

±15 V/12 V Quad SPST Switches ADG1311/ADG1312/ADG1313

FEATURES

33 V supply range Fully specified at +12 V, ±15 V 130 Ω on resistance No V_L supply required 3 V logic-compatible inputs Rail-to-rail operation 16-lead TSSOP and 16-lead SOIC Typical power consumption: <0.03 μW

APPLICATIONS

Signal switching Battery-powered systems Communication systems Audio/video signal routing

GENERAL DESCRIPTION

The ADG1311/ADG1312/ADG1313 are monolithic CMOS devices containing four independently selectable switches designed on a CMOS process.

The ADG1311/ADG1312/ADG1313 contain four independent single-pole/single-throw (SPST) switches. The ADG1311 and ADG1312 differ only in that the digital control logic is inverted. The ADG1311 switches are turned on with Logic 0 on the appropriate control input, while Logic 1 is required for the ADG1312. The ADG1313 has two switches with digital control logic similar to the ADG1311; the logic is inverted on the other two switches. The ADG1313 exhibits break-before-make switching action for use in multiplexer applications.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- 1. 3 V logic-compatible digital inputs: $V_{IH} = 2.0$ V, $V_{IL} = 0.8$ V.
- 2. No V_L logic power supply required.
- 3. 16-lead TSSOP and SOIC packages.

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Applications1
Functional Block Diagram1
General Description
Product Highlights 1
Specifications
Dual Supply
Single Supply

REVISION HISTORY

2/09—Rev. 0 to Rev. A
Changes to Power Requirements, I_{DD} , Digital Inputs = 5 V
Parameter, Table 1
Changes to Power Requirements, I_{DD} , Digital Inputs = 5 V
Parameter, Table 2

10/05—Revision 0: Initial Version

Absolute Maximum Ratings	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Terminology	7
Typical Performance Characteristics	8
Test Circuits	. 10
Outline Dimensions	. 12
Ordering Guide	. 12

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Y Version ¹				
Parameter	25°C	-40°C to +105°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V _{DD} to V _{SS}	V	
On Resistance (R _{on})	130	230	Ωtyp	$V_s = \pm 10 V$, $I_s = -1 mA$; see Figure 10
	200		Ωmax	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On Resistance Match Between Channels (ΔR_{ON})	5		Ωtyp	$V_{s} = \pm 10 V, I_{s} = -1 mA$
	10		Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	25		Ωtyp	$V_s = -5 V/0 V/+5 V$; $I_s = -1 mA$
	65		Ωmax	
LEAKAGE CURRENTS				$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, I _s (Off)	±10		nA typ	$V_{S} = \pm 10 \text{ V}, V_{D} = \mp 10 \text{ V}; \text{ see Figure 11}$
Drain Off Leakage, I _D (Off)	±10		nA typ	$V_s = \pm 10 V$, $V_D = \mp 10 V$; see Figure 11
Channel On Leakage, I _D , I _S (On)	±10		nA typ	$V_s = V_D = \pm 10 V$; see Figure 12
DIGITAL INPUTS				-
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	μA max	
Digital Input Capacitance, C _{IN}	2.5		pF typ	
DYNAMIC CHARACTERISTICS ²				
ton	105		ns typ	$R_L = 300 \ \Omega$, $C_L = 35 \ pF$
	125	180	ns max	$V_s = 10 V$; see Figure 13
toff	40		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	50	60	ns max	$V_s = 10 V$; see Figure 13
Break-Before-Make Time Delay, t _D	25		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
(ADG1313 Only)		10	ns min	$V_{S1} = V_{S2} = 10 V$; see Figure 14
Charge Injection	2		pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 15
Off Isolation	80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 16
Channel-to-Channel Crosstalk	90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 17
–3 dB Bandwidth	600		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 18
Cs (Off)	5		pF typ	
C _D (Off)	5		pF typ	
C _D , C _s (On)	10		pF typ	
POWER REQUIREMENTS				$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
IDD	0.001		μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
		1.0	µA max	
l _{DD}	220		μA typ	Digital inputs = 5 V
		380	µA max	
lss	0.001		μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
		1.0	µA max	
lss	0.001		μA typ	Digital inputs = 5 V
		1.0	μA max	

 1 Temperature range for Y Version is $-40^\circ C$ to $+105^\circ C.$ 2 Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

	Y Version ¹			
Parameter	25°C	-40°C to +105°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	V	
On Resistance (Ron)	325	520	Ωtyp	$V_{s} = 0 V - 10 V$, $I_{s} = -1 mA$; see Figure 10
	500		Ωmax	$V_{DD} = 10.8 V, V_{SS} = 0 V$
On Resistance Match Between Channels (ΔR_{ON})	10		Ωtyp	$V_{s} = 0 V - 10 V$, $I_{s} = -1 mA$
	15		Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	65		Ωtyp	$V_s = 3 V/6 V/9 V$, $I_s = -1 mA$
LEAKAGE CURRENTS				$V_{DD} = 13.2 V, V_{SS} = 0 V$
Source Off Leakage, I _s (Off)	±10		nA typ	$V_{s} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/1 \text{ V};$ see Figure 11
Drain Off Leakage, I _D (Off)	±10		nA typ	$V_{s} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/1 \text{ V}$ see Figure 11
Channel On Leakage, I _D , I _s (On)	±10		nA typ	$V_{s} = V_{D} = 1 V \text{ or } 10 V$; se e Figure 12
DIGITAL INPUTS	1			
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	µA max	
Digital Input Capacitance, C _№	3		pF typ	
DYNAMIC CHARACTERISTICS ²				
ton	120		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	155	210	ns max	$V_s = 8 V$; see Figure 13
toff	45		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	65	80	ns max	$V_s = 8 V$; see Figure 13
Break-Before-Make Time Delay, t _D	50		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
(ADG1313 Only)		10	ns min	$V_{S1} = V_{S2} = 8 V$; see Figure 14
Charge Injection	2		pC typ	$V_s = 6 V, R_s = 0 \Omega, C_L = 1 nF$; see Figure 15
Off Isolation	80		dB typ	$R_{L} = 50 \Omega$, $C_{L} = 5 pF$, $f = 1 MHz$; see Figure 16
Channel-to-Channel Crosstalk	90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 17
–3 dB Bandwidth	500		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 18
Cs (Off)	5		pF typ	
C _D (Off)	5		pF typ	
C _D , C _s (On)	10		pF typ	
POWER REQUIREMENTS				$V_{DD} = 13.2 V$
	0.001		μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
		1.0	µA max	
	220		µA typ	Digital inputs = 5 V
		380	µA max	

