FEATURES
35 MSPS Encode Rate
16 pF Input Capacitance
550 mW Power Dissipation
Industry-Standard Pinouts
MIL-STD-883 Compliant Versions Available
APPLICATIONS
Professional Video Systems
Special Effects Generators
Electro-Optics
Digital Radio
Electronic Warfare (ECM, ECCM, ESM)

GENERAL DESCRIPTION

The AD 9048 is an 8 -bit, 35 M SPS flash converter, made on a high speed bipolar process, which is an alternate source for the T D C 1048 unit but offers enhancements over its predecessor. L ower power dissipation makes the AD 9048 attractive for a variety of system designs.
Because of its wide bandwidth, it is an ideal choice for real-time conversion of video signals. Input bandwidth is flat with no missing codes.
Clocked latching comparators, encoding logic and output buffer registers operating at minimum rates of 35 M SPS preclude a need for a sample-and-hold (S/H) or track-and-hold (T/H) in most system designs using the AD 9048. All digital control inputs and outputs are TTL compatible.
D evices operating over two ambient temperature ranges and with two grades of linearity are available. Linearities of either 0.5 LSB or 0.75 LSB can be ordered for a commercial range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, or extended case temperatures of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

REV. B

[^0]
FUNCTIONAL BLOCK DIAGRAM

Commercial versions are packaged in 28-pin DIPs; extended temperature versions are available in ceramic DIP and ceramic LCC packages. Both commercial units and MIL-ST D-883 units are standard products.
The AD 9048 A/D converter is available in versions compliant with M IL-ST D-883. Refer to the A nalog D evices M ilitary Products D atabook or current AD 9048/883B data sheet for detailed specifications.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

$V_{\text {cc }}$ to DGND \qquad -0.5 V dc to +7.0 V dc AGND to DGND -0.5 V dc to +0.5 V dc
$V_{E E}$ to AGND \qquad +0.5 V dc to -7.0 V dc $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {RT }}$ or $\mathrm{V}_{\text {RB }}$ to $A G N D \ldots \ldots+0.5 \mathrm{~V}$ to $\mathrm{V}_{\text {EE }}$
 CONV, NMINV or NLINV to DGND -0.5 V dc to +5.5 V dc Applied Output Voltage to DGND $\ldots-0.5 \mathrm{~V}$ dc to $+5.5 \mathrm{~V} \mathrm{dc}^{2}$ Applied Output Current, Externally Forced

O utput Short-Circuit D uration 1.0 sec 5
O perating Temperature Range (Ambient)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}\right.$; Differential Reference Voltage $=2.0 \mathrm{~V}$, unless otherwise noted)

