Intel ${ }^{\circledR}$ Xeon ${ }^{\circledR}$ Processor 5500 Series
 Datasheet, Volume 2

April 2009

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABI LITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABI LITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The Intel $®$ Xeon ${ }^{\circledR}$ Processor 5500 Series may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details. Over time processor numbers will increment based on changes in clock, speed, cache, FSB, or other features, and increments are not intended to represent proportional or quantitative increases in any particular feature. Current roadmap processor number progression is not necessarily representative of future roadmaps. See www.intel.com/products/processor_number for details.
Hyper-Threading Technology requires a computer system with a processor supporting HT Technology and an HT Technologyenabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. For more information including details on which processors support HT Technology, see http://www.intel.com/products/ht/hyperthreading_more.htm
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.
64 -bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information.
Intel ${ }^{\circledR}$ Virtualization Technology requires a computer system with an enabled Intel ${ }^{\circledR}$ processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain computer system software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.
Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware, software and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology. For more information, see www.intel.com.
Enhanced Intel SpeedStep® Technology. See the http://processorfinder.intel.com or contact your Intel representative for more information.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
$I^{2} \mathrm{C}$ is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the $I^{2} \mathrm{C}$ bus/protocol and was developed by Intel. Implementations of the $I^{2} \mathrm{C}$ bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.
Intel, Xeon, Enhanced Intel SpeedStep Technology, and the Intel logo are trademarks of Intel Corporation in the United States and other countries.
*Other brands and names are the property of their respective owners.
Copyright © 2009, Intel Corporation.

Contents

1 Introduction 15
1.1 Terminology 15
1.1.1 Processor Terminology 15
1.2 References 17
2 Register Description 19
2.1 Register Terminology 19
2.2 Platform Configuration Structure 20
2.3 Device Mapping 21
2.4 Detailed Configuration Space Maps 23
2.5 PCI Standard Registers 45
2.5.1 VID - Vendor Identification Register 45
2.5.2 DID - Device Identification Register 45
2.5.3 RID - Revision Identification Register 46
2.5.4 CCR - Class Code Register 46
2.5.5 HDR - Header Type Register 47
2.5.6 SID/SVID - Subsystem Identity/Subsystem Vendor Identification Register 47
2.5.7 PCICMD - Command Register 48
2.5.8 PCISTS - PCI Status Register 49
2.6 Generic Non-core Registers 50
2.6.1 MAXREQUEST_LC 50
2.6.2 MAXREQUEST_LS 51
2.6.3 MAXREQUEST_LL 51
2.6.4 MAX_RTIDS 51
2.6.5 DESIRED CORES 52
2.6.6 MEMLOCK_STATUS 52
2.6.7 MC_CFG_CONTROL 53
2.6.8 POWER CNTRL ERR STATUS 53
2.6.9 CURRENT UCLK RATIO 54
2.6.10 MIRROR_PORT_CTL 55
2.6.11 MIP_PH_CTR_LO
MIP_PH_CTR_L1 55
2.6.12 MIP_PH_PRT_LO
MIP_PH_PRT_L1 56
2.7 SAD - System Address Decoder Registers 56
2.7.1 SAD PAM0123 56
2.7.2 SAD_PAM456 58
2.7.3 SAD_HEN 59
2.7.4 SAD_SMRAM 59
2.7.5 SAD PCIEXBAR 60
2.7.6 SAD_DRAM_RULE_0
SAD_DRAM_RULE_1
SAD_DRAM_RULE_2
SAD_DRAM_RULE_3SAD_DRAM_RULE_4SAD_DRAM_RULE_5
SAD_DRAM_RULE_6
SAD_DRAM ${ }^{-}$RULE $^{-} 7$ 60
2.7.7 SAD_INTERLEAVE_LIST_0

SAD_INTERLEAVE_LIST_1
SAD_INTERLEAVE_LIST_2
SAD_INTERLEAVE_LIST_3
SAD INTERLEAVE LIST 4
SAD ${ }^{-}$INTERLEAVE ${ }^{-}$LIST $^{-} 5$
SAD_INTERLEAVE_LIST_6
SAD_INTERLEAVE_LIST_761
2.8 Intel QPI Link Registers 61
2.8.1 QPI_QPILCP_LO
QPI_QPILCP_L1 61
2.8.2 QPI_QPILCL_LO
QPI_QPILCL_L1 62
2.8.3 QPI_QPILS_LO
QPI_-QPILS_L1 63
2.8.4 QPI_DEF_RMT_VN_CREDITS_LO
QPI_DEF_RMT_VN_CREDITS_L1 63
2.8.5 QPI RMT QPIL्LPO - TTAT LO
QPI_RMT_QPILPO_STAT_L1 63
2.8.6 QPI_RMT_QPILP1_STAT_LO
QPI_RMT_QPILP1_STAT_L1 64
2.8.7 QPI_RMT_- $^{-}$QPILP2_STAT_LO $^{-}$
QPI_RMT_QPILP2_STAT_L1 64
2.8.8 QPI_RMT_QPILP3_STAT_LO
QPI_RMT_QPILP3_STAT_L1 65
2.9 Intel QPI Physical Layer Registers 66
2.9.1 QPI 0 PH CPR
$\mathrm{QPI}_{-}^{-} 1_{-}^{-} \mathrm{PH}_{-}^{-} \mathrm{CPR}$ 66
2.9.2 QPI_0_PH_CTR
QPI_1_PH_CTR 67
2.9.3 QPI $0^{-} \mathrm{PH}^{-} \mathrm{PIS}$
QPI_1_PH_PIS 68
2.9.4 QPI_0_PH_PTV QPI-1_PH-PTV 69
2.9.5 QPI_0_PH_LDC
QPI_1_PH_LDC 69
2.9.6 QPI_0_PH_PRT
QPI_1_PH_PRT 70
2.9.7 QPI_0_PH_PMRO
QPI-1-PH-PMRO 70
2.9.8 QPI_0_EP_SR
QPI_1_EP_SR 71
2.9.9 QPI_0_EP_MCTR
$\mathrm{QPI}^{-} 1_{-}^{-} \mathrm{EP}_{-}^{-} \mathrm{MCTR}$ 71
2.10 Intel QPI Miscellaneous Registers 72
2.10.1 QPI_0_PLL_STATUS
QPI-1_- ${ }^{-} \mathrm{PLL}^{-}$STATUS 72
2.10.2 QPI_0_PLL_RATIO
QPI_1_PLL_RATIO 72
2.11 Integrated Memory Controller Control Registers 73
2.11.1 MC_CONTROL 73
2.11.2 MC STATUS 74
2.11.3 MC_SMI_DIMM_ERROR_STATUS 74
2.11.4 MC SMI CNTRL 75
2.11.5 MC_RESET_CONTROL 76
2.11.6 MC_CHANNEL_MAPPER 76
2.11.7 MC_MAX_DOD 77
2.11.8 MC_RD_CRDT_INIT 77
2.11.9 MC_CRDTT_WR_THLD 78
2.11.10 MC_SCRUBADDR_LO 79
2.11.11 MC_SCRUBADDR_HI 79
2.12 TAD - Target Address Decoder Registers 80
2.12.1 TAD DRAM RULE 0
TAD-DRAM-RULE-1TAD DRAM ${ }^{-}$RULE ${ }^{-1}$TAD-DRAM-RULE-3TAD_DRAM_RULE-4
TAD DRAM RULE 5TAD_DRAM_RULE_6
TAD_DRAM_RULE_7 80
2.12.2 TAD INTERLEAVE LIST 0
TAD_INTERLEAVE_LIST_1
TAD INTERLEAVE LIST 2 TAD-INTERLEAVE_LIST-3
TAD_INTERLEAVE_LIST_4
TAD INTERLEAVE LIST 5
TAD-INTERLEAVE- ${ }^{-}$IST $^{-} 6$
TAD_INTERLEAVE_LIST_7 81
2.13 Integrated Memory Controller RAS Registers 82
2.13.1 MC SSRCONTROL 82
2.13.2 MC_SCRUB_CONTROL 83
2.13.3 MC_RAS_ENABLES 83
2.13.4 MC RAS STATUS 83
2.13.5 MC SSRSTATUS 84
2.13.6 MC_COR_ECC_CNT_0
MC COR ECC CNT 1
$\mathrm{MC}^{-} \mathrm{COR}^{-} \mathrm{ECC}^{-} \mathrm{CNT}^{-} 2$
$\mathrm{MC}^{-} \mathrm{COR}_{-}^{-} \mathrm{ECC}_{-}^{-} \mathrm{CNT}^{-} 3$
MC COR ECC CNT 4 $\mathrm{MC}_{-}^{-} \mathrm{COR}_{-}^{-} \mathrm{ECC}_{-}^{-} \mathrm{CNT}_{-}^{-} 5$ 84
2.14 Integrated Memory Controller Test Registers 85
2.14.1 MC TEST ERR RCV1 85
2.14.2 $\mathrm{MC}^{-} \mathrm{TEST}^{-}$ERR ${ }^{-}$RCVO 85
2.14.3 MC_TEST_PH_CTR 86
2.14.4 MC_TEST_PH_PIS 86
2.14.5 MC_TEST_PAT_GCTR 86
2.14.6 MC TEST PAT BA 87
2.14.7 MC_TEST_PAT_IS 87
2.14.8 MC_TEST_PAT_DCD 87
2.15 Integrated Memory Controller Channel Control Registers 88
2.15.1 MC_CHANNEL_0_DIMM_RESET_CMD
MC_CHANNEL_1_DIMM_RESET_CMD MC_CHANNEL_2_DIMM_RESET_CMD 88
2.15.2 MC_CHANNELODIMM INIT_CMD MC_CHANNEL_1_DIMM_INIT_CMD MC_CHANNEL_2_DIMM_INIT_CMD 88
2.15.3 $\mathrm{MC}^{-} \mathrm{CHANNEL}^{-} \mathrm{O}^{-} \mathrm{DIMM}^{-} \mathrm{INIT}^{-}$PARAMS MC_CHANNEL_1_DIMM_INIT_PARAMS MC_CHANNEL_2_DIMM_INIT_PARAMS 89
2.15.4 MC^{-}CHANNEL $\mathrm{O}^{-} \mathrm{DIMM}^{-}$INIT ${ }^{-}$STATUS MC_CHANNEL_1_DIMM_INIT_STATUS MC CHANNEL 2 DIMM_INIT_STATUS 91
2.15.5 MC_CHANNEL_0_DDR3C̄MD
MC_CHANNEL_1_DDR3CMD MC CHANNEL 2^{-}DDR3CMD 92
2.15.6 MC_CHANNEL_0_REFRESH_THROTTLE_SUPPORT
MC_CHANNEL_1_REFRESH_THROTTLE_SUPPORT MC_CHANNEL_2_REFRESH_THROTTLE_SUPPORT 93

2.15 .7	MC_CHANNEL_0_MRS_VALUE_0_1
	MC_CHANNEL_1_MRS_VALUE_0_1
	MC ${ }^{-}$CHANNEL ${ }^{-} \mathrm{MRS}^{-}$VALUE $0^{-1} 1$

2.15.8 MC_CHANNEL_O_MRS_VALUE_2 93 $\mathrm{MC}^{-} \mathrm{CHANNEL}_{-1}^{-} \mathrm{MRS}^{-}$VALUE ${ }^{-} 2$

2.15.9 MC_CHANNEL_-_RANK_PRESENT MC_CHANNEL_1_RANK_PRESENT MC_CHANNEL_-2-RANK_PRESENT94

2.15.10 MC_CHANNEL_0_RANK_TIMING_A

MC_CHANNEL_1_RANK_TIMING_A

MC_CHANNEL_2-RANK_TIMING_A 95
2.15.11 MC_CHANNEL_0_RANK_TIMING_B

MC_CHANNEL_1_RANK_TIMING_B
MC_{-}^{-}CHANNEL_2-RANK_TIMING_B 98
2.15.12 MC_CHANNEL_0_BANK_TIMING

$\mathrm{MC}_{-}^{-} \mathrm{CHANNEL}{ }^{-} 1_{-}^{-}$BANK_TIMING

$\mathrm{MC}^{-} \mathrm{CHANNEL}^{-} 2^{-}$BANK ${ }^{-}$TIMING 99
2.15.13 MC_CHANNEL_0_REFRESH_TIMING
MC_CHANNEL_1_REFRESH_TIMING MC_{-}^{-}CHANNEL_2_REFRESH_TIMING 99
2.15.14 MC_CHANNEL_0_CKE_TIMING
MC_CHANNEL_1_CKE_TIMING $\mathrm{MC}_{-}^{-} \mathrm{CHANNEL}{ }^{-} 2_{-}^{-} \mathrm{CKE}_{-}^{-}$TIMING 100
2.15.15 MC_CHANNEL_0_ZQ_TIMING
MC_CHANNEL_1_ZQ_TIMING MC_CHANNEL_2_ZQ_TIMING 100
2.15.16 MC_CHANNEL_0_RCOMP_PARAMS
$\mathrm{MC}_{-}^{-} \mathrm{CHANNEL} 1_{-1-R C O M P-P A R A M S}^{-}$ MC_CHANNEL_2_RCOMP_PARAMS 101
2.15.17 MC_CHANNEL_0_ODT_PARAMS1
MC_CHANNEL_1_ODT_PARAMS1 $\mathrm{MC}_{-}^{-} \mathrm{CHANNEL} \mathrm{Z}^{-} \mathrm{ODT}_{-}^{-}$PARAMS1 101
2.15.18 MC_CHANNEL_0_ODT_PARAMS2
MC_CHANNEL_1_ODT_PARAMS2
MC_CHANNEL_2-ODT-PARAMS2 102
2.15.19 MC_CHANNEL_0_ODT_MATRIX_RANK_0_3_RD
$\mathrm{MC}_{-}^{-} \mathrm{CHANNEL}{ }_{-1}^{-} \mathrm{I}_{-}^{-} \mathrm{ODT}_{-}^{-}$MATRIX_RANK_0_3-RD MC_CHANNEL_2_ODT_MATRIX_RANK_0_3_RD 102
2.15.20 MC_CHANNEL_0_ODT_MATRIX_RANK_4_7_RD
$\mathrm{MC}_{-}^{-} \mathrm{CHANNEL}{ }^{-} 1_{-}^{-} \mathrm{ODT}_{-}^{-}$MATRIX_RANK_4-7-RD
MC_CHANNEL_2_ODT_MATRIX_RANK_4_7_RD 103
2.15.21 MC_CHANNEL_0_ODT_MATRIX_RANK_0_3_WR

$\mathrm{MC}_{-}^{-} \mathrm{CHANNEL}_{-}^{-} 2_{-}^{-} \mathrm{ODT}_{-}^{-} \mathrm{MATRIX}_{-}^{-}$RANK_O_3_WR 103
2.15.22 MC_CHANNEL_0_ODT_MATRIX_RANK_4_7_WR
$\mathrm{MC}_{-}^{-} \mathrm{CHANNEL} \mathrm{I}_{-}^{-} \mathrm{ODT}_{-}^{-} \mathrm{MATRIX}_{-}^{-}$RANK_ $4_{-}^{-} 7_{-}^{-} \mathrm{WR}$
MC_CHANNEL_2_ODT_MATRIX_RANK_4_7_WR 103
2.15.23 MC_CHANNEL_0_WAQ_PARAMS
MC_CHANNEL_1_WAQ_PARAMS
MC_CHANNEL_2_WAQ_PARAMS 104
2.15.24 MC_CHANNEL_0_SCHEDULER_PARAMS
$\mathrm{MC}^{-} \mathrm{CHANNEL}^{-} 1_{-}^{-}$SCHEDULER-PARAMS
MC_CHANNEL_2_SCHEDULER_PARAMS 104
2.15.25 MC_CHANNEL_0_MAINTENANCE_OPS
$\mathrm{MC}_{-}^{-} \mathrm{CHANNEL}_{-}^{-} 1_{-}^{-}$MAINTENANCE-OPS
MC_CHANNEL_2_MAINTENANCE_OPS 105
2.15.26 MC_CHANNEL_0_TX_BG_SETTINGS
MC_CHANNEL_1_- ${ }^{-} X_{-}^{-} \mathrm{BG}_{-}^{-}$SETTINGS
MC_CHANNEL_2_TX_BG_SETTINGS 105
2.15.27 MC_CHANNEL_0_RX_BGF_SETTINGS
$\mathrm{MC}^{-} \mathrm{CHANNEL}_{-}^{-} 1_{-}^{-} \mathrm{RX}-\mathrm{BGF}_{-}^{-}$SETTINGS
$\mathrm{MC}_{-}^{-} \mathrm{CHANNEL} \mathrm{Z}_{-}^{-} \mathrm{RX}_{-}^{-} \mathrm{BGF}_{-}^{-}$SETTINGS
2.15.28 MC_CHANNEL_0_EW_BGF_SETTINGS

MC_CHANNEL_1_EW_BGF_SETTINGS
MC_CHANNEL_2_EW_BGF_SETTINGS
2.15.29 MC_CHANNEL_0_EW_BGF_OFFSET_SETTINGS
$\mathrm{MC}_{-}^{-} \mathrm{CHANNEL}_{1}^{-1} \mathrm{EW}_{-}^{-} \mathrm{BGF}_{-}^{-}$OFFSET_SETTINGS
$\mathrm{MC}_{-}^{-} \mathrm{CHANNEL} \mathrm{C}_{-}^{-} \mathrm{EW}_{-}^{-} \mathrm{BGF}_{-}^{-}$OFFSET_SETTINGS
2.15.30 MC_CHANNEL_0_ROUND_TRIP_LATENCY

MC_CHANNEL_1_ROUND_TRIP_-LATENCY
MC_CHANNEL_2-ROUND_TRIP_LATENCY107
2.15.31 MC_CHANNEL_0_PAGETABLE_PARAMS1

MC_CHANNEL_1-PAGETABLE_PARAMS1
MC_CHANNEL_2_PAGETABLE_PARAMS1107

2.15.32 MC_TX_BG_CMD_DATA_RATIO_SETTINGS_CHO

MC^{-}TX_BG_CMD_DATA_RATIO_SETTINGS_CH1

$\mathrm{MC}_{-}^{-} \mathrm{TX}_{-}^{-} \mathrm{BG}_{-}^{-} \mathrm{CMD}{ }^{-}$DATA_RATIO_SETTINGS_${ }^{-} \mathrm{CH} 2$ 107

