm		4,000		10,000
	1.15 ±0.1 mm	К	F	8 mm		3,000		10,000
	1.15 ±0.15 mm	К	F	8 mm		3,000		10,000
	1.25 ±0.2 mm	К		8 mm		3,000		
1210	1.5 ±0.1 mm	К		8 mm		2,000		
	1.6 / 1.9 ±0.2 mm	К		8 mm		2,000		
	2.0 ±0.2 mm	К		8 mm		2,000		
	2,0 ±0,2 mm			0 1111		1,000		
	2.5 ±0.2 mm	K		8 mm		1,000		
	1.15 ±0.15 mm			12		500		
-	$1.15 \pm 0.15 \text{ mm}$	K K		12 mm 12 mm		3,000		
-	1.35 ±0.15 mm	K				2,000		
1808	1.55 ±0.15 mm	K		12 mm 12 mm		2,000		
-	1.6 ±0.2 mm	K	F	12 mm		2,000		8,000
-	2.0 ±0.2 mm	K	Г	12 mm		2,000		0,000
	0.6 / 0.85 ±0.1 mm	K		12 mm		2,000		
	1.15 ±0.1 mm	K		12 mm		1,000		
	1.15 ±0.15 mm	K		12 mm		1,000		
	1.15 ±0.15 mm							
1812		K		12 mm		1,000		
1012	1.35 ±0.15 mm	K		12 mm		1,000		
-	1.5 ±0.1 mm	K		12 mm		1,000		
	1.6 ±0.2 mm	K		12 mm		1,000		
-	2.0 ±0.2 mm	K		12 mm		1,000		
2220	2.5 ±0.2 mm	K		12 mm		500		
2220	2.0 ±0.2 mm	K		l2 mm		1000		

PAPER/PE TAPE SPECIFICATION

Table 11 Dimensions of paper/PE tape for relevant chip size; see Fig.3


SIZE	SYMBOL Unit										
CODE	A ₀	B ₀	W	E	F	$P_0^{(1)}$	PI	P ₂	ØD ₀	K ₀	Т
0201	0.39 ± 0.06	0.70 ± 0.06	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.05	1.55 ± 0.03	0.38 ± 0.05	(0.47 / 0.55)±0.10
0402	0.70 ± 0.15	1.21 ± 0.12	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.05	1.50 +0.1 /-0	(0.75 / 0.60)±0.10	(0.85 / 0.70)±0.10
0603	1.05 ± 0.14	1.86 ± 0.13	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(1.05 / 0.95 / 0.75)±0.10	(1.15 / 1.05 / 0.85)±0.10
0805	1.50 ± 0.15	2.26 ± 0.20	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(1.05 / 0.95 / 0.75)±0.10	(1.15 / 1.05 / 0.85)±0.10
1206	1.90 ± 0.15	3.50 ± 0.20	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(0.95 / 0.75)±0.10	(1.05 / 0.85)± 0.10