Parameter (Conditions)	Temp	Test Level	AD9048JJ/JQ			AD 9048KJ/KQ			AD9048SE/SQ			AD9048TE/TQ			Units
					Max			Max			Max			Max	
AC LINEARITY															
In-Band Harmonics															
dc to $2.438 \mathrm{M} \mathrm{Hz}^{15}$	$+25^{\circ} \mathrm{C}$	I	47	50		49	55		47	50		49	55		dBc
dc to $9.35 \mathrm{M} \mathrm{H} \mathrm{z}^{16}$	$+25^{\circ} \mathrm{C}$	V		48			48			48			48		dBc
Signal-to-N oise Ratio (SNR) ${ }^{15}$															
1.248 M Hz Input F requency ${ }^{17}$	$+25^{\circ} \mathrm{C}$	1	43.5	44		45	46		43.5	44		45	46		dB
2.438 M Hz Input F requency ${ }^{17}$	$+25^{\circ} \mathrm{C}$	I	43	44		44	46		43	44		44	46		dB
1.248 M Hz Input F requency ${ }^{18}$	$+25^{\circ} \mathrm{C}$	I	52.5	53		54	55		52.5	53		54	55		dB
2.438 M Hz Input F requency ${ }^{18}$	$+25^{\circ} \mathrm{C}$	।		53		53	55			53		53	55		dB
Signal-to-N oise Ratio (SNR) ${ }^{16}$															
1.248 M Hz Input F requency ${ }^{17}$	$+25^{\circ} \mathrm{C}$	1	43.5	44		45	46		43.5	44			46		dB
9.35 M Hz Input Frequency ${ }^{17}$	$+25^{\circ} \mathrm{C}$	V		40.5			40.5			40.5			40.5		dB
N oise Power Ratio (NPR) ${ }^{19}$	$+25^{\circ} \mathrm{C}$	III	36.5	39		36.5	39		36.5	39		36.5	39		
Differential Phase ${ }^{20}$	$+25^{\circ} \mathrm{C}$	III			1			1			1			1	D egree
D ifferential Gain ${ }^{20}$	$+25^{\circ} \mathrm{C}$	III			2			2			2			2	\%
DIGITAL OUTPUTS															
Logic "1" Voltage	Full	VI	2.4			2.4			2.4			2.4			V
Logic " 0 " Voltage	Full	VI			0.5			0.5			0.5			0.5	V
Short C ircuit C urrent ${ }^{5}$	Full	VI			30			30			30			30	mA
POWER SUPPLY															
Positive Supply Current	$+25^{\circ} \mathrm{C}$	I			46			46			46		34	46	mA
	Full	VI			48			48			48			48	mA
N egative Supply Current	$+25^{\circ} \mathrm{C}$	I		90	110			110		90	110		90	110	mA
	Full	VI			120			120			120			120	mA
Nominal Power Dissipation	$+25^{\circ} \mathrm{C}$	V		550			550			550			550		mW
Reference L adder Dissipation	$+25^{\circ} \mathrm{C}$	V		45			45			45			45		mW

NOTES
${ }^{1} \mathrm{M}$ aximum ratings are limiting values, to be applied individually, and beyond which the serviceability of the device may be impaired. Functional operation under any of these conditions is not necessarily implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.
${ }^{2}$ Applied voltage must be current-limited to specified range.
${ }^{3}$ F orcing voltage must be limited to specified range.
${ }^{4}$ C urrent is specified as negative when flowing into the device.
${ }^{5}$ Output High; one pin to ground; one second duration.
${ }^{6}$ T ypical thermal impedances (no air flow) are as follows:
Ceramic DIP: $\theta_{J A}=49^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=15^{\circ} \mathrm{C} / \mathrm{W}$ LCC: $\theta_{\mathrm{JA}}=69^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=21^{\circ} \mathrm{C} / \mathrm{W}$
JLCC: $\theta_{\mathrm{JA}}=59^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=19^{\circ} \mathrm{C} / \mathrm{W}$
To calculate junction temperature (T_{j}), use power dissipation (PD) and thermal impedance: $T_{\mathrm{J}}=P D\left(\theta_{\mathrm{JA}}\right)+\mathrm{T}_{\text {AM BIENT }}=P D\left(\theta_{\mathrm{J}}\right)=+\mathrm{T}_{\text {CASE }}$.
${ }^{7} \mathrm{M}$ easured with $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ and CONVERT Iow (sampling mode).
${ }^{8}$ D etermined by beat frequency testing for no missing codes.
${ }^{9} V_{R T} \geq V_{R B}$ under all circumstances.
${ }^{10}$ O utputs terminated with 40 pF and 810Ω pull-up resistors.
${ }^{11}$ Interval from 50% point of leading edge CON VERT pulse to change in output data.
${ }^{12}$ F or full-scale step input, 8-bit accuracy attained in specified time.
${ }^{13}$ Recovers to 8 -bit accuracy in specified time after -3 V input overvoltage.
${ }^{14}$ O utput time skew includes high-to-low and low-to-high transitions as well as bit-to-bit time skew differences.
${ }^{15} \mathrm{M}$ easured at 20 M Hz encode rate with analog input 1 dB below full scale.
${ }^{16} \mathrm{M}$ easured at 35 M Hz encode rate with analog input 1 dB below full scale.
${ }^{17}$ RM S signal to rms noise.
${ }^{18}$ Peak signal to rms noise.
${ }^{19} \mathrm{DC}$ to 8 M Hz noise bandwidth with 1.248 M Hz slot; four sigma loading; 20 M Hz encode.
${ }^{20} \mathrm{C}$ lock frequency $=4 \times$ NTSC $=14.32 \mathrm{M} \mathrm{Hz}$. M easured with 40-IRE modulated ramp.
Specifications subject to change without notice.