2.15.33 MC_TX_BG_CMD_OFFSET_SETTINGS_CHO

MC_TX_BG_CMD_OFFSET_SETTINGS_CH1

$\mathrm{MC}_{-}^{-} \mathrm{TX}_{-}^{-} \mathrm{BG}_{-}^{-} \mathrm{CMD} \mathrm{C}^{-}$OFFSET_SETTINGS_CH2. 108
2.15.34 MC_{-}^{-}TX_BG_DATA__OFFSET_SETTINGS_CHO
MC_TX_BG_DATA_OFFSET_SETTINGS_CH1
$\mathrm{MC}_{-}^{-} \mathrm{TX}_{-}^{-} \mathrm{BG}_{-}^{-}$DATA_OFFSET_SETTINGS_CH2 108
2.16 Integrated Memory Controller Channel Address Registers 109
2.16.1 MC_DOD_CHO_0
$\mathrm{MC}_{-}^{-} \mathrm{DOD}_{-}^{-} \mathrm{CHO}_{-1}^{-1}$
$\mathrm{MC}_{-}^{-} \mathrm{DOD}_{-}^{-} \mathrm{CHO}_{-}^{-} 2$ 109
2.16.2 MC_DOD_CH1_0
$\mathrm{MC}^{-} \mathrm{DOD}_{-}^{-} \mathrm{CH1}_{-1}$
$\mathrm{MC}_{-}^{-} \mathrm{DOD}_{-}^{-} \mathrm{CH1}_{-}^{-} 2$ 110
2.16.3 MC_DOD_CH2_0
MC_DOD_CH2_1
MC_DOD_CH2_2 111
2.16.4 $\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CHO} \mathrm{O}_{0}$
$\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CHO}^{-} 1$
$\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CHO}^{-} 2$$\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CHO}_{-}^{-3}$$\mathrm{MC}_{-}^{-} \mathrm{SAG}_{-}^{-} \mathrm{CHO}_{-}^{-} 4$
MC_SAG_CHO_5
$\mathrm{MC}^{-} \mathrm{SAG}_{-}^{-} \mathrm{CHO}_{-}^{-} 6$
$\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CHO}^{-} 7$
$\mathrm{MC}_{-}^{-} \mathrm{SAG}_{-}^{-} \mathrm{CHI}_{-}^{-} \mathrm{O}$
$\mathrm{MC}_{-}^{-} \mathrm{SAG}_{-}^{-} \mathrm{CHI}_{-1}^{-1}$
MC_SAG_CH1_2
$\mathrm{MC}_{-}^{-} \mathrm{SAG}_{-}^{-} \mathrm{CHI}_{-}^{-3}$
$\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CH1}_{-}^{-} 4$
$\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CHI}_{-}^{-} 5$
$\mathrm{MC}^{-} \mathrm{SAG}_{-}^{-} \mathrm{CHI}_{-}^{-6}$
$\mathrm{MC}^{-S A G-C H 1-7}$
$\mathrm{MC}_{-}^{-} \mathrm{SAG}_{-}^{-} \mathrm{CH}_{2}^{-} \mathrm{O}$
$\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CH}_{2}^{-}{ }^{-1}$
$\mathrm{MC}_{-}^{-} \mathrm{SAG}_{-}^{-} \mathrm{CH}_{2}^{-} 2$
$\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CH}_{2}^{-}{ }^{-}$
$\mathrm{MC}_{-}^{-} \mathrm{SAG}_{-}^{-} \mathrm{CH}_{2}^{-}{ }^{-} 4$
$\mathrm{MC}_{-}^{-} \mathrm{SAG}_{-}^{-} \mathrm{CH}_{2}^{-} 5$
$\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CH}_{2}^{-}{ }^{-} 6$
$\mathrm{MC}_{-}^{-} \mathrm{SAG}_{-}^{-} \mathrm{CH}_{2}^{-} 7$112
2.17 Integrated Memory Controller Channel Rank Registers 113


```
2.17.3 MC_RIR_WAY_CH1_0
    MC_RIR_WAY_CH1_1
    MC-RIR-WAY-CH1-
    MC_RIR_WAY_CH1_3
    MC_RIR_WAY_CH1_4
    MC_RIR_WAY_-CH1-5
    MC_RIR_WAY_CH1-6
    MC-RIR_WAY-CH1-7
    MC_RIR_WAY_-CH1-8
    MC_RIR_WAY_CH1-9
    MC_RIR_WAY_CH1-10
    MC_RIR_WAY-CH1_11
    MC-RIR_WAY-CH1-12
    MC_-RIR_WAY-CH1-13
    MC-RIR-WAY-CH1-14
    MC-RIR-WAY-CH1-15
    MC_RIR_WAY_CH1_16
    MC RIR WAY-}\mp@subsup{\textrm{CHI}}{}{-}1
    MC-RIR_WAY-CH1-18
    MC_RIR_WAY_CH1_19
    MC-RIR_WAY-CH1-20
    MC_RIR_WAY_CH1_21
    MC RIR-WAY-}\mp@subsup{\textrm{CHI}}{}{-}2
    MC RIR WAY-}\mp@subsup{\textrm{CHI}}{}{-}2
    MC_RIR_WAY_CH1_24
    MC-RIR_WAY-CH1-25
    MC_RIR_WAY-CH1_26
    MC RIR WAY-}\mp@subsup{\textrm{CHI}}{}{-}2
    MC-RIR-WAY-CH1-28
    MC_RIR_WAY_CH1_29
    MC-RIR_WAY-CH1-30
    MC_RIR_WAY_CH1_31115
```

2.17 .4	MC_RIR_WAY_CH2_0
	MC_RIR_WAY_CH2_1
	MC-RIR-WAY-CH2-2
	MC ${ }^{-} \mathrm{RIR}^{-} \mathrm{WAY}^{-} \mathrm{CH}_{2}^{-} 3$
	MC_RIR_WAY-CH2-4
	MC_RIR-WAY-CH2-5
	MC_RIR-WAY_CH2-6
	MC_RIR_WAY-CH2-7
	MC_RIR-WAY-CH2-8
	MC_RIR-WAY-CH2-9
	MC_RIR_WAY-CH2-10
	MC_RIR-WAY-CH2-11
	MC-RIR-WAY-CH2-12
	MC_RIR_WAY-CH2-13
	MC_RIR-WAY_CH2-14
	$\mathrm{MC}^{-} \mathrm{RIR}^{-} \mathrm{WAY}^{-} \mathrm{CH}^{-1} 15$
	MC_RIR-WAY-CH2-16
	$\mathrm{MC}^{-} \mathrm{RIR}^{-} \mathrm{WAY}^{-} \mathrm{CH}^{-1} 17$
	$\mathrm{MC}^{-} \mathrm{RIR}^{-} \mathrm{WAY}^{-} \mathrm{CH}^{-1} 18$
	MC_RIR-WAY_CH2-19
	$\mathrm{MC}^{-} \mathrm{RIR}^{-} \mathrm{WAY}^{-} \mathrm{CH}_{2}^{-} 20$
	MC_RIR_WAY-CH2-21
	MC_RIR-WAY-CH2-22
	$\mathrm{MC}^{-} \mathrm{RIR}^{-} \mathrm{WAY}^{-} \mathrm{CH}^{-} 23$
	$\mathrm{MC}^{-} \mathrm{RIR}^{-} \mathrm{WAY}^{-} \mathrm{CH2}^{-} 24$
	MC_RIR-WAY_CH2-25
	MC ${ }^{-} \mathrm{RIR}^{-} \mathrm{WAY}^{-} \mathrm{CH}_{2}^{-} 26$
	$\mathrm{MC}^{-} \mathrm{RIR}^{-} \mathrm{WAY}^{-} \mathrm{CH}^{-}{ }^{-} 27$
	MC_RIR-WAY ${ }^{-} \mathrm{CH}_{2}^{-} 28$
	MC-RIR-WAY ${ }^{-} \mathrm{CH}_{2}^{-} 29$
	MC_RIR-WAY-CH2-30
	MC_RIR_WAY_CH2-31

2.18 Memory Thermal Control 118
2.18.1 MC THERMAL CONTROLO MC_THERMAL_CONTROL1 MC_THERMAL_CONTROL2 118
2.18.2 MC THERMAL STATUSO MC_THERMAL_STATUS1 MC_THERMAL_STATUS2 119
2.18.3 MC^{-}THERMAL DEFEATUREO MC_THERMAL_DEFEATURE1 MC_THERMAL_DEFEATURE2 119
2.18.4 MC_{-}^{-}THERMAL_PARAMS_A0 MC_THERMAL_PARAMS_A1 MC_THERMAL_PARAMS_A2 119
2.18.5 MC_THERMAL_PARAMS_B0 MC_THERMAL_PARAMS_B1 MC THERMAL PARAMS B2 120
2.18.6 MC_COOLING_COEFO MC_COOLING_COEF1 MC_COOLING_COEF2 120
2.18.7 MC_CLOSED_LOOPO MC_CLOSED_LOOP1 MC CLOSED LOOP2 121
2.18.8 MC_THROTTLEE_OFFSETO MC_THROTTLE_OFFSET1 MC_THROTTLE_OFFSET2 121
2.18.9 MC_RANK_VIRTUAL_TEMPO MC_RANK_VIRTUAL_TEMP1 MC_RANK_VIRTUAL_TEMP2 122

Tables

2-1 Functions Specifically Handled by the Processor... 22
2-2 Device 0, Function 0: Generic Non-core Registers.. 23
2-3 Device 0, Function 1: System Address Decoder Registers ... 24
2-4 Device 2, Function 0: Intel QPI Link 0 Registers .. 25
2-5 Device 2, Function 1: Intel QPI Physical 0 Registers.. 26
2-6 Device 2, Function 4: Intel QPI Link 1 Registers1... 27
2-7 Device 2, Function 5: Intel QPI Physical 1 Registers... 28
2-8 Device 3, Function 0: Integrated Memory Controller Registers.................................... 29
2-9 Device 3, Function 1: Target Address Decoder Registers.. 30
2-10 Device 3, Function 2: Integrated Memory Controller RAS Registers 31
2-11 Device 3, Function 4: Integrated Memory Controller Test Registers 32

2-13 Device 4, Function 1: Integrated Memory Controller Channel 0
Address Registers.. 34
2-14 Device 4, Function 2: Integrated Memory Controller Channel 0.
2-15 Device 4, Function 3: Integrated Memory Controller Channel 0
Thermal Control Registers .. 36
2-16 Device 5, Function 0: Integrated Memory Controller Channel 1.
2-17 Device 5, Function 1: Integrated Memory Controller Channel 1
Address Registers.. 38
2-18 Device 5, Function 2: Integrated Memory Controller Channel 1.
2-19 Device 5, Function 3: Integrated Memory Controller Channel 1
Thermal Control Registers ... 40
2-20 Device 6, Function 0: Integrated Memory Controller Channel 2.
2-21 Device 6, Function 1: Integrated Memory Controller Channel 2
2-22 Device 6, Function 2: Integrated Memory Controller Channel 2.
2-23 Device 6, Function 3: Integrated Memory Controller Channel 2
Thermal Control Registers .. 44
3-1 Key Parameters for DI MM Configurations 125
3-2 RDIMM Population Configurations within a Channel for Three Slots per Channel 127
3-3 UDIMM Population Configurations within a Channel for Three Slots per Channel 127
3-4 MetaSDRAM* R-DIMM Population Configurations within a Channel for Three Slots per Channel 128
3-5 RDIMM Population Configurations Within a Channel for Two Slots per Channel 129
3-6 UDIMM Population Configurations within a Channel for Two Slots per Channel 129
3-7 MetaSDRAM R-DIMM Population Configurations within a Channel for Two Slots per Channel 129
3-1 DI MM Population within a Channel for Three Slots per Channel 126
3-2 DIMM Population Within a Channel for Two Slots per Channel 128
Figures

Revision History

Reference Number	Revision Number	Description	Date
321322	001	Public release	March 2009
321322	002	Added Chapter 3 "DI MM Population Requirements"	April 2009

§

1 I ntroduction

The Intel ${ }^{\circledR}$ Xeon ${ }^{\circledR}$ Processor 5500 Series is the first generation DP server/workstation processor to implement key new technologies:

- Integrated Memory Controller
- Point-to-point link interface based on Intel \circledR^{\circledR} QuickPath Interconnect (Intel $®$ QPI). Reference to this interface may sometimes be abbreviated with Intel QPI throughout this document.

The processor is optimized for performance with the power efficiencies of a low-power microarchitecture to enable smaller, quieter systems.

This document provides register documentation and functional description of major functional areas of the processor non-core design such as the memory controller and Intel QPI logic, and additional features pertinent to implementation and operation of the processor.

The Intel Xeon Processor 5500 Series are multi-core processors, based on 45 nm process technology. Processor features vary by SKU and include up to two Intel QuickPath Interconnect point to point links capable of up to $6.4 \mathrm{GT} / \mathrm{s}$, up to 8 MB of shared cache, and an integrated memory controller. The processors support all the existing Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3) and Streaming SIMD Extensions 4 (SSE4). The processor supports several Advanced Technologies: Execute Disable Bit, Intel ${ }^{\circledR} 64$ Technology, Enhanced Intel ${ }^{\circledR}$ SpeedStep Technology, Intel ${ }^{\circledR}$ Virtualization Technology (Intel ${ }^{\circledR}$ VT), and Intel ${ }^{\circledR}$ Hyper-Threading Technology.

1.1 Terminology

A '\#' symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low level. For example, when RESET\# is low, a reset has been requested.

1.1.1 Processor Terminology

Commonly used terms are explained here for clarification:

- DDR3 - Double Data Rate 3 synchronous dynamic random access memory (SDRAM) is the name of the new DDR memory standard that is being developed as the successor to DDR2 SDRAM.
- Enhanced Intel SpeedStep ${ }^{\circledR}$ Technology - Enhanced Intel SpeedStep Technology allows trade-offs to be made between performance and power consumption.
- Execute Disable Bit - Execute Disable allows memory to be marked as executable or non-executable, when combined with a supporting operating system. If code attempts to run in non-executable memory the processor raises an error to the operating system. This feature can prevent some classes of viruses or worms that exploit buffer over run vulnerabilities and can thus help improve the overall security of the system. See the Intel ${ }^{\circledR} 64$ and IA-32 Architectures Software Developer's Manual for more detailed information. Refer to http://developer.intel.com/ for future reference on up to date nomenclatures.
- Eye Definitions - The eye at any point along the data channel is defined to be the creation of overlapping of a large number of Unit Interval of the data signal and timing width measured with respect to the edges of a separate clock signal at any other point. Each differential signal pair by combining the D+ and D- signals produces a signal eye.
- 1366-land LGA package - The processor is available in a Land Grid Array (LGA) package, consisting of the processor die mounted on a land grid array substrate with an integrated heat spreader (IHS).
- Functional Operation - Refers to the normal operating conditions in which all processor specifications, including DC, AC, system bus, signal quality, mechanical, and thermal, are satisfied.
- Integrated Memory Controller (IMC) - A memory controller that is integrated in the processor silicon.
- Integrated Heat Spreader (IHS) - A component of the processor package used to enhance the thermal performance of the package. Component thermal solutions interface with the processor at the IHS surface.
- Intel ${ }^{\circledR} 64$ Architecture - An enhancement to Intel's IA-32 architecture, allowing the processor to execute operating systems and applications written to take advantage of Intel 64. Further details on Intel 64 architecture and programming model can be found at http://developer.intel.com/technology/intel64/.
- I ntel ${ }^{\circledR}$ QuickPath I nterconnect - A cache-coherent, link-based interconnect specification for Intel processor, chipset, and I/O bridge components. Sometimes abbreviated as Intel QPI.
- Intel® QPI - Abbreviation for Intel® QuickPath Interconnect.
- Intel ${ }^{\circledR}$ Virtualization Technology (Intel ${ }^{\circledR}$ VT) - A set of hardware enhancements to Intel server and client platforms that can improve virtualization solutions. Intel VT provides a foundation for widely-deployed virtualization solutions and enables more robust hardware assisted virtualization solutions. More information can be found at: http://www.intel.com/technology/virtualization/
- Jitter - Any timing variation of a transition edge or edges from the defined Unit Interval.
- LGA1366 Socket - The processor (in the LGA-1366 package) mates with the system board through this surface mount, 1366-contact socket.
- Mirror Port - Pads located on the top side of the processor package used to provide logic analyzer probing access for Intel QPI signal analysis.
- Non-core - The portion of the processor comprising the shared cache, IMC and Intel QPI Link interface.
- OEM - Original Equipment Manufacturer.
- Storage Conditions - Refers to a non-operational state. The processor may be installed in a platform, in a tray, or loose. Processors may be sealed in packaging or exposed to free air. Under these conditions, processor lands should not be connected to any supply voltages, have any I/Os biased, or receive any clocks.
- Intel Xeon Processor 5500 Series - The 2 S server/workstation product, including processor substrate and integrated heat spreader (IHS).
- Unit Interval (UI) - Signaling convention that is binary and unidirectional. In this binary signaling, one bit is sent for every edge of the forwarded clock, whether it be a rising edge or a falling edge. If a number of edges are collected at instances $t_{1}, t_{2}, t_{n}, \ldots, t_{k}$ then the UI at instance " n " is defined as:

$$
\mathrm{UI}_{\mathrm{n}}=\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{n}-1}
$$

1.2 References

Material and concepts available in the following documents may be beneficial when reading this document:

Table 1-1. References

Document	Reference \#	Notes
InteI® 64 and IA-32 Architectures Software Developer's Manual		1
• Volume 1: Basic Architecture	253665	
- Volume 2A: Instruction Set Reference, A-M	253666	
- Volume 2B: Instruction Set Reference, N-Z	253667	
- Volume 3A: System Programming Guide, Part 1	253668	
- Volume 3B: Systems Programming Guide, Part 2	253669	
Intel® 64 and IA-32 Architectures Optimization Reference Manual	248966	321324
Intel® Xeon® Processor 5500 Series Specification Update	321321	1
Intel® Xeon® Processor 5500 Series Datasheet, Volume 1		

Notes:

1. Document is available publicly at http://www.intel.com.

I ntroduction

2 Register Description

The processor supports PCl configuration space accesses using the mechanism denoted as Configuration Mechanism in the PCI specification as defined in the PCI Local Bus Specification, as well as the PCl Express enhanced configuration mechanism as specified in the PCI Express Base Specification. All the registers are organized by bus, device, function, etc. as defined in the PCI Express Base Specification. All processor registers appear on the PCl bus assigned for the processor socket. Bus number is derived by the max bus range setting and processor socket number. All multi-byte numeric fields use "little-endian" ordering (i.e., lower addresses contain the least significant parts of the field).