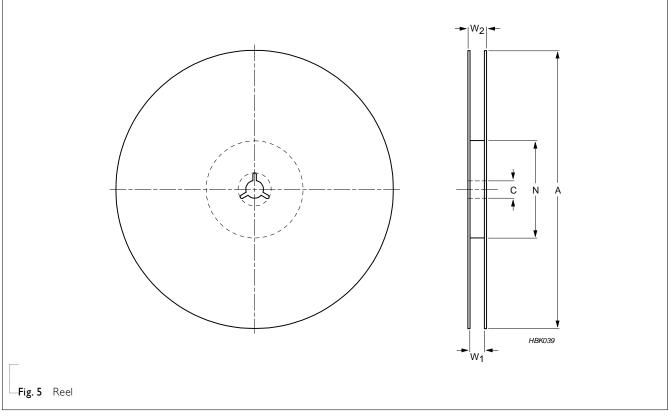
ΝΟΤΕ

1. P_0 pitch tolerance over any 10 pitches is $\pm 0.2 \mbox{ mm}$

BLISTER TAPE SPECIFICATION

-Table 12 Dimensions of blister tape for relevant chip size; see Fig.4

	SYM	BOL													Ur	nit: mm
size Code	A ₀		B ₀		K ₀		W	E	F	ØD ₀	ØD	P ₀ ⁽²⁾	PI	P ₂	Т2	
	Min,	Max.	Min.	Max.	Min,	Max.					Min.				Min,	Max.
0805	1.29	1.65	2.09	2.60	1.25	1.62	8.1 ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	+0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.30	1.67
1206	1.65	2.12	3.30	3.75	1.22	2.15	8.1 ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	+0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.27	2.20
1210	2.55	3.02	3.31	3.88	0.97	2.92	8.1 ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	+0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.02	2.97
1808	2.05	2.55	4.80	5.45	1.30	2.45	2. ±0.20	1.75 ±0.1	5.5 ±0.05	1.5 +0.1/-0.0	1.5 +0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.35	2.50
1812	3.35	3.75	4.70	5.33	0.70	2.40	2. ±0.20	1.75 ±0.1	5.5 ±0.05	1.5 +0.1/-0.0	1.5 +0.1/-0.0	4.0 ±0.10	8.0 ±0.10	2.0 ±0.05	0.75	2.45


ΝΟΤΕ

I. Typical capacitor displacement in pocket

2. $P_0\ pitch\ tolerance\ over\ any\ 10\ pitches\ is\ \pm 0.2\ mm$

REEL SPECIFICATION

Table 13 Reel dimensions; see Fig.5

	SYMBOL				Unit: mm
TAPE WIDTH	A	N	С	WI	W _{2max.}
8 (Ø178 mm/7")	178 ±1.0	60 ±1.0	13 +0.50/-0.20	9.4 ±1.5	14.4
8 (Ø330 mm/13")	330 ±1.0	100 ±1.0	13 +0.50/-0.20	9.0 ±0.2	14.4
12 (Ø178 mm/7")	178 ±1.0	60 ±1.0	13 +0.50/-0.20	3.4 ±1.5	18.4

PROPERTIES OF REEL

Material: polystyrene

Surface resistance: $<10^{10}$ X/sq.

ELECTRICAL CHARACTERISTICS

NP0/X7R DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 $^\circ\text{C}$ to 35 $^\circ\text{C}$
- Relative humidity: 25% to 75%
- Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

Table I	4		
DESCRIPT	ION		VALUE
Capacitanc	e range	0.47 pF	to 2.2 µF
Capacitanc	e tolerance		
NP0	C < 10 _P F	±0.25 pF	⁼ , ±0.5 pF
	C ≥ 10 _P F	±2%, ±5	5%, ±10%
X7R		±5% ⁽¹⁾ , ±10	1%, ±20%
Dissipation	n factor (D.F.)		
NP0	C < 30 _P F	≤ / (400) + 20C)
	C ≥ 30 _P F		≤ 0,1 %
X7R	General		≤ 2.5 %
	Exception	1206/100V/ 560nF to 1uF, 1210/100V/1uF and 2.2uF	≤ 3.5%
		0603/100V/12nF to 100nF, 0805/100V/560nF to 1uF, 1206/100V/2.2uF	≤ 5%
Insulation r	resistance after 1 minute at U_r (DC)	$\begin{array}{l} R_{ins} \geq 10 \; G\Omega \; \text{or} \; R_{ins} \times C \geq 500 \Omega \cdot F \; \text{ whichever is less} \\ R_{ins} \times C \; \geq 100 \Omega \cdot F \; ^{(2)} \end{array}$	
	capacitance change as a function of t are characteristic/coefficient):	emperature	
NP0		±30) ppm/°C
X7R			±15%
Operating NP0/X7R	temperature range:	–55 °C to	+125 °C
		-55 C 10	· 125 C

NOTE

1. Capacitance tolerance ±5% doesn't available for X7R full product range, please contact local sales force before order

2. 1210/ X7R/ 630V/ 27nF to 47nF 1210/ X7R/ 500V/ 56nF to 100nF 1812/ X7R/ 630V/ 39nF to 100nF