EXPLANATION OF TEST LEVELS

T est Level I - 100\% production tested.
T est Level II - 100% production tested at $+25^{\circ} \mathrm{C}$ and sample tested at specific temperatures.
T est Level III - Sample tested only.
Test Level IV - Parameter is guaranteed by design and characterization testing.

Test Level V - Parameter is a typical value only.
Test Level VI - All devices are 100\% production tested at $25^{\circ} \mathrm{C} .100 \%$ production tested at temperature extremes for military temperature devices; sample tested at temperature extremes for commercial/industrial devices.

ORDERING GUIDE

Model	Linearity	Temperature	Package Option
AD 9048JJ	0.75 LSB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{J}-28$
AD 9048KJ	0.5 LSB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{J}-28$
AD 9048JQ	0.75 LSB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{Q}-28$
AD 9048K C	0.5 LSB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{Q}-28$
AD 9048SE	0.75 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{E}-28 \mathrm{~A}$
AD 9048TE ${ }^{2}$	0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{E}-28 \mathrm{~A}$
AD 9048SQ ${ }^{2}$	0.75 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-28$
AD 9048T Q^{2}	0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-28$

NOTES
${ }^{1} E=$ Leadless C eramic C hip C arrier; J $=J$-L eaded C eramic; $Q=C$ erdip. ${ }^{2}$ For specifications, refer to Analog D evices M ilitary Products D atabook.

MECHANICAL INFORMATION

Die Dimensions $127 \times 140 \times 4(\pm 2)$ mils Pad Dimensions . 4×4 mils M etalization . G Gold Backing .. None Substrate Potential V_{EE} Passivation .. . N itride Die Attach . Gold Eutectic Bond Wire 1 mil Gold; Gold Ball Bonding

PIN DESIGNATIONS

LCC (E Package)

J-Leaded Ceramic (J Package)

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulateon the human body and test equipment and can discharge without detection. Although the AD 9048 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

FUNCTIONAL DESCRIPTION

Pin Name	Description	Pin Name	Description
D 1-D 8	Eight digital outputs. D 1 (MSB) is the most significant bit of the digital output word; D 8 (LSB) is the least significant bit.	R ${ }_{\text {B }}$ R_{M}	M ost negative reference voltage for internal reference ladder. M idpoint tap on internal reference ladder.
AGND	One of two analog ground returns. Both grounds should be connected together and to low impedance ground plane near the AD 9048.	R_{T}	M ost positive reference voltage for internal reference ladder.
DGND	One of two digital ground returns. Both grounds should be connected together and to low impedance ground plane near the AD 9048.	$V_{I N}$ NMINV	Analog input signal pin. "N ot M ost Significant Bit Invert." In normal operation, this pin floats high; logic LOW at
$V_{\text {CC }}$	Positive supply terminals; nominally +5.0 V .		output word [D 1 (M SB)].
$V_{\text {EE }}$	N egative supply terminals; nominally -5.2 V.	N LINV	"N ot Least Significant Bit Invert." In normal operation, this pin floats high; logic LOW at NLINV inverts the seven least significant bits of the digital output word.
CON VERT	Input for conversion signal; sample of analog input signal taken on rising edge of this pulse.		

AD9048

THEORY OF OPERATION

Refer to the block diagram of the AD 9048. T he AD 9048 comprises three functional sections: a comparator array, encoding logic, and output latches.
Within the array, the analog input signal to be digitized is compared with 255 reference voltages. The outputs of all comparators whose references are below the input signal level will be high; and outputs whose references are above that level will be low.
The n-of-255 code which results from this comparison is applied to the encoding logic where it is converted into binary coding. When it is inverted with dc signals applied to the NLINV and/or N M IN V pins, it becomes twos complement.
After encoding, the signal is applied to the output latch circuits where it is held constant between updates controlled by the application of CON VERT pulses.