As processor features vary by SKU, not all of the register descriptions in this document apply to all processors. This document highlights registers which do not apply to all processor SKUs. Refer to the particular processor's Specification Update for a list of features supported.

2.1 Register Terminology

Registers and register bits are assigned one or more of the following attributes. These attributes define the behavior of register and the bit(s) that are contained with in. All bits are set to default values by hard reset. Sticky bits retain their states between hard resets.

Term	Description
RO	Read Only. If a register bit is read only, the hardware sets its state. The bit may be read by software. Writes to this bit have no effect.
WO	Write Only. The register bit is not implemented as a bit. The write causes some hardware event to take place.
RW	Read/ Write. A register bit with this attribute can be read and written by software.
RC	Read Clear: The bit or bits can be read by software, but the act of reading causes the value to be cleared.
RCW	Read Clear/ Write: A register bit with this attribute will get cleared after the read. The register bit can be written.
RW1C	Read/ Write 1 Clear. A register bit with this attribute can be read or cleared by software. In order to clear this bit, a one must be written to it. Writing a zero will have no effect.
RW0C	Read/ Write 0 Clear. A register bit with this attribute can be read or cleared by software. In order to clear this bit, a zero must be written to it. Writing a one will have no effect.
RW1S	Read/ Write 1 Set: A register bit can be either read or set by software. In order to set this bit, a one must be written to it. Writing a zero to this bit has no effect. Hardware will clear this bit.
RW0S	Read/ Write 0 Set: A register bit can be either read or set by software. In order to set this bit, a zero must be written to it. Writing a one to this bit has no effect. Hardware will clear this bit.
RWL	Read/ Write/ Lock. A register bit with this attribute can be read or written by software. Hardware or a configuration bit can lock the bit and prevent it from being updated.
RWO	Read/ Write Once. A register bit with this attribute can be written to only once after power up. After the first write, the bit becomes read only. This attribute is applied on a bit by bit basis. For example, if the RWO attribute is applied to a bit field, and only one bit is written, then the written bit cannot be rewritten (unless reset). The unwritten bit, of the field, may still be written once. This is special case of RWL.
RRW	Read/ Restricted Write. This bit can be read and written by software. However, only supported values will be written. Writes of non supported values will have no effect.
	Lock. A register bit with this attribute becomes Read Only after a lock bit is set.

Term	\quad Description
RSVD	Reserved Bit. This bit is reserved for future expansion and must not be written. The PCI Local Bus Specification requires that reserved bits must be preserved. Any software that modifies a register that contains a reserved bit is responsible for reading the register, modifying the desired bits, and writing back the result.
Reserved Bits	Some of the processor registers described in this section contain reserved bits. These bits are labeled "Reserved". Software must deal correctly with fields that are reserved. On reads, software must use appropriate masks to extract the defined bits and not rely on reserved bits being any particular value. On writes, software must ensure that the values of reserved bit positions are preserved. That is, the values of reserved bit positions must first be read, merged with the new values for other bit positions and then written back. Note that software does not need to perform a read-merge-write operation for the Configuration Address (CONFIG_ADDRESS) register.
Reserved Registers	In addition to reserved bits within a register, the processor contains address locations in the configuration space that are marked either "Reserved" or "Intel Reserved". The processor responds to accesses to "Reserved" address locations by completing the host cycle. When a "Reserved" register location is read, a zero value is returned. ("Reserved" registers can be 8, 16, or 32 bits in size). Writes to "Reserved" registers have no effect on the processor. Registers that are marked as "Intel Reserved" must not be modified by system software. Writes to "Intel Reserved" registers may cause system failure. Reads to "Intel Reserved" registers may return a non-zero value.
Default Value upon a Reset	Upon a reset, the processor sets all of its internal configuration registers to predetermined default states. Some register values at reset are determined by external strapping options. The default state represents the minimum functionality feature set required to successfully bring up the system. Hence, it does not represent the optimal system configuration. It is the responsibility of the system initialization software (usually BI OS) to properly determine the DRAM configurations, operating parameters and optional system features that are applicable, and to program the processor registers accordingly.

2.2 Platform Configuration Structure

The processor contains 6 PCl devices within a single physical component. The configuration registers for these devices are mapped as devices residing on the PCl bus assigned for the processor socket. Bus number is derived by the max bus range setting and processor socket number.

- Device 0: Generic processor non-core. Device 0, Function 0 contains the generic non-core configuration registers for the processor and resides at DID (Device ID) of 2C40h. Device 0, Function 1 contains the System Address Decode registers and resides at DID of 2C01h.
- Device 2: Intel QPI. Device 2, Function 0 contains the Intel ${ }^{\circledR}$ QuickPath Interconnect configuration registers for Intel QPI Link 0 and resides at DID of 2C10h. Device 2, Function 1 contains the physical layer registers for Intel QPI Link 0 and resides at DID of 2C11h. Device 2, Function 4 contains the Intel® QuickPath configuration registers for Intel ${ }^{\circledR}$ QuickPath Interconnect Link 1 and resides at DID of 2C14h. Device 2, Function 5 contains the physical layer registers for Intel QPI Link 1 and resides at DID of 2C15h. Functions 4 and 5 only apply to processors with two Intel QPI links.
- Device 3: Integrated Memory Controller. Device 3, Function 0 contains the general registers for the Integrated Memory Controller and resides at DID of 2C18h. Device 3, Function 1 contains the Target Address Decode registers for the Integrated Memory Controller and resides at DID of 2C19h. Device 3, Function 2 contains the RAS registers for the Integrated Memory Controller and resides at DID of 2C1Ah. Device 3, Function 4 contains the test registers for the Integrated Memory Controller and resides at DID of 2C1Ch. Function 2 only applies to processors supporting registered DIMMs.
- Device 4: Integrated Memory Controller Channel 0. Device 4, Function 0 contains the control registers for Integrated Memory Controller Channel 0 and resides at

DID of 2C20h. Device 4, Function 1 contains the address registers for Integrated Memory Controller Channel 0 and resides at DID of 2C21h. Device 4, Function 2 contains the rank registers for Integrated Memory Controller Channel 0 and resides at DID of 2C22h. Device 4, Function 3 contains the thermal control registers for Integrated Memory Controller Channel 0 and resides at DID of 2C23h.

- Device 5: Integrated Memory Controller Channel 1. Device 5, Function 0 contains the control registers for Integrated Memory Controller Channel 1 and resides at DID of 2C28h. Device 5, Function 1 contains the address registers for Integrated Memory Controller Channel 1 and resides at DID of 2C29h. Device 5, Function 2 contains the rank registers for Integrated Memory Controller Channel 1 and resides at DID of 2C2Ah. Device 5, Function 3 contains the thermal control registers for Integrated Memory Controller Channel 1 and resides at DID of 2C2Bh.
- Device 6: Integrated Memory Controller Channel 2. Device 6, Function 0 contains the control registers for Integrated Memory Controller Channel 2 and resides at DID of 2C30h. Device 6, Function 1 contains the address registers for Integrated Memory Controller Channel 2 and resides at DID of 2C31h. Device 6, Function 2 contains the rank registers for Integrated Memory Controller Channel 2 and resides at DID of 2C32h. Device 6, Function 3 contains the thermal control registers for Integrated Memory Controller Channel 2 and resides at DID of 2C33h.

2.3 Device Mapping

Each component in the processor is uniquely identified by a PCl bus address consisting of Bus Number, Device Number and Function Number. Device configuration is based on the PCl Type 0 configuration conventions. All processor registers appear on the PCl bus assigned for the processor socket. Bus number is derived by the max bus range setting and processor socket number.

Register Description

Table 2-1. Functions Specifically Handled by the Processor

Component	Register Group	DI D	Device	Function
Processor	Intel ${ }^{8}$ QuickPath Architecture Generic Non-core Registers	2C40h	0	0
	Intel® QuickPath Architecture System Address Decoder	2C01h		1
	Intel QPI Link 0	2C10h	2	0
	Intel QPI Physical 0	2C11		1
	Intel QPI Link 1	2C14h		4^{1}
	Intel QPI Physical 1	2C15h		5^{1}
	Integrated Memory Controller Registers	2C18h	3	0
	Integrated Memory Controller Target Address Decoder	2C19h		1
	Integrated Memory Controller RAS Registers	2C1Ah		2^{2}
	Integrated Memory Controller Test Registers	2C1Ch		4
	Integrated Memory Controller Channel 0 Control	2C20h	4	0
	Integrated Memory Controller Channel 0 Address	2C21h		1
	Integrated Memory Controller Channel 0 Rank	2C22h		2
	Integrated Memory Controller Channel 0 Thermal Control	2C23h		3
	Integrated Memory Controller Channel 1 Control	2C28h	5	0
	Integrated Memory Controller Channel 1 Address	2C29h		1
	Integrated Memory Controller Channel 1 Rank	2C2Ah		2
	Integrated Memory Controller Channel 1 Thermal Control	2C2Bh		3
	Integrated Memory Controller Channel 2 Control	2C30h	6	0
	Integrated Memory Controller Channel 2 Address	2C31h		1
	Integrated Memory Controller Channel 2 Rank	2C32h		2
	Integrated Memory Controller Channel 2 Thermal Control	2C33h		3

Notes

1. Applies only to processors with two Intel QPI links.
2. Applies only to processors supporting mirroring and scrubbing RAS features.

2.4 Detailed Configuration Space Maps

Table 2-2. Device 0, Function 0: Generic Non-core Registers

DID		VID	
PCISTS		PCICMD	
CCR			RID
	HDR		
SID		SVID	
MAXREQUEST_LC			
MAXREQUEST_LS			
MAXREQUEST_LL			
MAX_RTIDS			

00h	DESIRED_CORES	80h
04h		84h
08h	MEMLOCK_STATUS	88h
0Ch		8Ch
10h	MC_CFG_CONTROL	90h
14h		94h
18h		98h
1Ch		9Ch
20h		AOh
24h		A4h
28h		A8h
2 Ch		ACh
30h	POWER_CNTRL_ERR_STATUS	B0h
34h		B4h
38h		B8h
3 Ch		BCh
40h	CURRENT_UCLK_RATIO	COh
44h		C4h
48h		C8h
4Ch		CCh
50h	MIRROR_PORT_CTL	D0h
54h		D4h
58h		D8h
5Ch		DCh
60h	MIP_PH_CTR_LO	EOh
64h	MIP_PH_PRT_LO	E4h
68h		E8h
6Ch		ECh
70h	MIP_PH_CTR_L1	FOh
74h	MIP_PH_PRT_L1	F4h
78h		F8h
7Ch		FCh

Register Description

Table 2-3. Device 0, Function 1: System Address Decoder Registers

Table 2-4. Device 2, Function 0: Intel QPI Link 0 Registers

Register Description

Table 2-5. Device 2, Function 1: Intel QPI Physical 0 Registers

Table 2-6. Device 2, Function 4: Intel QPI Link 1 Registers ${ }^{1}$

Note:

1. Applies only to processors with two Intel QPI links.

Table 2-7. Device 2, Function 5: Intel QPI Physical 1 Registers

Table 2-8. Device 3, Function 0: Integrated Memory Controller Registers

Register Description

Table 2-9. Device 3, Function 1: Target Address Decoder Registers

00h	TAD_DRAM_RULE_0	80h
04h	TAD_DRAM_RULE_1	84h
08h	TAD_DRAM_RULE_2	88h
0Ch	TAD_DRAM_RULE_3	8Ch
10h	TAD_DRAM_RULE_4	90h
14h	TAD_DRAM_RULE_5	94h
18h	TAD_DRAM_RULE_6	98h
1Ch	TAD_DRAM_RULE_7	9Ch
20h		AOh
24h		A4h
28h		A8h
2Ch		ACh
30h		B0h
34h		B4h
38h		B8h
3Ch		BCh
40h	TAD_INTERLEAVE_LIST_0	COh
44h	TAD_INTERLEAVE_LIST_1	C4h
48h	TAD_INTERLEAVE_LIST_2	C8h
4Ch	TAD_INTERLEAVE_LIST_3	CCh
50h	TAD_INTERLEAVE_LIST_4	D0h
54h	TAD_INTERLEAVE_LIST_5	D4h
58h	TAD_INTERLEAVE_LIST_6	D8h
5Ch	TAD_INTERLEAVE_LIST_7	DCh
60h		EOh
64h		E4h
68h		E8h
6Ch		ECh
70h		FOh
74h		F4h
78h		F8h
7Ch		FCh

Table 2-10. Device 3, Function 2: Integrated Memory Controller RAS Registers ${ }^{\mathbf{1}}$

DID	VID	$\begin{aligned} & 00 \mathrm{~h} \\ & 04 \mathrm{~h} \end{aligned}$	MC_COR_ECC_CNT_0	80h
PCISTS	PCICMD		MC_COR_ECC_CNT_1	84h
CCR	RID	08h	MC_COR_ECC_CNT_2	88h
HDR		0Ch	MC_COR_ECC_CNT_3	8Ch
			MC_COR_ECC_CNT_4	90h
		$\begin{aligned} & 10 \mathrm{~h} \\ & 14 \mathrm{~h} \end{aligned}$	MC_COR_ECC_CNT_5	94h
		18h		98h
		1Ch		9Ch
		20h		AOh
		24h		A4h
		28h		A8h
SID	SVID	2 Ch		ACh
		30h		B0h
		34h		B4h
		38h		B8h
		3Ch		BCh
		40h		COh
		44h		C4h
MC_SSRCONTROL		48h		C8h
MC_SCRUB_CONTROL		4Ch		CCh
MC_RAS_ENABLES		50h		DOh
MC_RAS_STATUS		54h		D4h
		58h		D8h
		5Ch		DCh
MC_SSRSTATUS		60h		EOh
		64h		E4h
		68h		E8h
		6Ch		ECh
		70h		FOh
		74h		F4h
		78h		F8h
		7Ch		FCh

Notes:

1. Applies only to processors supporting registered DIMMs .

Register Description

Table 2-11. Device 3, Function 4: Integrated Memory Controller Test Registers

Table 2-12. Device 4, Function 0: Integrated Memory Controller Channel 0 Control Registers

Register Description

Table 2-13. Device 4, Function 1: Integrated Memory Controller Channel 0 Address Registers

Table 2-14. Device 4, Function 2: Integrated Memory Controller Channel 0 Rank Registers

Register Description

Table 2-15. Device 4, Function 3: Integrated Memory Controller Channel 0 Thermal Control Registers

Table 2-16. Device 5, Function 0: Integrated Memory Controller Channel 1 Control Registers

00h	MC_CHANNEL_1_RANK_TIMING_A	80h
04h	MC_CHANNEL_1_RANK_TIMING_B	84h
08h	MC_CHANNEL_1_BANK_TIMING	88h
0Ch	MC_CHANNEL_1_REFRESH_TIMING	8Ch
10h	MC_CHANNEL_1_CKE_TIMING	90h
14h	MC_CHANNEL_1_ZQ_TIMING	94h
18h	MC_CHANNEL_1_RCOMP_PARAMS	98h
1 Ch	MC_CHANNEL_1_ODT_PARAMS1	9Ch
20h	MC_CHANNEL_1_ODT_PARAMS2	AOh
24h	MC_CHANNEL_1_ODT_MATRIX_RANK_0_3_RD	A4h
28h	MC_CHANNEL_1_ODT_MATRIX_RANK_4_7_RD	A8h
2 Ch	MC_CHANNEL_1_ODT_MATRIX_RANK_0_3_WR	ACh
30h	MC_CHANNEL_1_ODT_MATRIX_RANK_4_7_WR	B0h
34h	MC_CHANNEL_1_WAQ_PARAMS	B4h
38h	MC_CHANNEL_1_SCHEDULER_PARAMS	B8h
3 Ch	MC_CHANNEL_1_MAINTENANCE_OPS	BCh
40h	MC_CHANNEL_1_TX_BG_SETTINGS	C0h
44h		C4h
48h	MC_CHANNEL_1_RX_BGF_SETTINGS	C8h
4Ch	MC_CHANNEL_1_EW_BGF_SETTINGS	CCh
50h	MC_CHANNEL_1_EW_BGF_OFFSET_SETTINGS	DOh
54h	MC_CHANNEL_1_ROUND_TRIP_LATENCY	D4h
58h	MC_CHANNEL_1_PAGETABLE_PARAMS1	D8h
5Ch		DCh
60h	MC_TX_BG_CMD_DATA_RATIO_SETTING_CH1	EOh
64h	MC_TX_BG_CMD_OFFSET_SETTINGS_CH1	E4h
68h	MC_TX_BG_DATA_OFFSET_SETTINGS_CH1	E8h
6Ch		ECh
70h	MC_CHANNEL_1_ADDR_MATCH	FOh
74h		F4h
78h	MC_CHANNEL_1_ECC_ERROR_MASK	F8h
7 Ch	MC_CHANNEL_1_ECC_ERROR_INJ ECT	FCh

Register Description

Table 2-17. Device 5, Function 1: Integrated Memory Controller Channel 1 Address Registers

Table 2-18. Device 5, Function 2: Integrated Memory Controller Channel 1 Rank Registers

Register Description

Table 2-19. Device 5, Function 3: Integrated Memory Controller Channel 1 Thermal Control Registers

Table 2-20. Device 6, Function 0: Integrated Memory Controller Channel 2 Control Registers

00h	MC_CHANNEL_2_RANK_TIMING_A	80h
04h	MC_CHANNEL_2_RANK_TIMING_B	84h
08h	MC_CHANNEL_2_BANK_TIMING	88h
0Ch	MC_CHANNEL_2_REFRESH_TIMING	8Ch
10h	MC_CHANNEL_2_CKE_TIMING	90h
14h	MC_CHANNEL_2_ZQ_TIMING	94h
18h	MC_CHANNEL_2_RCOMP_PARAMS	98h
1 Ch	MC_CHANNEL_2_ODT_PARAMS1	9Ch
20h	MC_CHANNEL_2_ODT_PARAMS2	AOh
24h	MC_CHANNEL_2_ODT_MATRIX_RANK_0_3_RD	A4h
28h	MC_CHANNEL_2_ODT_MATRIX_RANK_4_7_RD	A8h
2 Ch	MC_CHANNEL_2_ODT_MATRIX_RANK_0_3_WR	ACh
30h	MC_CHANNEL_2_ODT_MATRIX_RANK_4_7_WR	B0h
34h	MC_CHANNEL_2_WAQ_PARAMS	B4h
38h	MC_CHANNEL_2_SCHEDULER_PARAMS	B8h
3 Ch	MC_CHANNEL_2_MAINTENANCE_OPS	BCh
40h	MC_CHANNEL_2_TX_BG_SETTINGS	C0h
44h		C4h
48h	MC_CHANNEL_2_RX_BGF_SETTINGS	C8h
4Ch	MC_CHANNEL_2_EW_BGF_SETTINGS	CCh
50h	MC_CHANNEL_2_EW_BGF_OFFSET_SETTINGS	DOh
54h	MC_CHANNEL_2_ROUND_TRIP_LATENCY	D4h
58h	MC_CHANNEL_2_PAGETABLE_PARAMS1	D8h
5Ch		DCh
60h	MC_TX_BG_CMD_DATA_RATIO_SETTING_CH2	EOh
64h	MC_TX_BG_CMD_OFFSET_SETTINGS_CH2	E4h
68h	MC_TX_BG_DATA_OFFSET_SETTINGS_CH2	E8h
6Ch		ECh
70h	MC_CHANNEL_2_ADDR_MATCH	FOh
74h		F4h
78h	MC_CHANNEL_2_ECC_ERROR_MASK	F8h
7 Ch	MC_CHANNEL_2_ECC_ERROR_INJ ECT	FCh

Register Description

Table 2-21. Device 6, Function 1: Integrated Memory Controller Channel 2 Address Registers

Table 2-22. Device 6, Function 2: Integrated Memory Controller Channel 2 Rank Registers

Register Description

Table 2-23. Device 6, Function 3: Integrated Memory Controller Channel 2 Thermal Control Registers

2.5 PCI Standard Registers

These registers appear in every function for every device.