SOLDERING RECOMMENDATION

Table 15

SOLDERING METHOD	SIZE 0201	0402	0603	0805	1206	≥ 1210
Reflow	Reflow only	> 100 nF	> 1.0 µF	> 2.2 µF	> 2.2 µF	Reflow only
Reflow/Wave		≤ 100 nF	≤ 1.0 µF	≤ 2.2 µF	≤ 2.2 µF	

TESTS AND REQUIREMENTS

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification
Capacitance		4.5.I	Class I: $f = 1$ MHz for C ≤ 1 nF, measuring at voltage 1 V _{rms} at 20°C f = 1 KHz for C > 1 nF, measuring at voltage 1 V _{rms} at 20°C Class 2: $f = 1$ KHz for C ≤ 10 µF, measuring at voltage 1 V _{rms} at 20°C	Within specified tolerance
Dissipation Factor (D.F.)		4.5.2	Class I: $f = MHz \text{ for } C \le nF$, measuring at voltage V_{rms} at 20°C $f = KHz \text{ for } C > nF$, measuring at voltage V_{rms} at 20°C Class 2: $f = KHz \text{ for } C \le 0 \ \mu\text{F}$, measuring at voltage V_{rms} at 20°C	In accordance with specification (in Table 14)
Insulation Resistance		4.5.3	$U_r \le 500$ V: At Ur for 1 minute $U_r > 500$ V: At 500 V for 1 minute	In accordance with specification (in Table 14)

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Temperature coefficient		4.6	Capacitance shall be measured by the steps shown in the following table. The capacitance change should be measured after 5 min at each specified temperature stage. $\boxed{Step Temperature(^{\circ}C)} = a 25\pm2 \\ b Lower temperature\pm3^{\circ}C \\ c 25\pm2 \\ d Upper Temperature\pm2^{\circ}C \\ e 25\pm2 \\ \hline \\ (1) Class I \\ Temperature Coefficient shall be calculated fromthe formula as belowTemp, Coefficient = \frac{C2 - CI}{CI \times \Delta T} \times 10^{6} \text{ [ppm/}^{\circ}C] \\ C1: Capacitance at step c \\ C2: Capacitance at 125^{\circ}C \\ \Delta T: 100^{\circ}C (=125^{\circ}C - 25^{\circ}C) \\ \hline \\ (2) Class II \\ Capacitance Change shall be calculated from theformula as below\Delta C = \frac{C2 - CI}{CI} \times 100\% \\ C1: Capacitance at step c \\ C2: Capacitance at step c \\ C1: Capacitance at step c \\ C2: Capacitance at step b or d \\ C3: Capacitance at step b \\ C3: Capacitance at step \\ C3: Capacitance at step \\ C3: Capacitance \\$	<general purpose="" series=""> Class1: Δ C/C: ±30ppm/°C Class2: X7R: Δ C/C: ±15% <high capacitance="" series=""> Class2: X7R: Δ C/C: ±15%</high></general>
Adhesion	IEC 60384- 21/22	4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size ≥ 0603: 5N size = 0402: 2-5N size = 0201: 1N
Bending Strength		4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3	No visible damage
			Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm	Δ C/C Class 1: NP0: within ±1% or 0.5 pF, whichever is greater Class2: X7R: ±10%

Product specification	19
630 V	22

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Resistance to Soldering		4.9	Precondition: 150 +0/–10 °C for 1 hour, then keep for 24 ±1 hours at room	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
Heat			temperature Preheating: for size ≤ 1206: 120 °C to 150 °C for 1 minute Preheating: for size >1206: 100 °C to 120 °C for 1 minute and 170 °C to 200 °C for 1 minute	$\Delta C/C$ Class 1: NP0: within ±0.5% or 0.5 pF, whichever is greater Class2: X7R: ±10%
			Solder bath temperature: 260 ±5 °C Dipping time: 10 ±0.5 seconds Recovery time: 24 ±2 hours	D.F. within initial specified value R _{ins} within initial specified value
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critical area of each termination
			 Temperature: 235±5°C / Dipping time: 2 ±0.5 s Temperature: 245±5°C / Dipping time: 3 ±0.5 s (lead free) Depth of immersion: 10mm 	
Rapid Change of	IEC 60384- 21/22	4.11	Preconditioning; 150 +0/–10 °C for 1 hour, then keep for	No visual damage
Temperature			 24 ±1 hours at room temperature 5 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature 	ΔC/C Class 1: NP0: within ±1% or 1 pF, whichever is greater Class2: X7R: ±15%
			Recovery time 24 ±2 hours -	D.F. meet initial specified value R _{ins} meet initial specified value

