± 15 V/12 V Quad SPST Switches

ADG1311/ADG1312/ADG1313

FEATURES

33 V supply range
Fully specified at $+\mathbf{1 2} \mathrm{V}, \mathbf{1 5} \mathrm{V}$
130Ω on resistance
No VL supply required
3 V logic-compatible inputs
Rail-to-rail operation
16-lead TSSOP and 16 -lead SOIC
Typical power consumption: <0.03 $\mu \mathrm{W}$

APPLICATIONS

Signal switching
Battery-powered systems
Communication systems
Audio/video signal routing

GENERAL DESCRIPTION

The ADG1311/ADG1312/ADG1313 are monolithic CMOS devices containing four independently selectable switches designed on a CMOS process.

The ADG1311/ADG1312/ADG1313 contain four independent single-pole/single-throw (SPST) switches. The ADG1311 and ADG1312 differ only in that the digital control logic is inverted. The ADG1311 switches are turned on with Logic 0 on the appropriate control input, while Logic 1 is required for the ADG1312. The ADG1313 has two switches with digital control logic similar to the ADG1311; the logic is inverted on the other two switches. The ADG1313 exhibits break-before-make switching action for use in multiplexer applications.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

Rev, A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADG1311/ADG1312/ADG1313

TABLE OF CONTENTS

\qquadApplications 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Specifications 3
Dual Supply 3
Single Supply. 4
REVISION HISTORY
2/09—Rev. 0 to Rev. A
Changes to Power Requirements, Idd, Digital Inputs $=5 \mathrm{~V}$Parameter, Table 13
Changes to Power Requirements, Idd, Digital Inputs $=5 \mathrm{~V}$Parameter, Table 2 4
10/05-Revision 0: Initial Version
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Terminology 7
Typical Performance Characteristics 8
Test Circuits 10
Outline Dimensions 12
Ordering Guide 12

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

[^0]
ADG1311/ADG1312/ADG1313

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

[^1]
ADG1311/ADG1312/ADG1313

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
$V_{D D}$ to $V_{S S}$	35 V
V $_{\text {DD }}$ to GND	-0.3 V to +25 V
$\mathrm{~V}_{S S}$ to GND	+0.3 V to -25 V
Analog Inputs 1	$\mathrm{~V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{VDD}+0.3 \mathrm{~V}$ or
	30 mA, whichever occurs first
Digital Inputs ${ }^{1}$	$\mathrm{GND}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or
	30 mA, whichever occurs first
Peak Current, S or D	100 mA (pulsed at 1 ms,
	10% duty cycle max)
Continuous Current per	25 mA
\quad Channel, S or D	
Operating Temperature Range	
\quad Automotive	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
16-Lead TSSOP, $\theta_{j A}$ Thermal	$112^{\circ} \mathrm{C} / \mathrm{W}$
\quad Impedance (4-layer board)	
16-Lead SOIC, $\theta_{j A}$ Thermal	$77^{\circ} \mathrm{C} / \mathrm{W}$
\quad Impedance	
Reflow Soldering Peak	$260^{\circ} \mathrm{C}$
\quad Temperature, Pb free	

${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. ADG1311/ADG1312 Truth Table

ADG1311 INx	ADG1312 INx	Switch Condition
0	1	On
1	0	Off

Table 5. ADG1313 Truth Table

ADG1313 INx	Switch 1, 4	Switch 2, 3
0	Off	On
1	On	Off

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance

ADG1311/ADG1312/ADG1313

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. SOIC/TSSOP Pin Configuration
Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1	Logic Control Input.
2	D1	Drain Terminal. Can be an input or output.
3	S1	Source Terminal. Can be an input or output.
4	VSS	Most Negative Power Supply Potential.
5	GND	Ground (0 V) Reference.
6	S4	Source Terminal. Can be an input or output.
7	D4	Drain Terminal. Can be an input or output.
8	IN4	Logic Control Input.
9	IN3	Logic Control Input.
10	D3	Drain Terminal. Can be an input or output.
11	S3	Source Terminal. Can be an input or output.
12	NC	No Connection.
13	VDD	Most Positive Power Supply Potential.
14	S2	Source Terminal. Can be an input or output.
15	D2	Drain Terminal. Can be an input or output.
16	IN2	Logic Control Input.

ADG1311/ADG1312/ADG1313

TERMINOLOGY

$I_{\text {DD }}$
The positive supply current.
Iss
The negative supply current.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
The analog voltage on Terminal D and Terminal S.

Ron

The ohmic resistance between D and S.
$\mathrm{R}_{\text {flat(on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

I_{s} (Off)

The source leakage current with the switch off.
I_{D} (Off)
The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0 .
$V_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
The input current of the digital input.
C_{s} (Off)
The off switch source capacitance, measured with reference to ground.
C_{D} (Off)
The off switch drain capacitance, measured with reference to ground.

$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)

The on switch capacitance, measured with reference to ground.
Cin
The digital input capacitance.
ton
The delay between applying the digital control input and the output switching on. See Figure 13.
toff
The delay between applying the digital control input and the output switching off. See Figure 13.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

ADG1311/ADG1312/ADG1313

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 7. Ton/Toff Times vs. Temperature

Figure 8. Off Isolation vs. Frequency

Figure 9. Crosstalk vs. Frequency

ADG1311/ADG1312/ADG1313

TEST CIRCUITS

Figure 10. On Resistance

Figure 11. Off Leakage

Figure 12. On Leakage

Figure 13. Switching Times

Figure 14. Break-Before-Make Time Delay

Figure 15. Charge Injection

Figure 16. Off Isolation

Figure 18. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{S}}}$
Figure 17. Channel-to-Channel Crosstalk

ADG1311/ADG1312/ADG1313

OUTLINE DIMENSIONS

Figure 19. 16-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-16)
Dimensions shown in millimeters

Figure 20. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-16)
Dimensions shown in millimeters and (inches)
ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1311YRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1311YRUZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1311YRZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1311YRZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1312YRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1312YRUZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1312YRZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1312YRZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1313YRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1313YRUZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1313YRZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1313YRZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16

[^0]: ${ }^{1}$ Temperature range for Y Version is $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Temperature range for Y Version is $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