2.5.1 VID - Vendor Identification Register

The VID Register contains the vendor identification number. This 16-bit register, combined with the Device Identification Register uniquely identifies the manufacturer of the function within the processor. Writes to this register have no effect.

2.5.2 DID - Device Identification Register

This 16-bit register combined with the Vendor Identification register uniquely identifies the Function within the processor. Writes to this register have no effect. See Table 2-1 for the DID of each processor function.

2.5.3 RID - Revision I dentification Register

This register contains the revision number of the processor. The Revision ID (RID) is a traditional 8-bit Read Only (RO) register located at offset 08h in the standard PCl header of every $\mathrm{PCI} / \mathrm{PCI}$ Express compatible device and function.

2.5.4 CCR - Class Code Register

This register contains the Class Code for the device. Writes to this register have no effect.

Device:	$\begin{aligned} & 0 \\ & 0-1 \\ & 09 h \end{aligned}$		
Function:			
Offset:			
Device:	2		
Function:	0-1, 4-5		
Offset:	09h		
Device:	3		
Function:	0-2, 4		
Offset:	09h		
Device:	4-6		
Function:	0-3		
Offset:	09h		
Bit	Type	Reset Value	Description
23:16	RO	06h	Base Class. This field indicates the general device category. For the processor, this field is hardwired to 06h, indicating it is a "Bridge Device".
15:8	RO	0	Sub-Class. This field qualifies the Base Class, providing a more detailed specification of the device function. For all devices the default is 00 h , indicating "Host Bridge".
7:0	RO	0	Register-Level Programming Interface. This field identifies a specific programming interface (if any), that device independent software can use to interact with the device. There are no such interfaces defined for "Host Bridge" types, and this field is hardwired to 00h.

2.5.5 HDR - Header Type Register

This register identifies the header layout of the configuration space.

Device:	0		
Function:	0-1		
Offset:	OEh		
Device:	2		
Function:	0-1, 4-5		
Offset:	OEh		
Device:	3		
Function:	0-2, 4		
Offset:	OEh		
Device:	4-6		
	0-3		
Function:			
Offset:	OEh		
Bit	Type	Reset Value	Description
7	RO	1	Multi-function Device.
			Selects whether this is a multi-function device, that may have alternative configuration layouts. This bit is hardwired to ' 1 ' for devices in the processor.
6:0	RO	0	Configuration Layout.
			This field identifies the format of the configuration header layout for a PCI-toPCl bridge from bytes 10 h through 3 Fh .

2.5.6 SI D/ SVI D - Subsystem Identity/ Subsystem Vendor I dentification Register

This register identifies the manufacturer of the system. This 32-bit register uniquely identifies any PCl device.

Device: Function: Offset:	$\begin{aligned} & 0 \\ & 0-1 \\ & \text { 2Ch, 2Eh } \end{aligned}$		
Device:		2	
Function:Offset:		0-1, 4-5	
		2Ch, 2Eh	
Device: 3		3	
Function: 0		0-2, 4	
Offset:		2Ch, 2Eh	
Device:		4-6	
Function:		0-3	
Offset: 2		2Ch, 2Eh	
Access as a Dword			
Bit	Type	Reset Value	Description
31:16	RWO	8086h	Subsystem Identification Number: The default value specifies Intel
15:0	RWO	8086h	Vendor I dentification Number. The default value specifies Intel.

2.5.7 PCI CMD - Command Register

This register defines the PCI 3.0 compatible command register values applicable to PCl Express space.

Device: Function: Offset:	0		
	0-1		
	04h		
Device:		2	
Function:	0-1, 4-5		
Offset:	04h		
Device:	3		
Function	0-2, 4		
Offset:	04h		
Device:	4-6		
Function	0-3		
Offset:	04h		
Bit	Type	Reset Value	Description
15:11	RV	0	Reserved. (by PCI SIG)
10	RO	0	I NTxDisable: I nterrupt Disable Controls the ability of the PCI Express port to generate INTx messages. If this device does not generate interrupts then this bit is not implemented and is RO. If this device generates interrupts then this bit is RW and this bit disables the device/function from asserting INTx\#. A value of 0 enables the assertion of its INTx\# signal. A value of 1 disables the assertion of its INTx\# signal. 1: Legacy Interrupt mode is disabled 0: Legacy Interrupt mode is enabled
9	RO	0	FB2B: Fast Back-to-Back Enable This bit controls whether or not the master can do fast back-to-back writes. Since this device is strictly a target this bit is not implemented. This bit is hardwired to 0 . Writes to this bit position have no effect.
8	RO	0	SERRE: SERR Message Enable This bit is a global enable bit for this devices SERR messaging. This host bridge will not implement SERR messaging. This bit is hardwired to 0 . Writes to this bit position have no effect.If SERR is used for error generation, then this bit must be RW and enable/disable SERR signaling.
7	RO	0	I DSELWCC: I DSEL Stepping/ Wait Cycle Control Per PCI 2.3 spec this bit is hardwired to 0 . Writes to this bit position have no effect.
6	RO	0	PERRE: Parity Error Response Enable Parity error is not implemented in this host bridge. This bit is hardwired to " 0 ". Writes to this bit position have no effect.
5	RO	0	VGAPSE: VGA palette snoop Enable This host bridge does not implement this bit. This bit is hardwired to a " 0 ". Writes to this bit position have no effect.
4	RO	0	MWI EN: Memory Write and I nvalidate Enable This host bridge will never issue memory write and invalidate commands. This bit is therefore hardwired to " 0 ". Writers to this bit position will have no effect.
3	RO	0	SCE: Special Cycle Enable This host bridge does not implement this bit. This bit is hardwired to a " 0 ". Writers to this bit position will have no effect.
2	RO	1	BME: Bus Master Enable This host bridge is always enabled as a master. This bit is hardwired to a " 1 ". Writes to this bit position have no effect.
1	RO	1	MSE: Memory Space Enable This host bridge always allows access to main memory. This bit is not implemented and is hardwired to " 1 ". Writes to this bit position have no effect.
0	RO	0	IOAE: Access Enable This bit is not implemented in this host bridge and is hardwired to " 0 ". Writes to this bit position have no effect.

2.5.8 PCI STS - PCI Status Register

The PCl Status register is a 16 -bit status register that reports the occurrence of various error events on this device's PCI interface.

Device: 0			
Function:	0-1		
Offset: 06h			
Device: 2			
Function: 0-1, 4-5			
Offset:			
Device: 3			
Function:			
Offset:			
Device: 4-6			
Function: 0-3			
Offset: 06			
Bit	Type	Reset Value	Description
15	RO	0	Detect Parity Error (DPE)
			The host bridge does not implement this bit and is hardwired to a " 0 ". Writes to this bit position have no effect.
14	RO	0	Signaled System Error (SSE)
			This bit is set to 1 when this device generates an SERR message over the bus for any enabled error condition. If the host bridge does not signal errors using
			this bit, this bit is hardwired to a " 0 " and is read-only. Writes to this bit position have no effect.
13	RO	0	Received Master Abort Status (RMAS)
			This bit is set when this device generates request that receives an Unsupported
			If this device does not receive Unsupported Request completion packets, the bit is hardwired to " 0 " and is read-only. Writes to this bit position have no effect.
12	RO	0	Received Target Abort Status (RTAS)
			This bit is set when this device generates a request that receives a Completer Abort completion packet. Software clears this bit by writing a 1 to it.
			If this device does not receive Completer Abort completion packets, this bit is hardwired to " 0 " and read-only. Writes to this bit position have no effect.
11	RO	0	Signaled Target Abort Status (STAS)
			This device will not generate a Target Abort completion or Special Cycle. This bit is not implemented in this device and is hardwired to a " 0 ". Writes to this bit position have no effect.
10:9	RO	0	DEVSEL Timing (DEVT)
			These bits are hardwired to " 00 ". Writes to these bit positions have no effect. This device does not physically connect to PCI bus X. These bits are set to " 00 "
			(fast decode) so that optimum DEVSEL timing for PCI bus X is not limited by this device.
8	RO	0	Master Data Parity Error Detected (DPD)
			PERR signaling and messaging are not implemented by this bridge, therefore this bit is hardwired to " 0 ". Writes to this bit position have no effect.
7	RO	1	Fast Back-to-Back (FB2B)
			This bit is hardwired to " 1 ". Writes to this bit position have no effect. This device is not physically connected to a PCI bus. This bit is set to 1 (indicating back-to-
			back capabilities) so that the optimum setting for this PCI bus is not limited by this device.
6	RO	0	Reserved
5	RO	0	66 MHz Capable Does not apply to PCI Express. Must be hardwired to " 0 ".

Device:	0		
Function:	0-1		
Offset:	06h		
Device:	2		
Function:	0-1, 4-5		
	06h		
Device:	3		
Function: Offset:	0-2, 4		
	06h		
Device:	4-6		
Function:	0-3		
Offset:	06h		
Bit	Type	Reset Value	Description
4	RO	TBD	Capability List (CLI ST)
			This bit is hardwired to " 1 " to indicate to the configuration software that this device/function implements a list of new capabilities. A list of new capabilities is
			accessed via registers CAPPTR at the configuration address offset 34 h from the start of the PCI configuration space header of this function. Register CAPPTR
			contains the offset pointing to the start address with configuration space of this device where the capability register resides. This bit must be set for a PCl
			If no capability structures are implemented, this bit is hardwired to 0.
3	RO	0	I nterrupt Status:
			If this device generates an interrupt, then this read-only bit reflects the state of the interrupt in the device/function. Only when the Interrupt Disable bit in the
			command register is a 0 and this Interrupt Status bit is a 1 , will the
			device's/function's INTx\# signal be asserted. Setting the Interrupt Disable bit to a 1 has no effect on the state of this bit.
			If this device does not generate interrupts, then this bit is not implemented (RO and reads returns 0).
2:0	RO	0	Reserved

2.6 Generic Non-core Registers

2.6.1 MAXREQUEST_LC

Maximum requests expected from the chipset (number of TAD home trackers allocated to chipset). The maximum RTID value that may be used is one less than this number. Home trackers are allocated in groups of 8 , so bits $2: 0$ of the register may not be written, and bits 5:3 indicate how many groups of 8 are allocated.

Device: 0 Function: 0 Offset: 40h Access as a Dword			
Bit	Type	Reset Value	
$5: 3$	RW	3	VALUE. Maximum TAD requests from chipset (allocated in groups of 8).

2.6.2 MAXREQUEST_LS

Maximum requests expected from the sibling (number of TAD home trackers allocated to sibling). The maximum RTID value that may be used is one less than this number. Home Trackers are allocated in groups of 8 , so bits $2: 0$ of the register may not be written, and bits 5:3 indicate how many groups of 8 are allocated.

Device: 0 Function: 0 Offset: 44h Access as a Dword			
Bit	Type	Reset Value	Description
$5: 3$	RW	2	VALUE. Maximum TAD requests from sibling (allocated in groups of 8).

2.6.3 MAXREQUEST_LL

Maximum requests expected from local accesses (number of TAD home trackers allocated to the local queue). The maximum RTID value that may be used is one less than this number. Home Trackers are allocated in groups of 8, so bits 2:0 of the register may not be written, and bits 5:3 indicate how many groups of 8 are allocated.

Device: 0 Function: 0 Offset: 48h Access as a Dword			
Bit	Type	Reset Value	Description
$5: 3$	RW	3	VALUE. Maximum TAD requests from local accesses (allocated in groups of $8)$.

2.6.4 MAX_RTIDS

Maximum number of RTIDs other homes have. How many requests can this caching agent send to the other home agents. This number is one more than the highest numbered RTID to use. Note these values reset to 2, and need to be increased by BIOS to whatever the home agents can support.

```
Device: 0
```

Function: 0
Offset: 60h
Access as a Dword

Bit	Type	Reset Value	Description
$21: 16$	RW	2	LOCAL_MC. Maximum number of RTIDs for the local home agent.
$13: 8$	RW	2	SI BLI NG. Maximum number of RTIDs for the sibling home agent.
$5: 0$	RW	2	CHI PSET. Maximum number of RTIDs for the IOH home agent.

2.6.5 DESIRED_CORES

Number of cores, threads BIOS wants to exist on the next reset. A processor reset must be used for this register to take affect. Note programing this register to a value higher than the product has cores, should not be done. Which cores are removed is not defined and is implementation dependent. This does not result in all of the power savings of a reduced number of core product, but does save more power than even the deepest sleep state.

Device: Function: 0 Offset: 80h Access as a Dword			
Bit	Type	Reset Value	Description
16	RW1S	0	LOCK. Once written to 1, changes to this register cannot be made.
8	RWL	0	MT_DISABLE. Disables multi-threading (2 logical threads per core) in all cores if set to 1.
$1: 0$	RWL	0	CORE_COUNT. $00:$ max number (default value) $01-1$ core $10-2$ cores

2.6.6 MEMLOCK_STATUS

Status register for various Memory and Control Register functions that can be locked down.

| Device:
 Function: 0
 Offset:
 88h
 Access as a Dword | | | |
| :---: | :---: | :---: | :--- | :--- |
| Bit | Type | Reset
 Value | |
| 9 | RO | - | MEM_LOCKED_REMOTE. Any access to local memory from another agent
 (i.e. everybody but this processor) is aborted. Can only be unlocked when in
 Authenticated Code Mode. |
| 8 | RO | - | MEM_LOCKED_LOCAL. Any Access to local memory from this processor is
 aborted. Can only be unlocked when in Authenticated Code Mode. |
| 1 | RO | - | MEM_CFG_USER_LOCKED. Locks same as MEM_CFG_LOCKED but user
 controlled lockable by MC_CFG_CONTROL; unlockable via MC_CFG_CONTROL
 csr(0x0090). |
| 0 | RO | - | MEM_CFG_LOCKED. All Configuration registers dealing with memory and
 address programming are locked down and cannot be changed. This includes all
 registers in Device 3 Function [0,1], Device 4,5,6 Function 0, Device 4,5,6
 Function 1, Device 4,5,6 Function 2, and most registers in Device 0 Function 1.
 But does not include the memory controller thermal registers, or
 SAD_PAM0123, SAD_PAM456, SAD_SMRAM registers. |

2.6.7 MC_CFG_CONTROL

This register locks and unlocks write access to the Uncore configuration. BIOS must write a " 1 " to the MC_CFG_LOCK bit after reset to allow the Integrated Memory Controller to start accepting requests. It may subsequently be unlocked by writing a " 1 " to the MC_CFG_UNLOCK bit and a " 0 " to the MC_CFG_LOCK bit without affecting memory traffic.

| Device: 0
 Function: 0
 Offset: 90h
 Access as a Dword | | | |
| :---: | :---: | :---: | :--- | :--- |
| Bit | Type | Reset
 Value | |
| 1 | WO | 0 | MC_CFG_UNLOCK. Unlocks Integrated Memory Controller configuration
 registers without CPU reset. This bit does NOT unlock any other lock type
 without a CPU reset. |
| 0 | WO | 0 | MC_CFG_LOCK. Locks Integrated Memory Controller configuration registers.
 Writes are no longer allowed to the configuration registers. |

2.6.8 POWER_CNTRL_ERR_STATUS

Power management Error Status register.