TEST	TEST METH	HOD	PROCEDU	RE		REQUIREMENTS	
Damp Heat		4.13 3. Preconditioning, class 2 only:				No visual damage after recovery	
		1.15	 3. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp 4. Initial measure: Spec: refer initial spec C, D, IR 5. Damp heat test: 500 ±12 hours at 40 ±2 °C; 90 to 95% R.H. 6. Recovery: Class 1: 6 to 24 hours Class 2: 24 ±2 hours 7. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the ot measurements have been made the capacit shall be precondition according to "IEC 603 4.1" and then the requirement shall be met 		; then keep for mp C, D, IR 2 °C; lue is less than the id, then after the other in made the capacitor cording to <i>"IEC 60384</i>	$\label{eq:lass_lim} \begin{array}{l} \Delta C/C \\ Class 1: \\ NP0: within \pm 2\% \mbox{ or } 1 \mbox{ pF, whichever is great} \\ Class2: \\ X7R: \pm 15\% \\ D.F. \\ Class 1: \\ NP0: \leq 2 \times \mbox{ specified value} \\ Class2: \\ X7R: \geq 25 \ V: \leq 5\% \\ R_{ins} \\ Class 1: \\ NP0: \geq 2,500 \ M\Omega \ \mbox{ or } R_{ins} \times C_r \geq 25\Omega \cdot F \\ \mbox{ whichever is less} \\ Class2: \\ X7B: \geq 500 \ M\Omega \ \mbox{ or } R_{ins} \times C_r \geq 25\Omega \cdot F \\ \mbox{ whichever is less} \\ Class2: \\ X7B: \geq 500 \ M\Omega \ \mbox{ or } R_{ins} \times C_r \geq 25\Omega \cdot F \\ \mbox{ whichever is less} \\ Class2: \\ X7B: \geq 500 \ M\Omega \ \mbox{ or } R_{ins} \times C_r \geq 25\Omega \cdot F \\ \end{tabular}$	
				I		X7R: \geq 500 M Ω or R _{ins} \times C _r \geq 25 Ω ·F whicheve is less	
Endurance	IEC 60384- 21/22	4.14		ioning, class 2	only: , then keep for	No visual damage	
	 24 ±1 hour at room temp 2. Initial measure: Spec: refer initial spec C, D, IR 3. Endurance test: Temperature: NP0/X7R: 125 °C Specified stress voltage applied for 4. High voltage series follows with be condition: 		C, D, IR R: 125 °C applied for 1,000 hours:	Δ C/C Class I: NP0: within ±2% or 1 pF, whichever is greater Class2: X7R: ±15% D.F. Class I:			
				Voltage	NPO X7R		NP0: $\leq 2 \times \text{specified value}$
			≤ 100V	2.0 x Ur	2.0 x Ur	Class2:	
			200/250V	1.5 x Ur	1.5 x Ur	X7R: ≥ 25 V: ≤ 5%	
			500/630V	1.3 x Ur	1.2 x Ur	R _{ins}	
			≥ IKV	1.2 x Ur	1.1 x Ur	Class I:	
			* NPO, 060 1.5 x Ur	3, 100V, 5.1nl	F to 10nF, apply voltage :	NP0: ≥ 4,000 MΩ or $R_{ins} \times C_r \ge 40\Omega \cdot F$ whichever is less Class2: X7R: ≥ 1,000 MΩ or	
				value permitt nents have be recondition ad	nours alue is less than the ed, then after the other en made the capacitor ccording to ''IEC 60384 irement shall be met.	$R_{ins} \times C_r \ge 50 \Omega \cdot F$ whichever is less	
Voltage Proof		4.6	$ \begin{array}{c} Ur \leq 100 \ V; \\ 100 \ V < Ur \\ (1.5 \ Ur + 10) \\ 200 \ V < Ur \\ (1.3 \ Ur + 10) \\ Ur > 500 \ V; \\ Ur \geq 1000 \ V \end{array} $	series appliec ≤ 200 V serie)0) ≤ 500 V serie)0) 1.3 Ur ': 1.2 Ur	es applied	No breakdown or flashover	