 1 Temperature range for Y Version is $-40^\circ C$ to $+105^\circ C.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

1 4010 51					
Parameter	Rating				
V _{DD} to V _{SS}	35 V				
V _{DD} to GND	–0.3 V to +25 V				
V _{ss} to GND	+0.3 V to -25 V				
Analog Inputs ¹	V _{ss} – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first				
Digital Inputs ¹	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first				
Peak Current, S or D	100 mA (pulsed at 1 ms, 10% duty cycle max)				
Continuous Current per Channel, S or D	25 mA				
Operating Temperature Range					
Automotive	-40°C to +105°C				
Storage Temperature Range	–65°C to +150°C				
Junction Temperature	150°C				
16-Lead TSSOP, θ _{JA} Thermal Impedance (4-layer board)	112°C/W				
16-Lead SOIC, θ _{JA} Thermal Impedance	77°C/W				
Reflow Soldering Peak Temperature, Pb free	260°C				

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. ADG1311/ADG1312 Truth Table

ADG1311 INx	ADG1312 INx	Switch Condition	
0	1	On	
1	0	Off	

Table 5. ADG1313 Truth Table

ADG1313 INx	Switch 1, 4	Switch 2, 3
0	Off	On
1	On	Off

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. SOIC/TSSOP Pin Configuration

Pin No.	Mnemonic	Description
1	IN1	Logic Control Input.
2	D1	Drain Terminal. Can be an input or output.
3	S1	Source Terminal. Can be an input or output.
4	V _{ss}	Most Negative Power Supply Potential.
5	GND	Ground (0 V) Reference.
6	S4	Source Terminal. Can be an input or output.
7	D4	Drain Terminal. Can be an input or output.
8	IN4	Logic Control Input.
9	IN3	Logic Control Input.
10	D3	Drain Terminal. Can be an input or output.
11	S3	Source Terminal. Can be an input or output.
12	NC	No Connection.
13	V _{DD}	Most Positive Power Supply Potential.
14	S2	Source Terminal. Can be an input or output.
15	D2	Drain Terminal. Can be an input or output.
16	IN2	Logic Control Input.

Table 6. Pin Function Descriptions

TERMINOLOGY

IDD The positive supply current.

Iss The negative supply current.

 $\mathbf{V}_{D}\left(\mathbf{V}s\right)$ The analog voltage on Terminal D and Terminal S.

 \mathbf{R}_{ON} The ohmic resistance between D and S.

 $\mathbf{R}_{\text{FLAT(ON)}}$ Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

Is (Off) The source leakage current with the switch off.

 \mathbf{I}_{D} (Off) The drain leakage current with the switch off.

 $\mathbf{I}_{D}\text{, }\mathbf{I}_{S}\left(On\right)$ The channel leakage current with the switch on.

 $V_{\mbox{\scriptsize INL}}$ The maximum input voltage for Logic 0.

 \mathbf{V}_{INH} The minimum input voltage for Logic 1.

I_{INL} (I_{INH}) The input current of the digital input.

Cs (Off) The off switch source capacitance, measured with reference to ground.

C_D (Off) The off switch drain capacitance, measured with reference to ground. C_D, C_s (On) The on switch capacitance, measured with reference to ground.

C_{IN} The digital input capacitance.

t_{ON} The delay between applying the digital control input and the output switching on. See Figure 13.

t_{OFF} The delay between applying the digital control input and the output switching off. See Figure 13.

Charge Injection A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation A measure of unwanted signal coupling through an off switch.

Crosstalk A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth The frequency at which the output is attenuated by 3 dB.

On Response The frequency response of the on switch.

Insertion Loss The loss due to the on resistance of the switch.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance as a Function of V_D (V_S) for Dual Supply

Figure 4. On Resistance as a Function of V_D (V_S) for Single Supply

Figure 6. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures, Single Supply

TEST CIRCUITS

Figure 17. Channel-to-Channel Crosstalk

Figure 18. Bandwidth

OUTLINE DIMENSIONS

Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1311YRUZ ¹	-40°C to +105°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1311YRUZ-REEL71	-40°C to +105°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1311YRZ ¹	-40°C to +105°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1311YRZ-REEL71	-40°C to +105°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1312YRUZ ¹	-40°C to +105°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1312YRUZ-REEL71	-40°C to +105°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1312YRZ ¹	-40°C to +105°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1312YRZ-REEL71	-40°C to +105°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1313YRUZ ¹	-40°C to +105°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1313YRUZ-REEL71	-40°C to +105°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1313YRZ ¹	-40°C to +105°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1313YRZ-REEL71	-40°C to +105°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16

 1 Z = RoHS Compliant Part.

©2005–2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05676-0-2/09(A)

www.analog.com

60606-A

Rev. A | Page 12 of 12