Device: Function: Offset: Access as	```O BOh a Qword```		
Bit	Type	Reset Value	Description
63	RO	-	VAL. MC7_STATUS Register Valid. Indicates if the register is valid. 0: Not Valid 1: Valid
62	RO	-	OVER. Machine Check Overflow Flag. Indicates (when set) that a machine-check error occurred while the results of a previous error were still in the error-reporting register bank (that is, the VAL bit was already set in the IA32_MC7_STATUS register). The processor sets the OVER flag and software is responsible for clearing it. In general, enabled errors are written over disabled errors, and uncorrected errors are written over corrected errors. Uncorrected errors are not written over previous valid uncorrected errors. 0: No Overflow 1: Overflow
61	RO	-	UC. Error Uncorrected Flag. Indicates (when set) that the processor did not or was not able to correct the error condition. When cleared, this flag indicates that the processor was able to correct the error condition. 0: Corrected 1: Uncorrected
60	RO	-	EN. Error Enabled Flag. Indicates (when set) that the error was enabled by the associated EEj bit of the IA32_MC7_CTL register. 0: Not Enabled 1: Enabled

Device: Function: Offset: Access as	$\begin{aligned} & 0 \\ & 0 \\ & \text { BOh } \\ & \text { a Qword } \end{aligned}$		
59	RO	-	MISCV. I A32_MC7_MISC. Register Valid Flag. Indicates (when set) that the IA32_MC7_MISC register contains additional information regarding the error. When clear, this flag indicates that the IA32_MC7_MISC register is either not implemented or does not contain additional information regarding the error. Do not read these registers if they are not implemented in the processor.
58	RO	-	ADDRV. I A32_MC7_ADDR. Register Valid Flag. Indicates (when set) that the IA32_MC7_ADDR register contains the address where the error occurred. When clēar, this flag indicates that the IA32_MC7_ADDR register is either not implemented or does not contain the address where the error occurred. Do not read these registers if they are not implemented in the processor.
57	RO	-	PCC. Processor context corrupt flag. Indicates (when set) that the state of the processor might have been corrupted by the error condition detected and that reliable restarting of the processor may not be possible. When cleared, this flag indicates that the error did not affect the processor's state. 0: Not Corrupt 1: Corrupt
56:32	-	-	RSVD.
31:16	RO	-	MODEL SPECI FIC ERROR CODE. Specifies the model specific error code that uniquely identifies the machine-check error condition detected. The following list describes the error codes that may be found on the processor. 0x0000: No Error 0x0300: Unexpected reset error. Processor boot failed. 0x0800: PMReq or CmpD received was illegal in the current context. 0x0A00: Illegal PMReq request detected under S3, S4 or S5. 0x0D00: Invalid S-state transition requested. 0x1100: Platform / CPU VID controller mismatch. Processor boot failed. 0x1A00: Platform / CPU MSID mismatch. Processor boot failed. 0x2000: QPI training error.
15:0	RO	-	MCA ERROR CODE FIELD. Specifies the machine-check architecturedefined error code for the machine-check error condition detected. The machine-check architecture-defined error codes are guaranteed to be the same for all IA- 32 processors that implement the machine-check architecture. See Section 14.7 of the Software Developers Manual, Vol 3A, "Interpreting the MCA Error Codes," and Appendix E, "Interpreting Machine-Check Error Codes", for information on machine-check error codes.

2.6.9 CURRENT_UCLK_RATIO

Status Register reporting the current Uncore Clk Ratio relative to BCLK (133Mhz). This is the clock in which the Last Level Cache (LLC) runs.

| Device:
 Function: 0
 Offset:
 Access as a Dword | | | |
| :---: | :---: | :---: | :--- | :--- |
| Bit | Type | Reset
 Value | |
| 15 | RW | 0 | RSVD. |
| $14: 8$ | RW | 12 | RSVD. |
| $6: 0$ | RO | - | UCLK. The current UCLK ratio |

2.6.10 MI RROR_PORT_CTL

Mirror Port physical layer control register.

Device: Function: Offset: Access as	Oh Dwor		
Bit	Type	Reset Value	Description
7	RW	0	SPARE. Spare MiP control register bits.
6	RW	0	DSBL_ENH_MPRX_SYNC. When set, it disables the enhancing synchronization scheme for the MiP_Rx.
5	RW	0	MI P_GO_10. When set, the Mip_Tx and Mip_Rx go to LO directly from Config_FlítLock.
4	RW	0	MI P_RX_CRC_SQUASH. When set, replaces CRC errors with CRC special packēt on MiP Rx.
3	RW	0	MI P_RX_PORT_SEL. Port select for MiP Rx. _PORT_SELO=QPI Port 0. POR̄T_SEL1=QP̄I Port 1.
2	RW	0	MI P_TX_PORT_SEL. Port select for MiP Tx. _PORT_SELO=QPI Port 0. PORT_ SEL1=QPI Port 1.
1	RW	1	MI P_RX_ENABLE. Enables the Rx portion of the mirror port.
0	RW	1	MI P_TX_ENABLE. Enables the Tx portion of the mirror port.

2.6.11 MIP_PH_CTR_LO
 MI P_ $\mathbf{P H}_{-}^{-} \mathbf{C T R}_{-}^{-}$L1

Mirror Port Physical Layer Control Register.

Device: Function: Offset: Access as a Dw, FOh and			
Bit	Type	Reset Value	
27	RW	0	LA_LOAD_DI SABLE. Disables the loading of the effective values of the Intel® QuickPath CSRs when set.
23	RW	0	ENABLE_PRBS. Enables LFSR pattern during bitlock/training.
22	RW	0	ENABLE_SCRAMBLE. Enables data scrambling through LFSR.
14	RW	1	DETERMI NISM_MODE. Sets determinism mode of operation.
13	RW	1	DISABLE_AUTO_COMP. Disables automatic entry into compliance.
12	RW	0	INIT_FREEZE. When set, freezes the FSM when initialization aborts.
$10: 8$	RW	0	I NIT_MODE. Initialization mode that determines altered initialization modes.
7	RW	0	LI NK_SPEED. Identifies slow speed or at-speed operation for the Intel QPI port.
5	RW	1	PHYI NITBEGI N. Instructs the port to start initialization.
4	RW	0	SI NGLE_STEP. Enables single step mode.
3	RW	0	LAT_FIX_CTL. If set, instructs the remote agent to fix the latency.
2	RW	0	BYPASS_CALI BRATI ON. Indicates the physical layer to bypass calibration.

Device: Function: Offset: EOh, FOh Access as a Dword Bit Type Reset Value Description 1 RW 0 RESET_MODI FI ER. Modifies soft reset to default reset when set. 0 RW1S 0 PHY_RESET. Physical Layer Reset. Note while this register is locked after going to FAST speed L0, this bit is not locked.

2.6.12 MIP PH_PRT_LO

MI P_PH_PRT_L1
Mirror Port periodic retraining timing register.

Device: Function: 0 Offset: E4h, F4h Access as a Dword			
Bit	Type	Reset Value	
21:16	RW	29	RETRAI N_PKT_CNT. Retraining packet count.
$13: 10$	RW	11	EXP_RETRAI N_I NTERVAL. Exponential count for retraining interval.
$7: 0$	RW	3	RETRAI N_I NTERVAL. Periodic retraining interval. A value of 0 indicates retraining is disabled.

2.7 SAD - System Address Decoder Registers

2.7.1 SAD_PAM0123

Register for legacy dev0func0 90h-93h address space.

Device: Functio Offset: Access	$\begin{aligned} & 0 \\ & 1 \\ & 40 h \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
29:28	RW	0	PAM3_HIENABLE. OD4000-0D7FFF Attribute (HIENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0D4000 to 0D7FFF. 00: DRAM Disabled: All accesses are directed to ESI. 01: Read Only: All reads are sent to DRAM. All writes are forwarded to ESI. 10: Write Only: All writes are send to DRAM. Reads are serviced by ESI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM.
25:24	RW	0	PAM3_LOENABLE. OD0000-0D3FFF Attribute (LOENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0D0000 to 0D3FFF 00: DRAM Disabled: All accesses are directed to ESI. 01: Read Only: All reads are sent to DRAM. All writes are forwarded to ESI. 10: Write Only: All writes are send to DRAM. Reads are serviced by ESI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM.

Device: 0
Function: 1
Offset: 40h
Access as a Dword

Bit	Type	Reset Value	Description
21:20	RW	0	PAM2_HIENABLE. OCC000-0CFFFF Attribute (HIENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0CC000 to OCFFFF. 00: DRAM Disabled: All accesses are directed to ESI. 01: Read Only: All reads are sent to DRAM. All writes are forwarded to ESI. 10: Write Only: All writes are send to DRAM. Reads are serviced by ESI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM.
17:16	RW	0	PAM2_LOENABLE. 0C8000-0CBFFF Attribute (LOENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0C8000 to OCBFFF. 00: DRAM Disabled: All accesses are directed to ESI. 01: Read Only: All reads are sent to DRAM. All writes are forwarded to ESI. 10: Write Only: All writes are send to DRAM. Reads are serviced by ESI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM.
13:12	RW	0	PAM1_HIENABLE. 0C4000-0C7FFF Attribute (HIENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0C4000 to 0C7FFF. 00: DRAM Disabled: All accesses are directed to ESI. 01: Read Only: All reads are sent to DRAM. All writes are forwarded to ESI. 10: Write Only: All writes are send to DRAM. Reads are serviced by ESI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM.
9:8	RW	0	PAM1_ LOENABLE. 0C0000-0C3FFF Attribute (LOENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0C0000 to 0C3FFF. 00: DRAM Disabled: All accesses are directed to ESI. 01: Read Only: All reads are sent to DRAM. All writes are forwarded to ESI. 10: Write Only: All writes are send to DRAM. Reads are serviced by ESI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM.
5:4	RW	0	PAMO_HI ENABLE. OF0000-OFFFFF Attribute (HIENABLE) This field controls the steering of read and write cycles that address the BIOS area from OF0000 to OFFFFF. 00: DRAM Disabled: All accesses are directed to ESI. 01: Read Only: All reads are sent to DRAM. All writes are forwarded to ESI. 10: Write Only: All writes are send to DRAM. Reads are serviced by ESI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM.

2.7.2 SAD_PAM456

Register for legacy dev0func0 94h-97h address space.

Device: Function Offset: Access	$44 \mathrm{~h}$ Dword		
Bit	Type	Reset Value	Description
21:20	RW	0	PAM6_HIENABLE. OEC000-0EFFFF Attribute (HIENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0EC000 to OEFFFF. 00: DRAM Disabled: All accesses are directed to ESI. 01: Read Only: All reads are sent to DRAM. All writes are forwarded to ESI. 10: Write Only: All writes are send to DRAM. Reads are serviced by ESI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM.
17:16	RW	0	PAM6_LOENABLE. 0E8000-0EBFFF Attribute (LOENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0E8000 to 0EBFFF. 00: DRAM Disabled: All accesses are directed to ESI. 01: Read Only: All reads are sent to DRAM. All writes are forwarded to ESI. 10: Write Only: All writes are send to DRAM. Reads are serviced by ESI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM.
13:12	RW	0	PAM5_HIENABLE. 0E4000-0E7FFF Attribute (HIENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0E4000 to 0E7FFF. 00: DRAM Disabled: All accesses are directed to ESI. 01: Read Only: All reads are sent to DRAM. All writes are forwarded to ESI. 10: Write Only: All writes are send to DRAM. Reads are serviced by ESI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM.
9:8	RW	0	PAM5_LOENABLE. 0E0000-0E3FFF Attribute (LOENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0E0000 to 0E3FFF. 00: DRAM Disabled: All accesses are directed to ESI. 01: Read Only: All reads are sent to DRAM. All writes are forwarded to ESI. 10: Write Only: All writes are send to DRAM. Reads are serviced by ESI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM.
5:4	RW	0	PAM4_HIENABLE. ODC000-0DFFFF Attribute (HIENABLE) This field controls the steering of read and write cycles that address the BIOS area from ODC000 to ODFFFF. 00: DRAM Disabled: All accesses are directed to ESI. 01: Read Only: All reads are sent to DRAM. All writes are forwarded to ESI. 10: Write Only: All writes are send to DRAM. Reads are serviced by ESI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM.
1:0	RW	0	PAM4_LOENABLE. 0D8000-0DBFFF Attribute (LOENABLE) This field controls the steering of read and write cycles that address the BIOS area from OD8000 to ODBFFF. 00: DRAM Disabled: All accesses are directed to ESI. 01: Read Only: All reads are sent to DRAM. All writes are forwarded to ESI. 10: Write Only: All writes are send to DRAM. Reads are serviced by ESI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM.

2.7.3 SAD_HEN

Register for legacy Hole Enable.

Device: 0 Function: Offset: 48h Access as a Dword			
Bit	Type	Reset Value	Description
7	RW	0	HEN. This field enables a memory hole in DRAM space. The DRAM that lies "behind" this space is not remapped. $0:$ No Memory hole. 1: Memory hole from 15 MB to 16MB.

2.7.4 SAD_SMRAM

Register for legacy 9Dh address space. Note both IOH and non-core have this now.

Device: Function: Offset: Access as	$\begin{aligned} & 0 \\ & 1 \\ & 4 \mathrm{Ch} \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
14	RW	0	SMM Space Open (D_OPEN). When D_OPEN=1 and D_LCK=0, the SMM space DRAM is made visible even when $\overline{\mathrm{S}} \mathrm{MM}$ decode is not active. This is intended to help BIOS initialize SMM space. Software should ensure that $D_{-} O P E N=1$ and $D_{-} C L S=1$ are not set at the same time.
13	RW	0	SMM Space Closed (D_CLS). When D_CLS = 1 SMM space DRAM is not accessible to data references, even if SMM decode is active. Code references may still access SMM space DRAM. This will allow SMM software to reference through SMM space to update the display even when SMM is mapped over the VGA range. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time.
12	RW1S	0	SMM Space Locked (D_{-}LCK). When D_LCK is set to 1 then D_OPEN is reset to 0 and D_LCK, D_OPEN, C_BASE_SEG, G_SMRAME, PCIEXBAR, (DRAM_RULEs añ INTE $\bar{R} L E A V E$ _LİSTs) become read only. D_LCK can be set to 1 viā a normal configuration space write but can only be cleared by a Reset. The combination of D_LCK and D_OPEN provide convenience with security. The BIOS can use the D_OPEN function to initialize SMM space and then use D_LCK to "lock down" $\overline{\mathrm{M} M}$ space in the future so that no application software (or BIOS itself) can violate the integrity of SMM space, even if the program has knowledge of the D_OPEN function. Note that TAD does not implement this lock.
11	RW	0	Global SMRAM Enable (G_SMRAME). If set to a 1, then Compatible SMRAM functions are enabled, providing 128 KB of DRAM accessible at the A0000h address while in SMM (ADSB with SMM decode). To enable Extended SMRAM function this bit has to be set to 1 . Once D_{-}LCK is set, this bit becomes read only.
10:8	RO	-	Compatible SMM Space Base Segment (C_BASE_SEG). This field indicates the location of SMM space. SMM DRAM is not remapped. It is simply made visible if the conditions are right to access SMM space, otherwise the access is forwarded to HI. Only SMM space between A0000 and BFFFF is supported so this field is hardwired to 010.

2.7.5 SAD_PCI EXBAR

Global register for PCIEXBAR address space.

Device: Functio Offset: Access	$\begin{aligned} & 0 \\ & 1 \\ & 50 h \\ & \text { a Qword } \end{aligned}$		
Bit	Type	Reset Value	Description
39:20	RW	0	ADDRESS. Base address of PCIEXBAR. Must be naturally aligned to size; low order bits are ignored.
3:1	RW	0	SIZE. Size of the PCIEXBAR address space. (MAX bus number). 000: 256MB. 001: Reserved. 010: Reserved. 011: Reserved. 100: Reserved. 101: Reserved. 110: 64MB. 111: 128MB.
0	RW	0	ENABLE. Enable for PCIEXBAR address space. Editing size should not be done without also enabling range.

2.7 .6

SAD DRAM rules. Address Map for package determination.

Device Functi Offset: Access	```0 1 80h, 84h, 88h, 8Ch, 90h, 94h, 98h, 9Ch a Dword```		
Bit	Type	Reset Value	Description
19:6	RW	-	LI MI T. DRAM rule top limit address. Must be strictly greater than previous rule, even if this rule is disabled, unless this rule and all following rules are disabled. Lower limit is the previous rule (or 0 if it is first rule). This field is compared against MA[39:26] in the memory address map.
2:1	RW	-	MODE. DRAM rule interleave mode. If a DRAM_RULE hits a 3 bit number is used to index into the corresponding interleave_list to determine which package the DRAM belongs to. This mode selects how that number is computed. 00: Address bits $\{8,7,6\}$. 01: Address bits $\{8,7,6\}$ XORed with $\{18,17,16\}$. 10: Address bit \{6\}, MOD3(Address[39..6]). (Note 6 is the high order bit) 11: Reserved.
0	RW	0	ENABLE. Enable for DRAM rule. If Enabled Range between this rule and previous rule is Directed to HOME channel (unless overridden by other dedicated address range registers). If disabled, all accesses in this range are directed in MMIO to the IOH.

2.7.7 SAD_INTERLEAVE_LIST_0

SAD_I ${ }^{-1}$ NTERLEAVE_LIST- 1
SAD_I ${ }^{-} \mathrm{NTERLEAVE}_{-}^{-}$LIST- 2

SAD_INTERLEAVE-니ST-4
SAD_I NTERLEAVE_LIST- 5
SAD_I NTERLEAVE-LIST- 6
SAD_INTERLEAVE_LIST_7
SAD DRAM package assignments. When the corresponding DRAM_RULE hits, a 3 -bit number (determined by mode) is used to index into the interleave_list to determine which package is the HOME for this address.

00: IOH
01: Socket 0
10: Socket 1
11: Reserved

Device: Function: Offset: Access as a Dword			
Bit	Type	Reset Value	
$29: 28$	RW	-	PACKAGE7. Package for index value 7 of interleaves.
$25: 24$	RW	-	PACKAGE6. Package for index value 6 of interleaves.
$21: 20$	RW	-	PACKAGE5. Package for index value 5 of interleaves.
$17: 16$	RW	-	PACKAGE4. Package for index value 4 of interleaves.
$13: 12$	RW	-	PACKAGE3. Package for index value 3 of interleaves.
$9: 8$	RW	-	PACKAGE2. Package for index value 2 of interleaves.
$5: 4$	RW	-	PACKAGE1. Package for index value 1 of interleaves.
$1: 0$	RW	-	PACKAGE0. Package for index value 0 of interleaves.

2.8 Intel QPI Link Registers

2.8.1 QPI_QPI LCP_LO

 QPI_ QPI LCP_- L1Intel QPI Link Capability. Function 4 in the below table applies only to processors with two Intel QPI links.

```
Device: 2
Function: 0,4
```

Offset: 40h
Access as a Dword

Bit	Type	Reset Value	Description
$27: 26$	RO	-	VNO_CRDTS_DATA. VNO Credits per Data MC $00-0$ credits $01-1$ $10-2$ to 8 $11-$ RSVD

Device: 2 Function: 0, 4 Offset: 40h Access as a Dword			
Bit	Type	Reset Value	Description
23:22	RO	-	VNO_CRDTS_NDATA. VNO Credits per Non-Data MC 00-0 credits $01-1$ $10-2 \text { to } 8$ $11 \text { - RSVD }$
21:16	RO	-	VNA_CRDTS. VNA Credits / 8, after rounding down.
11	RO	-	CRC_SUPPORT. CRC Mode Support. $\begin{aligned} & 0-8 \mathrm{~b} \text { CRC. } \\ & 1 \text {-RSVD } \end{aligned}$
9:8	RO	-	FLIT_I NTERLEAVE. Flit Interleave. 00 - Idle/Null flit only. 01 - Command Insert Interleave. 10 - RSVD. 11 - RSVD.
7:0	RO	-	QPI_VER. Intel QPI Version Number $\begin{aligned} & 0-\operatorname{Rev} 1.0 \\ & \text { ! - RSVD. } \end{aligned}$

2.8.2 QPI_QPILCL_LO QPI_QPI LCL_ L1

Intel QPI Link Control.