<u>REVISION HISTORY</u>

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 24	Jun. 11, 2021	-	- Add
			X7R : 1812/630V/ 39nF to100nF
			- R_{ins} revised to $R_{ins} \times C \ge 100 \Omega \cdot F$
			X7R : 1210/630V/27nF to 47nF
			1210/500V/56nF to 100nF
Version 23	Mar. 25, 2021	-	- Add
			NPO : 1206/630V 6.8nF/10nF
			1210/630V/22nF
			1812/630V/22nF
			X7R : 2220/630V/150nF to 220nF
Version 22	Jun. 10, 2020	-	- Add
			NPO : 0603/100V/1.8nF to 10nF, 1206/250V/3.3nF to 3.9nF 1206/630V/2.2nF
			X7R : 0805/100V330nF to 1µF, 0805/250V/68nF to 100nF
			1206/100V/680nF, 1210/500V/68nF to 100nF, 1210/630V/47nF
			- Modify
			NPO :1210/100V/12nF to 15nF thickness to 1.25mm X7R :1210/630V/22nF thickness to 1.6mm
			1210/630V/22nF thickness to 1.6mm
Version 21	Jul. 13, 2018	-	- Add
	Jan 19, 2010		NPO : 0402/120pF to 1nF/100V, 0603/1.2nF to 1.5nF/100V,
			1206/1.8nF/630V, 1210/12nF to 22nF/100V
			X7R : 0805/33nF to 47nF/200 to 250V
Version 20	Sep. 14, 2017	-	- Dimension outlines updated
Version 19	Mar 7, 2017	-	- 0805 L4 spec updated
Version 18	Dec 9, 2016	-	- Soldering recommendation update
Version 17	Aug 16, 2016	-	- Capacitance range & thickness update
Version 16	Apr. 16, 2015	-	- Capacitance range & thickness
Version 15	Apr. 16, 2015	-	- Electrical characteristics update
Version 14	Sep. 25, 2014	-	- Electrical characteristics update
Version 13	Apr. 21, 2014	-	- Electrical characteristics update
Version 12	Dec. 12, 2013	-	- Electrical characteristics update
Version 11	Jun. 17, 2013	-	- Test method and procedure updated
Version 10	Nov 22, 2012	-	- Test method and procedure updated
Version 9	Feb 02, 2012	-	- Test method and procedure updated
Version 8	Apr 22, 2011	-	- NP0 0402 100V added
Version 7	Mar 01, 2011	-	- Dimension updated
Version 6	Sep 30, 2010	-	- Update the thickness of 0805 100V
Version 5	Sep 28, 2010	-	- Product range updated
			- Thickness classes and packing quantity table updated

<u>REVISION HISTORY</u>

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 2	Mar 15, 2010	-	- Product range update
Version I	Oct 30, 2009		- Change to dual brand datasheet that describe Mid-voltage NP0/X7R series with RoHS compliant
		-	- Replace the "100V to 630V" part of pdf files: UP-NP0X7R_MV_100-to- 500V_0, UY-NP0X7R_MV_100-to-500V_0, NP0_16V-to-100V_6, NP0_50-to-500V_10, X7R_16-to-500V_9 and X7R_16V-to-100V_9
			- Define global part number
			- Description of "Halogen Free compliant" added
			- Test method and procedure updated
Version 0	Sep 08, 2005	-	- New