The AD 9048 uses strobed latching comparators in which comparator outputs are either high or low, as dictated by the analog input level. D ata appearing at the output pins have a pipeline delay of one encode cycle.

Input signal levels between the references applied to R_{T} (Pin 18) and R_{B} (Pin 26) will appear at the output as binary numbers between 0 and 255 , inclusive. Signals outside that range will show up as either full-scale positive or full-scale negative outputs. No damage will occur to the AD 9048 as long as the input is within the voltage range of V_{EE} to +0.5 V .
The significantly reduced input capacitance of the AD 9048 lowers the drive requirements of the input buffer/amplifier and also induces much smaller phase shift in the analog input signal.

Applications which depend on controlled phase shift at the converter input can benefit from using the AD 9048 because of its inherently lower phase shift.

The CONVERT, analog input and digital output circuits are shown in Figure 1, AD 9048 Input/O utput Circuits.

System timing which provides details on delays through the AD 9048, as well as the relationships of various timing events, is shown in Figure 2, AD 9048 T iming Diagram.
Dynamic performance of the AD 9048, i.e., typical signal-tonoise ratio, is illustrated in Figures 3 and 4.

Figure 1. Input/Output Circuits

Figure 2. AD9048 Timing Diagram

Figure 3. AD9048 Dynamic Performance (20 MHz Encode Rate)

Figure 4. AD9048 Dynamic Performance (35 MHz Encode Rate)

LAYOUT SUGGESTIONS

D esigns which use the AD 9048 or any other high-speed device must follow some basic layout rules to insure optimum performance.
The first requirement is to have a large, low impedance ground plane under and around the converter. If the system uses separate analog and digital grounds, both should be connected solidly together and to the ground plane as close to the AD 9048 as practical, to avoid ground loop currents.

Ceramic $0.1 \mu \mathrm{~F}$ decoupling capacitors should be placed as close as possible to the supply pins of the AD 9048. F or decoupling low frequency signals, use $10 \mu \mathrm{~F}$ tantalum capacitors, also connected as close as practical to voltage supply pins.
Within the AD 9048, reference currents may vary because of coupling between the clock and input signals. Because of this, it is important that the ends of the reference ladder, R_{T} (Pin 18) and R_{B} (Pin 28), be connected to low impedances (as measured from ground).
If the AD 9048 is being used in a circuit in which the reference is not varied, a bypass capacitor to ground is strongly recommended. In applications which use varying references, they must be driven from a low impedance source.

Figure 5. AD9048 Typical Connections

AD9048 Truth Table						
Step	Range		Binary		Offset Twos Complement	
			True	Inverted	True	Inverted
	-2.000 V FS	-2.0480 V FS	NMINV = 1	0	0	1
	7.8431 mV Step	8.000 mV Step	NLINV = 1	0	1	0
000	0.0000 V	0.0000 V	00000000	11111111	10000000	01111111
001	-0.0078 V	-0.0080 V	00000001	11111110	10000001	01111110
-	-	.	-	-	-	
-	-	-	-	-	-	-
-	-	-	-	-	-	
127	-0.9961 V	-1.0160 V	01111111	10000000	11111111	00000000
128	-1.0039 V	-1.0240 V	10000000	01111111	00000000	11111111
129	-1.0118 V	-1.0320 V	10000001	01111110	00000001	11111110
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
254	-1.9921 V	$-2.0320 \mathrm{~V}$	11111110	00000001	01111110	10000001
255	-2.0000 V	-2.0400 V	11111111	00000000	01111111	10000000

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

28-Pin Ceramic Side-Brazed DIP

LEADS ARE GOLD PLATED (50 MICROINCHES MIN) KOVAR OR ALLOY 42

28-Terminal Leadless Chip Carrier

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