Devic Funct Offse Acces	$\begin{aligned} & 2 \\ & 0,4 \\ & 48 \mathrm{~h} \\ & \text { s a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
21	RW	0	L1_MASTER. Indicates that this end of the link is the L1 master. This link transmitter bit is an L1 power state master and can initiate an L1 power state transition. If this bit is not set, then the link transmitter is an L1 power state slave and should respond to L1 transitions with an ACK or NACK. If the link power state of L 1 is enabled, then there is one master and one slave per link. The master may only issue single L1 requests, while the slave can only issue single L1_Ack or L1_NAck responses for the corresponding request.
20	RW	0	L1_ENABLE. Enables L1 mode at the transmitter. This bit should be ANDed with the receive L1 capability bit received during parameter exchange to determine if a transmitter is allowed to enter into L1. This is NOT a bit that determines the capability of a device.
18	RW	0	LOS_ENABLE. Enables LOs mode at the transmitter. This bit should be ANDed with the receive LOs capability bit received during parameter exchange to determine if a transmitter is allowed to enter into LOs. This is NOT a bit that determines the capability of a device.

2.8.3 QPI QPILS LO

QPI_-QPILS_L1
Intel QPI Link Status.

Device: 2,
Function: 0,4
Function: 0,4
Offset: 50 h
Access as a Dword

Bit	Type	Reset Value	Description
31	RO	-	CHI PSET_LINK. Indicates that the local physical link is connected to the IOH.

2.8.4 QPI_DEF_RMT_VN_CREDITS_LO

 QPI_DEF_RMT_VN_CREDITS_L1This is the control register that houses the default values of available remote credits to be transmitted to the remote agent for the remote Tx use.

Device: 2 Function: 0, Offset: Access as a Dword Act	Type	Reset Value	
Bit			
$18: 12$	RW	100	VNA. VNA Credits.
$11: 10$	RW	1	NCS. NCS Channel VN0 Credits.
$9: 8$	RW	1	NCB. NCB Channel VN0 Credits.
$7: 6$	RW	1	DRS. DRS Channel VN0 Credits.
$5: 4$	RW	1	NDR. NDRChannel VNO Credits.
$3: 2$	RW	1	SNP. SNP Channel VNO Credits.
$1: 0$	RW	1	HOM. HOMChannel VNO Credits.

2.8.5 QPI_RMT_QPI LPO_STAT_LO

 QPI_RMT_ QPI LPO_STAT_L1Remote's QPI Parameter 0 Value register.

Device: Function: 0, Offset: COh Access as a Dword			
Bit	Type	Reset Value	
$23: 16$	RO	-	LLR_WRAP_VALUE. Value after which the LLR sequence counter wraps.
$14: 8$	RO	-	Nodel D_OFFSET. Node ID offset for the sending agent.
$7: 5$	RO	-	Nodel D. Number of Node IDs of the transmitting agent.
$4: 0$	RO	-	PORT_NUMBER. Sender's port number.

2.8.6 QPI_RMT_QPILP1_STAT_LO QPI__RMT_QPILP1_ STAT_L1

Remote's QPI Parameter 1 Value register.

2.8.7 QPI_RMT_QPILP2_STAT_LO QPI_RMT_ QPI LP2_ STAT_L1

Remote's QPI Parameter 2 Value register.

Device: Function: Offset: C8h Access as a Dword			
Bit	Type	Reset Value	
31	RO	-	Agent_000_Caching. Indicates agent 000 is a caching agent.
30	RO	-	Agent_000_Home. Indicates agent 000 is a home agent.
29	RO	-	Agent_000_IO_Proxy. Indicates agent 000 is an IO Proxy agent.
28	RO	-	RSVD.
26	RO	-	Agent_000_Router. Indicates agent 000 is a router agent.
25	RO	-	Agent_000_Firmware. Indicates agent 000 is a firmware agent.
24	RO	-	Agent_000_Config. Indicates agent 000 is a configuration agent.
23	RO	-	Agent_001_Caching. Indicates agent 001 is a caching agent.
22	RO	-	Agent_001_Home. Indicates agent 001 is a home agent.
21	RO	-	Agent_001_IO_Proxy. Indicates agent 001 is an IO Proxy agent.

Device: 2
Function: 0, 4
Offset: C8h
Access as a Dword

Bit	Type	Reset Value	Description
20	RO	-	RSVD.
18	RO	-	Agent_001_Router. Indicates agent 001 is a router agent.
17	RO	-	Agent_001_Firmware. Indicates agent 001 is a firmware agent.
16	RO	-	Agent_001_Config. Indicates agent 001 is a configuration agent.
15	RO	-	Agent_010_Caching. Indicates agent 010 is a caching agent.
14	RO	-	Agent_010_Home. Indicates agent 010 is a home agent.
13	RO	-	Agent_010_IO_Proxy. Indicates agent 010 is an IO Proxy agent.
12	RO	-	RSVD.
10	RO	-	Agent_010_Router. Indicates agent 010 is a router agent.
9	RO	-	Agent_010_Firmware. Indicates agent 010 is a firmware agent
8	RO	-	Agent_010_Config. Indicates agent 010 is a configuration agent.
7	RO	-	Agent_011_Caching. Indicates agent 011 is a caching agent.
6	RO	-	Agent_011_Home. Indicates agent 011 is a home agent.
5	RO	-	Agent_011_IO_Proxy. Indicates agent 011 is an IO Proxy agent.
4	RO	-	RSVD.
2	RO	-	Agent_011_Router. Indicates agent 011 is a router agent.
1	RO	-	Agent_011_Firmware. Indicates agent 011 is a firmware agent.
0	RO	-	Agent_011_Config. Indicates agent 011 is a configuration agent.

2.8.8 QPI_RMT_QPILP3_STAT_LO

QPI_RMT_QPI LP3_STAT_L1
Remote's QPI Parameter 3 Value register.

Device: Function: 0, Offset: Access as a Dword Ach			
Bit	Type	Reset Value	
31	RO	-	Agent_100_Caching. Indicates agent 100 is a caching agent.
30	RO	-	Agent_100_Home. Indicates agent 100 is a home agent.
29	RO	-	Agent_100_IO_Proxy. Indicates agent 100 is an IO Proxy agent.
28	RO	-	RSVD.
26	RO	-	Agent_100_Router. Indicates agent 100 is a router agent.
25	RO	-	Agent_100_Firmware. Indicates agent 100 is a firmware agent.
24	RO	-	Agent_100_Config. Indicates agent 100 is a configuration agent.
23	RO	-	Agent_101_Caching. Indicates agent 101 is a caching agent.
22	RO	-	Agent_101_Home. Indicates agent 101 is a home agent.
21	RO	-	Agent_101_IO_Proxy. Indicates agent 101 is an IO Proxy agent.
20	RO	-	RSVD.

Device: 2 Function: 0, 4 Offset: CCh Access as a Dword			
Bit	Type	Reset Value	Description
18	RO	-	Agent_101_Router. Indicates agent 101 is a router agent.
17	RO	-	Agent_101_Firmware. Indicates agent 101 is a firmware agent.
16	RO	-	Agent_ 101_ Config. Indicates agent 101 is a configuration agent.
15	RO	-	Agent_110_Caching. Indicates agent 110 is a caching agent.
14	RO	-	Agent_ 110_Home. Indicates agent 110 is a home agent.
13	RO	-	Agent_110_IO_Proxy. Indicates agent 110 is an IO Proxy agent.
12	RO	-	RSVD.
10	RO	-	Agent_110_Router. Indicates agent 110 is a router agent.
9	RO	-	Agent_110_Firmware. Indicates agent 110 is a firmware agent
8	RO	-	Agent_110_Config. Indicates agent 110 is a configuration agent.
7	RO	-	Agent_111_Caching. Indicates agent 111 is a caching agent.
6	RO	-	Agent_111_Home. Indicates agent 111 is a home agent.
5	RO	-	Agent_111_IO_Proxy. Indicates agent 111 is an IO Proxy agent.
4	RO	-	RSVD.
2	RO	-	Agent_111_Router. Indicates agent 111 is a router agent.
1	RO	-	Agent_111_Firmware. Indicates agent 111 is a firmware agent.
0	RO	-	Agent_111_Config. Indicates agent 111 is a configuration agent.

2.9 I ntel QPI Physical Layer Registers

2.9.1 QPI 0 PH CPR
 $\mathbf{Q P I}_{-}^{-1} \mathbf{1}_{-}^{-} \mathrm{PH}_{-}^{-} \mathbf{C P R}$

Intel QPI Physical Layer Capability Register.

Device: Functio Offset: Access	$\begin{aligned} & 2 \\ & 1,5 \\ & 68 \mathrm{~h} \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
29	RO	-	LFSR_POLYNOMI AL. Agent's ITU polynomial capability for loopback.
28:24	RO	-	NUMBER_OF_TX_LANES. Number of Tx lanes with which an implementation can operate for full width. Bit 28 - If set, 20 lanes. The bit indicating the maximum lanes will determine the number of control/status bits implemented in Tx/Rx Data lane Control/Status Registers.
23	RO	-	PRBS_CAPABILITY. If set, implementation is capable of using specified pattern in bitlock/retraining.
22	RO	-	SCRAMBLE_CAPABILITY. If set, implementation is capable of data scrambling/descrambling with LFSR.

Device: 2
Function: 1, 5
Offset: 68h
Access as a Dword

Bit	Type	Reset Value	Description
$21: 20$	RO	-	RAS_CAPABILITY. Any of these bits set indicates Alternate Clock RAS capability available and that corresponding control bits in QPI_*_PH_CTR are implemented.
$17: 16$	RO	-	DETERMI NI SM_SUPPORT. Determinism supported mode of operations. Bit17: If set, Master mode of operation supported. Component Specification or equivalent document should contain the information about PhyL0Synch.
Bit16: If set, Slave mode of operation supported.			

2.9.2 QPI_O_PH_CTR
 QPI__1_PH_CTR

Intel QPI Physical Layer Control Register.

Device: Functio Offset: Access	$\begin{aligned} & 2 \\ & 1,5 \\ & \text { 6Ch } \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
27	RW	0	LA_LOAD_DISABLE. Disables the loading of the effective values of the Intel QPI CSRs when set.
23	RW	0	ENABLE_PRBS. Enables LFSR pattern during bitlock/training. 1 - use pattern in bitlock/retraining. 0 - use clock pattern for bitlock/retraining.
22	RW	0	ENABLE_SCRAMBLE. Enables data scrambling through LFSR. 1 - data scrambled/descrambled with LFSR 0 - data not scrambled/descrambled.
15:14	RW	2	DETERMI NISM_MODE. Sets determinism mode of operation. 00 - Non-deterministic initialization. 01 - Slave mode initialization. 10 - Master mode of initialization - valid only if a component can generate its PhyLOSynch.
13	RW	1	DI SABLE_AUTO_COMP. Disables automatic entry into compliance. 0 - path from detect.clkterm to compliance is allowed. 1 - path from detect.clkterm to compliance is disabled.
12	RW	0	INIT_FREEZE. When set, freezes the FSM when initialization aborts.

Device: Function: Offset: Access as a Dword Ach			
Bit	Type	Reset Value	
11	RW	0	DI SABLE_ISI_CHECK. Defeature mode to disable ISI checking during Polling.LaneDeskew state.
$10: 8$	RW	0	I NIT_MODE. Initialization mode that determines altered initialization modes.
7	RW	0	LI NK_SPEED. Identifies slow speed or at-speed operation for the Intel QPI port. 1 0
5	RW Force direct operational speed initialization.		
4	RW	0	1
3	RW	0	PHYI NITBEGI N. Instructs the port to start initialization.
2	RW	0	BYPASS_CALI BRATI ON. Indicates the physical layer to bypass calibration.
1	RW	0	RESET_MODI FI ER. Modifies soft reset to default reset when set.
0	RW1S	0	PHY_RESET. Physical Layer Reset.

2.9.3

QPI_0_PH_PIS
QPI_1_PH_PIS
Intel QPI Physical Layer Initialization Status Register.

Device: 2 Function: 1, 5 Offset: 80h Access as a Dword			
Bit	Type	Reset Value	Description
29	RO	-	GLOBAL_ERROR. Set upon any error detected on the link during Loopback Pattern.
28	RO	-	TEST_BUSY. Test busy bit indicating that a test is in progress.
27	RW1C	0	STATE_HOLD. State machine hold bit for single step and init freeze modes.
26	RO	-	I NIT_SPEED. Current initialization speed. 1 - Operational Speed Initialization. 0 - Slow Speed Initialization.
25	RO	-	PORT_RMT_ACK. Port Remote ACK status.
24	RO	-	PORT_TX_RDY. Port Tx Ready status.
20:16	RO	-	RX_STATE. Current state of the local Rx.
12:8	RO	-	TX_STATE. Current state of the local Tx.
1	RW1C	0	CALI BRATI ON_DONE. Indicates that calibration has been completed for the Intel QPI link.
0	RW1C	0	LI NKUP_I DENTI FI ER. Link up identifier for the Intel QPI link. Set to 0 during Default Reset. Set to 1 when initialization completes and link enters LO.

2.9.4 QPI 0 PH PTV
 QPI__1_PH_PTV

Intel QPI Physical Layer Initialization Primary Timeout Value Register.

$\|$Device: 2 Function: 1, 5 Offset: 94h Access as a Dword			
Bit	Type	Reset Value	
$19: 16$	RW	0	POLLI NG_BI TLOCK. Exponential count for Polling Bitlock. Timeout value is 2^(count in this field)*128 TSL.
$11: 8$	RW	1	I NBAND_RESET. Exponential count for Inband_Reset_Init. Time-out value is 2^(count in this field)*128 TSL.
$3: 0$	RW	2	DEBOUNCE. Exponential count for debounce.

2.9.5 QPI_O_PH_LDC

QPI_1_ $\mathbf{1 H}_{-}^{-} \mathbf{L D C}$
Intel QPI Physical Layer Link Determinism Control Register.

Device: Function: 1, 5 Offset: 9Ch Access as a Dword			
Bit	Type	Reset Value	Description
$23: 16$	RW	0	TARGET_ LI NK_LATENCY. This field specifies the target link latency value in Ul that the remote port needs to adjust to.
$11: 8$	RW	5	DRIFT_BUF_DEPTH. The default pointer separation for the Intel QPI Rx PI FIFO.
$3: 0$	RW	2	DRIFT_ALARM_THRESHOLD. Intel QPI RX PI FIFO alarm threshold.

2.9.6 QPI_O_PH_PRT

QPI__1_PH_PRT
Intel QPI Periodic Retraining Timing Register

| Device:
 Function:
 Offset:
 A4
 Access as a Dword | | | |
| :---: | :---: | :---: | :--- | :--- |
| Bit | Type | Reset
 Value | |
| 22 | RW | 0 | DURATI ON_GRANULARI TY.
 1 indicates agent is using 16 Ul granularity
 indicates agent is using 64 UI granularity. |
| $21: 14$ | RW | - | RETRAI N_PKT_CNT. Retraining packet count. |
| $13: 10$ | RW | - | EXP_RETRAI N_I NTERVAL. Exponential count for retraining interval. Interval
 value is multiplied by 2^(count in this field). Although these values are
 specified in exponential form, counting still needs to be accurate to single UI. |
| $7: 0$ | RW | - | RETRAI N_I NTERVAL. Periodic retraining interval. A value of 0 indicates
 periodic retraining is disabled.
 Retraining must be disabled in Slow Mode.
 Value to be programmed by firmware. Each count represents 1024 UI (16 TSL) |

2.9.7 QPI_O_PH_PMRO QPI_1_PH_PMRO

Intel QPI Physical Layer Power Management Register.

Device: Functio Offset: Access	$\begin{aligned} & 2 \\ & 1,5 \\ & \text { DOh } \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
27:26	RW	0	LOs_SLEEP_MI N_REM. Remote agent's minimum LOS time. $\begin{array}{ll} 00->~ & 32 \mathrm{UI} \\ 01-> & \mathrm{UI} \\ 10-> & \mathrm{UU} \\ 11-> & \mathrm{UI} \end{array}$
21:16	RW	0	LOs_WAKE_REM. Remote agent's LOS wake time in effect. Value is (field +1)* $1 \overline{6}$ UI.
11:10	RW	-	LOs_SLEEP_MIN. Minimum time local Tx on a port initiating LOs entry should stay in LOs. $\begin{aligned} & 00->32 \mathrm{UI} \\ & 01->48 \mathrm{UI} \\ & 10->64 \mathrm{UI} \\ & 11->96 \mathrm{UI} \end{aligned}$
5:0	RW	-	LOs_ WAKE. LOs Wake-up time to be used by remote Tx. This parameter value is derived from field value as (field +1)* 16 UI. Field value of 0 (parameter value of 16) means LOs is not supported.

2.9.8 QPI O EP SR

QPI_1_ $\mathbf{1}_{-}^{-} \mathbf{P}_{-}^{-} \mathbf{S R}$
Intel QPI Physical Layer Electrical Parameter Select Register. This register enables the equalization coefficient setting functionality of the QPI_[0,1]_EP_MCTR register when QPI_[0,1]_EP_SR is set to 6 .

Device: 2
Function: 1, 5
Offset: EOh
Access as a Dword

Bit	Type	Reset Value	Description
$23: 16$	RW	0	EPARAM_SEL. Select electrical parameter. Set to 6 to enable equalization coefficient setting functionality of QPI_[0,1]_EP_MCTR register.

2.9.9 QPI O EP MCTR QPI_ 1_EP_MCTR

Intel QPI Electrical Parameter Miscellaneous Control Register. This register holds equalization coefficient parameters.

Device: Function: Offset: F4h Access as a Dword			
Bit	Type	Reset Value	
$31: 8$	RW	0	MI SC_EPARAM_CTL. Miscellaneous electrical-parameter specific control.
$7: 3$	RW	12	TX_EQUALI ZATI ON. Sets the equalization coefficient of the QPI transmitter based on value obtained from SISTAI simulations.
2	RW	1	EN. Enables or disables custom TEQ setting. $1-$ Enable - Disable
$1: 0$	RW	0	RSVD.

2.10 I ntel QPI Miscellaneous Registers

2.10.1 QPI_0_PLL_STATUS

QPI_1_ PLL_STATUS
This register provides the current and available operating conditions for the Intel QPI PLLs.

Device: Functio Offset: Access	$\begin{aligned} & 2 \\ & 1,5 \\ & 50 \mathrm{~h} \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
30:24	RO	-	MAX_CCLK_RATI O. Maximum CCLK (The Intel® QuickPath Interconnect Forwärded Clock for at speed operation) supported on this part (Value * 133Mhz).
22:16	RO	-	MI N_CCLK_RATI O. Minimum CCLK (The Intel ® QuickPath Interconnect Forwarded Clock for at speed operation) supported on this part (Value * 133Mhz).
14:8	RO	-	CCLK_RATI O_MASK. Mask that will be applied to the QPI_[$\overline{0}, 1]$ _PLL_RATIO.NEXT_PLL_RATIO field on reset to obtain the current ratio (I.E. mas \bar{k} of 1 will force onTy even ratios; mask of 3 forces every 4th ratio).
6:0	RO	-	CURRENT_CCLK_RATI O. The current CCLK (The Intel® QuickPath Interconnect Forwarded Clock for at speed operation) (Value * 133Mhz).

2.10.2 QPI_0_PLL_RATIO

 QPI_1_PLL_RATIOThis register holds the next PLL multiplier. The write to one link will affect the mirror port as well as both Intel QPI links. The reads are link specific.

Device: Function: 1, Offset: 54h Access as a Dword
Bit
Type
:---
Value
:---
6:0

2.11 Integrated Memory Controller Control Registers

The registers in section 2.11 apply only to processors supporting registered DIMMs.

2.11.1 MC_CONTROL

Primary control register.

Device: Function: Offset: Access as	8h Dwo		
Bit	Type	Reset Value	Description
10	RW	0	CHANNEL2_ACTIVE. When set, indicates MC channel 2 is active. This bit is controlled (set/reset) by software only. This bit is required to be set for any active channel when INIT_DONE is set by software.
9	RW	0	CHANNEL1_ACTIVE. When set, indicates MC channel 1 is active. This bit is controlled (set/reset) by software only. This bit is required to be set for any active channel when INIT_DONE is set by software. Channel 0 AND Channel 1 active must both be set for a lockstep or mirrored pair.
8	RW	0	CHANNELO_ACTIVE. When set, indicate MC channel 0 is active. This bit is controlled (set/reset) by software only. This bit is required to be set for any active channel when INIT_DONE is set by software. Channel 0 AND Channel 1 active must both be set for a lockstep or mirrored pair.
7	WO	0	I NI T_DONE. MC initialize complete signal. Setting this bit will exit the training mode of the Integrated Memory Controller and begin normal operation including all enabled maintenance operations. Any CHANNNEL_ACTIVE bits not set when writing a 1 to INIT_DONE will cause the corresponding channel to be disabled.
6	RW	0	DI VBY3EN. Divide By 3 enable. When set, MAD would use the longer pipeline for transactions that are 3 or 6 way interleaved and shorter pipeline for all other transactions. The SAG registers must be appropriately programmed as well.
5	RW	0	CHANNELRESET2. Reset only the state within the channel. Equivalent to pulling warm reset for that channel.
4	RW	0	CHANNELRESET1. Reset only the state within the channel. Equivalent to pulling warm reset for that channel.
3	RW	0	CHANNELRESETO. Reset only the state within the channel. Equivalent to pulling warm reset for that channel.
2	RW	0	AUTOPRECHARGE. Autoprecharge enable. This bit should be set with the closed page bit. If it is not set with closed page, address decode will be done without setting the autoprecharge bit.
1	RW	0	ECCEN. ECC Checking enables. When this bit is set in lockstep mode the ECC checking is for the x8 SDDC. ECCEN without Lockstep enables the $x 4$ SDDC ECC checking.
0	RW	0	CLOSED_PAGE. When set, the MC supports a Closed Page policy. The default is Open Page but BIOS should always configure this bit.

2.11.2 MC_STATUS

MC Primary Status register.

Device: Function: Offset: O 4Ch Access as a Dword			
Bit	Type	Reset Value	
4	RO	1	ECC_ENABLED. ECC is enabled.
2	RO	0	CHANNEL2_DI SABLED. Channel 2 is disabled. This can be factory configured or if Init done is written without the channel_active being set. Clocks in the channel will be disabled when this bit is set.
1	RO	0	CHANNEL1_DI SABLED. Channel 1 is disabled. This can be factory configured or if Init done is written without the channel_active being set. Clocks in the channel will be disabled when this bit is set.
0	RO	0	CHANNELO_DI SABLED. Channel 0 is disabled. This can be factory configured or if Init done is written without the channel_active being set. Clocks in the channel will be disabled when this bit is set.

2.11.3 MC_SMI_DI MM_ERROR_STATUS

SMI DIMM error threshold overflow status register. This bit is set when the per-DIMM error counter exceeds the specified threshold. The bit is reset by BIOS.

Device: Function: Fund Offset: Access as a Dword			
Bit	Type	Reset Value	
13:12	RW0C	0	REDUNDANCY_LOSS_FAI LI NG_DI MM. The ID for the failing DIMM when redundancy is lost.

Device: 3
function: 0
Offset: 50h
Access as a Dword

Bit	Type	Reset Value	Description
11:0	RWOC	0	DI MM_ERROR_OVERFLOW_STATUS. This 12-bit field is the per dimm error overflow status bits. The organization is as follows: If there are three or more DIMMS on the channel: Bit 0 : Dimm 0 Channel 0 Bit 1 : Dimm 1 Channel 0 Bit 2 : Dimm 2 Channel 0 Bit 3 : Dimm 3 Channel 0 Bit 4 : Dimm 0 Channel 1 Bit 5 : Dimm 1 Channel 1 Bit 6 : Dimm 2 Channel 1 Bit 7 : Dimm 3 Channel 1 Bit 8 : Dimm 0 Channel 2 Bit 9 : Dimm 1 Channel 2 Bit 10 : Dimm 2 Channel 2 Bit 11 : Dimm 3 Channel 2 If there are one or two DIMMS on the channel: Bit 0 : Dimm 0, Ranks 0 and 1, Channel 0 Bit 1 : Dimm 0, Ranks 2 and 3, Channel 0 Bit 2 : Dimm 1, Ranks 0 and 1, Channel 0 Bit 3 : Dimm 1, Ranks 2 and 3, Channel 0 Bit 4 : Dimm 0, Ranks 0 and 1, Channel 1 Bit 5 : Dimm 0, Ranks 2 and 3, Channel 1 Bit 6 : Dimm 1, Ranks 0 and 1, Channel 1 Bit 7 : Dimm 1, Ranks 2 and 3, Channel 1 Bit 8 : Dimm 0, Ranks 0 and 1, Channel 2 Bit 9 : Dimm 0, Ranks 2 and 3, Channel 2 Bit 10 : Dimm 1, Ranks 0 and 1, Channel 2 Bit 11 : Dimm 1, Ranks 2 and 3, Channel 2

2.11.4 MC_SMI _ CNTRL

System Management Interrupt control register.

Device Functio Offset: Access	$\begin{aligned} & 3 \\ & 0 \\ & 54 \mathrm{~h} \\ & 5 \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
16	RW	0	I NTERRUPT_SELECT_NMI . NMI enable. Set to enable NMI signaling. Clear to disable NMI signaling. İf both NMI and SMI enable bits are set, then only SMI is sent.
15	RW	0	I NTERRUPT_SELECT_SMI. SMI enable. Set to enable SMI signaling. Clear to disable SMI signaling. If both NMI and SMI enable bits are set, then only SMI is sent. This bit functions the same way in Mirror and Independent Modes. The possible SMI events enabled by this bit are: Any one of the error counters MC_COR_ECC_CNT_X meets the value of SMI_ERROR_THRESHOLD field of this register. MC_RAS_STĀTUS.REDUNDANCY_LOSS bit is set to 1 .
14:0	RW	0	SMI_ERROR_THRESHOLD. Defines the error threshold to compare against the per-DIMM error counters MC_COR_ECC_CNT_X, which are also 15 bits.

2.11.5 MC_RESET_CONTROL

DI MM Reset enabling controls.

$\|$Device: Function: 0 Offset: 5Ch Access as a Dword
Bit
Type
:---
Value
:---
0
:---
the DIMMs. This bit is set on S3 exit and cold boot to take over RESET driving
responsibility from the physical layer.

2.11.6 MC_CHANNEL_MAPPER

Channel mapping register. The sequence of operations to update this register is:
Read MC_Channel_Mapper register
Compare data read to data to be written. If different then write.
Poll MC_Channel_Mapper register until the data read matches data written.

Device: $\quad 3$ Function: 0 Offset: $60 h$ Access as a Dword			
Bit	Type	Reset Value	Description
17:15	RW	0	RDLCH2. Mapping of Logical Channel 2 to physical channel for Reads. 001 - Maps to physical Channel 0 010 - Maps to physical Channel 1 100 - Maps to physical Channel 2
14:12	RW	0	WRLCH2. Mapping of Logical Channel 2 to physical channel for Writes. 001 - Maps to physical Channel 0 010 - Maps to physical Channel 1 100 - Maps to physical Channel 2
11:9	RW	0	RDLCH1. Mapping of Logical Channel 1 to physical channel for Reads. 001 - Maps to physical Channel 0 010 - Maps to physical Channel 1 100 - Maps to physical Channel 2
8:6	RW	0	WRLCH1. Mapping of Logical Channel 1 to physical channel for Writes. 001 - Maps to physical Channel 0 010 - Maps to physical Channel 1 100 - Maps to physical Channel 2
5:3	RW	0	RDLCHO. Mapping of Logical Channel 0 to physical channel for Read. 001 - Maps to physical Channel 0 010 - Maps to physical Channel 1 100 - Maps to physical Channel 2
2:0	RW	0	WRLCHO. Mapping of Logical Channel 0 to physical channel for Writes. 001 - Maps to physical Channel 0 010 - Maps to physical Channel 1 100 - Maps to physical Channel 2

2.11.7 MC_MAX_DOD

Defines the MAX number of DIMMS, RANKS, BANKS, ROWS, COLS among all DIMMS populating the three channels. The Memory Init logic uses this register to cycle through all the memory addresses writing all 0's to initialize all locations. This register is also used for scrubbing and must always be programmed if any DODs are programmed.

Device: 3 Function: 0 Offset: 64h Access as a Dword			
Bit	Type	Reset Value	Description
10:9	RW	0	MAXNUMCOL. Maximum Number of Columns. 00: 2^10 columns 01: 2^11 columns 10: $2^{\wedge} 12$ columns 11: RSVD.
8:6	RW	0	MAXNUMROW. Maximum Number of Rows. 000: 2^12 Rows 001: 2^13 Rows 010: 2^14 Rows 011: 2^15 Rows 100: 2^16 Rows Others: RSVD.
5:4	RW	0	MAXNUMBANK. Max Number of Banks. 00: Four-banked 01: Eight-banked 10: Sixteen-banked.
3:2	RW	0	MAXNUMRANK. Maximum Number of Ranks. 00: Single Ranked 01: Double Ranked 10: Quad Ranked.
1:0	RW	0	MAXNUMDI MMS. Maximum Number of Dimms. 00: 1 Dimm 01: 2 Dimms 10: 3 Dimms 11: RSVD.

2.11.8 MC_RD_CRDT_INIT

These registers contain the initial read credits available for issuing memory reads. TAD read credit counters are loaded with the corresponding values at reset and anytime this register is written. BIOS must initialize this register with appropriate values depending on the level of Isoch support in the platform. It is illegal to write this register while TAD is active (has memory requests outstanding), as the write will break TAD's outstanding credit count values.

Register programming rules:

- Total read credits (CRDT_RD + CRDT_RD_HIGH + CRDT_RD_CRIT) must not exceed 31.
- CRDT_RD_HIGH value must correspond to the number of high RTIDs reserved at the $1 O H$.
- CRDT_RD_CRIT value must correspond to the number of critical RTIDs reserved at the IOH .
- CRDT_RD_HIGH + CRDT_RD must be less than or equal to 13 if High or Critical credits are nonzero.
- CRDT_RD_HIGH + CRDT_RD_CRIT must be less than or equal to 8 .
- CRDT_RD_CRIT must be less than or equal to 6 . Set CRDT_RD to (16CRDT_RD_CRIT - CRDT_RD_HIGH).
- If (Mirroring enabled) then Max for CRDT_RD is 14, otherwise it is 15.
- If (Isoch not enabled) then CRDT_RD_HIGH and CRDT_RD_CRIT are set to 0 .

Device: Function: Offset: 70h Access as a Dword			
Bit	Type	Reset Value	
$20: 16$	RW	3	CRDT_RD_CRIT. Critical Read Credits.
$12: 8$	RW	1	CRDT_RD_HI GH. High Read Credits.
$4: 0$	RW	13	CRDT_RD. Normal Read Credits.

2.11.9 MC_CRDT_WR_THLD

Memory Controller Write Credit Thresholds. A Write threshold is defined as the number of credits reserved for this priority (or higher) request. It is required that High threshold be greater than or equal to Crit threshold, and that both be lower than the total Write Credit init value. BIOS must initialize this register with appropriate values depending on the level of I soch support in the platform. The new values take effect immediately upon being written.

Register programming rules:

- CRIT threshold value must correspond to the number of critical RTIDs reserved at the IOH .
- HIGH threshold value must correspond to the sum of critical and high RTIDs reserved at the IOH (which must not exceed 30).
- Set MC_Channel_*_WAQ_PARAMS.ISOCENTRYTHRESHHOLD equal to (31-CRIT).

Device: Function: Offset: 74h Access as a Dword				
Bit	Type	Reset Value		Description
$12: 8$	RW	4	HI GH. High Credit Threshold.	
$4: 0$	RW	3	CRIT. Critical Credit Threshold.	

2.11.10 MC_ SCRUBADDR_LO

This register contains part of the address of the last patrol scrub request issued. When running Memtest, the failing address is logged in this register on Memtest errors. Software can write the next address to be scrubbed into this register. Patrol scrubs must be disabled to reliably write this register.

Device: Function: Offset: Access as a Dword Act Bit Type Reset Value $29: 14$ RW 0 PAGE. Contains the row of the last scrub issued. Can be written to specify the next scrub address with STARTSCRUB in the MC_SCRUB_CONTROL register. $13: 0$ RW 0 COLUMN. Contains the column of the last scrub issued. Can be written to specify the next scrub address with STARTSCRUB in the MC_SCRUB_CONTROL register.

2.11.11 MC_SCRUBADDR_HI

This register pair contains part of the address of the last patrol scrub request issued. When running memtest, the failing address is logged in this register on memtest errors. Software can write the next address into this register. Scrubbing must be disabled to reliably read and write this register.

| Device:
 Function:
 Offset:
 7 7 Ch
 Access as a Dword | | | |
| :---: | :---: | :---: | :--- | :--- |
| Bit | Type | Reset
 Value | |
| 12 | RO | 0 | MEMBI ST_I NPROGRESS. When this bit is asserted by hardware
 MemTest/MemI nit is in progress. |
| 11 | RO | 0 | MEMBI ST_CMPLT. When this bit is asserted by hardware MemTest/ MemI nit is
 complete. |
| 10 | WO | 0 | RESET_MEMBI ST_STATUS. When this bit is written to a 1, the status field
 MEMBIST_CMPLT is cleared. |
| $9: 8$ | RW | 0 | CHNL. Can be written to specify the next scrub address with STARTSCRUB in
 the MC_SCRUB_CONTROL register. This register is not updated with channel
 address of the last scrub address issued. |
| $7: 6$ | RW | 0 | DI MM. Contains the dimm of the last scrub issued. Can be written to specify
 the next scrub address with STARTSCRUB in the MC_SCRUB_CONTROL register. |
| $5: 4$ | RW | 0 | RANK. Contains the rank of the last scrub issued. Can be written to specify the
 next scrub address with STARTSCRUB in the MC_SCRUB_CONTROL register. |
| $3: 0$ | RW | 0 | BANK. Contains the bank of the last scrub issued. Can be written to specify the
 next scrub address with STARTSCRUB in the MC_SCRUB_CONTROL register. |

2.12 TAD - Target Address Decoder Registers

2.12.1 TAD DRAM RULE 0
 TAD ${ }^{-}$DRAM ${ }^{-1}$ RULE $^{-1}$
 TAD DRAM RULE_2
 TAD DRAM RULE 3
 TAD DRAM RULE 4
 TAD DRAM RULE 5
 TAD ${ }^{-}$DRAM ${ }^{-}$RULE $^{-} 6$
 TAD_DRAM_RULE-7

TAD DRAM rules. Address map for channel determination within a package. All addresses sent to this HOME agent must hit a valid enabled DRAM_RULE. No error will be generated if they do not and memory aliasing will happen.

```Device: 3 Function: 1 Offset: 80h, 84h, 88h, 8Ch,90h, 94h, 98h, 9Ch Access as a Dword```			
Bit	Type	Reset Value	Description
19:6	RW	-	LIMIT. DRAM rule top limit address. Must be strictly greater than previous rule, even if this rule is disabled, unless this rule and all following rules are disabled. Lower limit is the previous rule (or 0 if it is the first rule).
2:1	RW	-	MODE. DRAM rule interleave mode. If a DRAM_RULE hits, a 3 -bit number is used to index into the corresponding interleave_list to determine which channel the DRAM belongs to. This mode selects how that number is computed.   00: Address bits $\{8,7,6\}$.   01: Address bits $\{8,7,6\}$ XORed with $\{18,17,16\}$.   10: Address bit \{6\}, MOD3(Address[39..6]). (Note 6 is the high order bit)   11: reserved.
0	RW	0	ENABLE. Enable for DRAM rule.

### 2.12.2 TAD_I NTERLEAVE_LIST_0 <br> TAD-INTERLEAVE-LIST-1 <br> TAD_INTERLEAVE- LIST $_{-}^{-} 2$ <br>  <br> TAD_INTERLEAVE_LIST_4 <br> TAD_INTERLEAVE_LIST_5 <br> TAD_I NTERLEAVE_LIST_6 <br> TAD_INTERLEAVE_LIST_7

TAD DRAM package assignments. When the corresponding DRAM_RULE hits, a 3-bit number (determined by mode) is used to index into the Interleave_List Branches to determine which channel the DRAM request belongs to.

Device:   Function:   Offset:   Access as	3   1 C0h, C4h, C8h, CCh, D0h, D4h, D8h, DCh a Dword		
Bit	Type	Reset Value	Description
29:28	RW	-	Logical Channel7. Index 111 of the Interleave List. Bits determined from the matching TAD_DRAM_RULE mode.   00 - Logical channel 0   01 - Logical channel 1   10 - Logical channel 2   11 - Reserved
25:24	RW	-	Logical Channel6. Index 110 of the Interleave List. Bits determined from the matching TAD_DRAM_RULE mode.   00 - Logical channel 0   01 - Logical channel 1   10 - Logical channel 2   11 - Reserved
21:20	RW	-	Logical Channel5. Index 101 of the Interleave List. Bits determined from the matching TAD_DRAM_RULE mode.   00 - Logical channel 0   01 - Logical channel 1   10 - Logical channel 2   11 - Reserved
17:16	RW	-	Logical Channel4. Index 100 of the Interleave List. Bits determined from the matching TAD_DRAM_RULE mode.   00 - Logical channel 0   01 - Logical channel 1   10 - Logical channel 2   11 - Reserved
13:12	RW	-	Logical Channel3. Index 011 of the Interleave List. Bits determined from the matching TAD_DRAM_RULE mode.   00 - Logical channel 0   01 - Logical channel 1   10 - Logical channel 2   11 - Reserved


Device:   Function: Offset: Access as	3   1   C0h, C4h, C8h, CCh, D0h, D4h, D8h, DCh a Dword		
Bit	Type	Reset   Value	Description
9:8	RW	-	Logical Channel2. Index 010 of the Interleave List. Bits determined from the matching TAD_DRAM_RULE mode.   00 - Logical channel 0   01 - Logical channel 1   10 - Logical channel 2   11 - Reserved
5:4	RW	-	Logical Channel1. Index 001 of the Interleave List. Bits determined from the matching TAD_DRAM_RULE mode.   00 - Logical channel 0   01 - Logical channel 1   10 - Logical channel 2   11 - Reserved
1:0	RW	-	Logical Channel0. Index 000 of the Interleave List. Bits determined from the matching TAD_DRAM_RULE mode.   00 - Logical channel 0   01 - Logical channel 1   10 - Logical channel 2   11 - Reserved

### 2.13 Integrated Memory Controller RAS Registers

### 2.13.1 MC_SSRCONTROL

Scrubbing control. This register allows the enabling of patrol scrubbing and demand scrubbing.

Device: 3   Function: 2   Offset: 48h   Access as a Dword			
Bit	Type	Reset   Value	Description
14:7	RW	0	SCRATCHPAD. This field is available as a scratchpad for Scrubbing operations.
6	RW	0	DEMAND_SCRUB_EN. Enable Demand Scrubs.
1:0	RW	0	SSR_MODE. Patrol scrub enable.   00: Disable Patrol Scrub   01: Enable Patrol Scrub   10: RSVD.

### 2.13.2 MC_SCRUB_CONTROL

Contains the Scrub control parameters and status.

| Device: <br> Function: <br> Offset: <br> Access as a Dword <br> 4ch |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| Bit | Type | Reset <br> Value |  |
| 26 | RW | 0 | SCRUBI SSUED. When Set, the scrub address registers contain the last scrub <br> address issued. |
| 25 | RW | 0 | ISSUEONCE. When Set, the patrol scrub engine will issue the address in the <br> scrub address registers only once and stop. |
| 24 | RW | 0 | STARTSCRUB. When Set, the Patrol scrub engine will start from the address in <br> the scrub address registers. Once the scrub is issued this bit is reset. |
| $23: 0$ | RW | 0 | SCRUBI NTERVAL. Defines the interval in DCLKS between patrol scrub <br> requests. The calculation for this register to get a scrub to every line in 24 <br> hours is: <br> $((36400) /(m e m o r y ~ c a p a c i t y / 64)) / c y c l e ~ t i m e ~ o f ~ D C L K . ~$ |

### 2.13.3 MC_RAS_ENABLES

RAS enables register.

Device:   Function:   Offset: 50h   Access as a Dword			
Bit	Type	Reset   Value	Description
1	RW	0	LOCKSTEPEN. Lockstep enable. When set, channel 0 and 1 are tied together   in lockstep. The channel mapper register must be appropriately programmed   as well.
0	RW	0	MI RROREN. Mirror mode enable. The channel mapping must be set up   before this bit will have an effect on Integrated Memory Controller operation.   This changes the error policy and alternates reads between channels.

### 2.13.4 MC_RAS_STATUS

RAS status register.

Device:   Function: 2   Offset: 54h   Access as a Dword			
Bit	Type	Reset   Value	
0	RW	0	REDUNDANCY LOSS. One channel of a mirrored pair had an uncorrectable   error and redundancy has been lost. This bit is set by hardware and must be   cleared by software performing a channel reset to regain mirrored status.

### 2.13.5 MC_SSRSTATUS

Provides the status of the operation specified in MC_SSRCONTROL.SSR_Mode.

Device:   Function:   Offset:   Ofress a   Acces a Dword      Bit Type Reset   Value    1 RO 0 I NPROGRESS. Patrol Scrub operation in progress. This bit is set by hardware   once scrubbing operation has started. It is cleared once operation is complete   or fails.   0 RO 0 CMPLT. Patrol Scrub operation complete. Set by hardware once operation is   complete. Bit is cleared by hardware when a new operation is enabled.


2.13 .6	MC_COR_ECC_CNT_0
	MC-COR-ECC-CNT-1
	MC_COR_ECC_CNT
	MC-COR-ECC-CNT-3
	MC_COR_ECC_CNT-4
	MC ${ }^{-} \mathrm{COR}^{-} \mathrm{ECC}^{-} \mathrm{CNT}^{-}$

Per Dimm counters of correctable ECC errors. The register organization is as follows. For example, if there are three DIMMS on the channel, MC_COR_ECC_CNT_0 contains the error counter information for DIMM 0 and DIMM1 on Channel 0. MC_COR_ECC_CNT_1 contains the error counter information for DIMM2 on Channel 0.

The lower 16-bit of MC_COR_ECC_CNT_0 contains the errors for DIMM0 and the upper 16 -bit field contains the errors for DIMM1. The lower 16-bit of MC_COR_ECC_CNT_1 contains the errors for DIMM2. The upper 16 bits of MC_COR_ECC_CNT_1 are not used. The same organization applies to Channel 1 and Channel 2.

MC_COR_ECC_CNT_0 : Channel 0 Dimm 0/1
MC_COR_ECC_CNT_1: Channel 0 Dimm 2/Rsvd
MC_COR_ECC_CNT_ 2 : Channel 1 Dimm 0/1
$\mathrm{MC}_{-}^{-} \mathrm{COR}_{-}^{-} \mathrm{ECC}_{-}^{-} \mathrm{CNT}^{-} 3$ : Channel 1 Dimm 2/Rsvd
MC_COR_ECC_CNT_4 : Channel 2 Dimm 0/1
MC_COR_ECC_CNT_5 : Channel 2 Dimm 2/Rsvd
If there are one or two DIMMS on the channel, the lower 16-bit field of MC_COR_ECC_CNT_0 contains the errors for DIMMO on Ranks 0 and 1 on Channel 0. The upper 16-bit field contains information for DIMMO on Ranks 2 and 3 for a quad rank DIMM. The same organization follows for DIMM1 for MC_COR_ECC_CNT_1.

MC_COR_ECC_CNT_0 : Channel 0 Dimm 0 Ranks 0,1/2,3
$\mathrm{MC}_{-}^{-} \mathrm{COR}_{-}^{-} \mathrm{ECC}_{-}^{-} \mathrm{CNT}_{-}^{-} 1$ : Channel 0 Dimm 1 Ranks $0,1 / 2,3$
MC_COR_ECC_CNT_2 : Channel 1 Dimm 0 Ranks $0,1 / 2,3$
MC_COR_ECC_CNT_3 : Channel 1 Dimm 1 Ranks 0,1/2,3
MC_COR_ECC_CNT_4 : Channel 2 Dimm 0 Ranks 0,1/2,3
MC_COR_ECC_CNT_5 : Channel 2 Dimm 1 Ranks 0,1/2,3

Device: 3
Function: 2
Offset: 80h, 84h, 88h, 8Ch, 90h, 94h
Access as a Dword

Bit	Type	Reset   Value	Description
31	RW	0	DI MM1_ERR_OVERFLOW. Correctable error overflow on DIMM 1/Rsvd.
$30: 16$	RW	0	DI MM1_COR_ERR. Correctable error count from DIMM 1/Rsvd.
15	RW	0	DI MM0_ERR_OVERFLOW. Correctable error overflow on DIMM 0/2.
$14: 0$	RW	0	DI MM0_COR_ERR. Correctable error count from DIMM 0/2.

### 2.14 Integrated Memory Controller Test Registers

### 2.14.1 MC_TEST_ERR_RCV1

Memory test error recovery and detection. This is another address to access COR_ECC_CNT register. This is the ecc error information for DIMM 2.

Device:   Function:   Offset:   Access as a Dword   Act			
Bit	Type	Reset   Value	
15	RW	0	DI MM2_ERR_OVERFLOW. Correctable error overflow on DIMM 2.
$14: 0$	RW	0	DI MM2_COR_ERR. Correctable error count from DIMM 2.

### 2.14.2 MC_TEST_ERR_RCVO

Memory test error recovery and detection. This is another address to access COR_ECC_CNT register. This is the ecc error information for DIMM 0 and DIMM 1.

Device: 3   Function: 4   Offset: 64h   Access as a Dword			
Bit	Type	Reset Value	Description
31	RW	0	DIMM1_ERR_OVERFLOW. Correctable error overflow on DIMM 1.
30:16	RW	0	DI MM1_COR_ERR. Correctable error count from DIMM 1.
15	RW	0	DIMMO_ERR_OVERFLOW. Correctable error overflow on DIMM 0.
14:0	RW	0	DI MMO_COR_ERR. Correctable error count from DIMM 0.

### 2.14.3 MC_TEST_PH_CTR

Memory test Control Register

Device:   Function:   3   Offset:   4Ch   Access as a Dword      Bit Type Reset   Value    $10: 8$ RW 0 I NIT_MODE: Initialization Mode   Idle: 000   Leopback: 001   Memtest: 110   Meminit: 111

### 2.14.4 MC_TEST_PH_PIS

## Memory test physical layer initialization status

Device:   Function:   Funs   Ofset:   Access as a Dword   80h			
Bit	Type	Reset   Value	Description
29	RO	-	GLOBAL_ERROR: Indication that an error was detected during a memory test.

### 2.14.5 MC_TEST_PAT_GCTR

## Pattern Generator Control

Device:   Function:   Offset:   A8h   Access as a Dword			
Bit	Type	Reset   Value	
$28: 24$	RW	6	EXP_LOOP_CNT: Sets the length of the test, defined as 2^(EXP_LOOP_CNT)
21	RW	0	ERROR_COUNT_STALL: Masks all detected errors until cleared
20	RW1S	0	STOP_TEST: Force exit from Loopback.Pattern
19	RW	0	DRIVE_DC_ZERO: Drive 0 on lanes with PAT_DCD asserted
$13: 12$	RW	0	PATBUF_WD_SEL: Select word within pattern buffer to be written
$10: 9$	RW	0	PATBUF_SEL: Select which pattern buffer will be written when   MC_TEST_PAT_BA is written
5	RW	0	IGN_REM_PARAM: Slave will ignore remote parameters transmitted in   LLopback.Marker
4	RW	0	ENABLE_LFSR2: Use scrambled output of Pattern Buffer 2
3	RW	0	ENABLE_LFSR1: Use scrambled output of Pattern Buffer 1
2	RW	1	ENABLE_AUTOI NV: Inversion pattern register will rotate automatically once   per loop
1	RW	0	STOP_ON_ERROR: Exit Loopback.Pattern upon first detected error
0	RW1S	0	START_TEST: Initiate transition to Loopback.Pattern

### 2.14.6 MC_TEST_PAT_BA

Memory Test Pattern Generator Buffer

Device:   Function:   F   Offset:   Access as a Dword			
Bit	Type	Reset   Value	
$31: 0$	RW	0	DATA: 32-bit window into the indirectly-addressed pattern buffer register   space.

### 2.14.7 MC_TEST_PAT_IS

Memory test pattern inversion selection register

Device:   Function:   F   Offset:   Access as a Dword   Accer			
Bit	Type	Reset   Value	
$7: 0$	RW	1	LANE_I NVERT: Per-lane selection of normal or inverted pattern

### 2.14.8 MC_TEST_PAT_DCD

## Memory test DC drive register

Device:   Function: 4   Offset:   Access as a Dword   Act			
Bit	Type	Reset   Value	
$7: 0$	RW	0	LANE_DRIVE_DC: Per-lane selection of DC pattern

### 2.15 I ntegrated Memory Controller Channel Control Registers

### 2.15.1 MC_CHANNEL_0_DIMM_RESET_CMD

MC CHANNEL 1 DI MM RESET CMD
MC_CHANNEL_2_DIMM_RESET-CMD
Integrated Memory Controller DIMM reset command register. This register is used to sequence the reset signals to the DIMMs.

Device:   Function:   4, 5,   Offset:   50h   Access as a Dword      Bit Type Reset   Value Description   2 RW 0 BLOCK_CKE. When set, CKE will be forced to be deasserted.   1 RW 0 ASSERT_RESET. When set, Reset will be driven to the DIMMs.   0 WO 0 RESET. Reset the DIMMs. Setting this bit will cause the Integrated Memory   Controller DIMM Reset state machine to sequence through the reset sequence   using the parameters in MC_DIMM_INIT_PARAMS.

2.15.2 MC_CHANNEL_0_DIMM_INIT_CMD

MC_CHANNEL_1_DIMM_INIT_CMD
MC_CHANNEL_2_DIMM_INIT_CMD
Integrated Memory Controller DIMM initialization command register. This register is used to sequence the channel through the physical layer training required for DDR.

Devic Funct Offse Acce	$\begin{aligned} & 4,5,6 \\ & 0 \\ & 54 \mathrm{~h} \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
17	wo	0	ASSERT_CKE. When set, all CKE will be asserted. Write a 0 to this bit to stop the init block from driving CKE. This bit has no effect once MC_CONTROL.INIT_DONE is set. This bit must be used during INITIALIZATION only and be cleared out before MC_CONTROL.INIT_DONE is set. This bit must not be asserted during initialization for S 3 resume.
16	RW	0	DO RCOMP. When set, an RCOMP will be issued to the rank specified in the RAN̄K field.
15	RW	0	DO_ZQCL. When set, a ZQCL will be issued to the rank specified in the RANK field.
14	RW	0	WRDQDQS_MASK. When set, the Write DQ-DQS training will be skipped.
13	RW	0	WRLEVEL_MASK. When set, the Write Levelization step will be skipped.
12	RW	0	RDDQDQS_MASK. When set, the Read DQ-DQS step will be skipped.
11	RW	0	RCVEN_MASK. When set, the RCVEN step will be skipped.
10	wo	0	RESET FI FOS. When set, the TX and RX FIFO pointers will be reset at the next BCLK edge. The Bubble Generators will also be reset.
9	RW	0	IGNORE_RX. When set, the read return datapath will ignore all data coming from the RX FIFOS. This is done by gating the early valid bit.
8	RW	0	STOP_ON_FAIL. When set along with the AUTORESETDIS not being set, the phyinit $\overline{F S M}$ will stop if a step has not completed after timing out.

Device: 4, 5, 6
Function: 0
Offset: 54h
Access as a Dword

Bit	Type	Reset   Value	Description
$7: 5$	RW	0	RANK. The rank currently being tested. The Phylnit FSM must be sequenced   for every rank present in the channel. The rank value is set to the rank being   trained.
$4: 2$	RW	0	NXT_PHYI NIT_STATE. Set to sequence the physical layer state machine.   $000:$ IDLE   $001:$ RD DQ-DQS   010: RcvEn Bitlock   011: Write Level   $100:$ WR DQ-DQS.
1	RW	0	AUTODI S. Disables the automatic training where each step is automatically   incremented. When set, the physical layer state machine must be sequenced   with software. The training FSM must be sequenced using the   NXT_PHYINIT_STATE field.
0	WO	0	TRAI N. Cycle through the training sequence for the rank specified in the RANK   field.

### 2.15.3 MC_CHANNEL_O_DIMM_INIT_PARAMS <br> $\mathrm{MC}_{-}^{-}$CHANNEL-1-DIMM_INIT-PARAMS <br> MC_ CHANNEL_2_DIMM_INIT_PARAMS

Initialization sequence parameters are stored in this register. Each field is $2^{\wedge} n$ count.
Bits [24:22] control the logical to physical rank mapping. The Integrated Memory Controller needs to know the location of different ranks in order to drive the proper chip selects (CS\#) and Clock Enable (CKE). Each valid combination results in a different mapping of CS or CKE connections to the logical ranks. The table below summarizes the supported combinations.

3DP[24]	SQRP[23]	QRP[22]	Notes
1	0	0	3 DIMMs Per Channel (6ODT/6CS)
0	1	1	Single Quad Rank (2ODT/4CS)
0	0	1	Quad Rank plus another DI MM (4ODT/8CS)
0	0	0	All other configurations.

## Register Description

Device: Functio Offset: Access	$\begin{aligned} & 4,5,6 \\ & 0 \\ & 58 h \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
26	RW	0	DIS_3T. When set, 3 T mode will not be enabled as a part of the MRS write to the R RIMM. The RC2 write to switch to $3 T$ and back to $1 T$ timing before and after an MRS write will not be done if the bit is set. This bit should be set if the RDIMM supports auto MRS cycles where the dimm takes care of the 3T switching on MRS writes.
25	RW	0	DI S_AI. When set, address inversion will not be disabled as a part of the MRS write to the RDIMM. The RC0 write to disable and enable address inversion will not be done. This bit should be set if the RDIMM supports auto MRS cycles where the dimm takes care of disabling address inversion for MRS writes.
24	RW	0	THREE_DIMMS_PRESENT. Set when channel contains three DIMMs. THREE_DIMMS_PRESENT=1 and QUAD_RANK_PRESENT=1 (or SINGLĒ_QUAD_RANK_PRESENT=1) arē mutuālly exclusive.
23	RW	0	SI NGLE_QUAD_RANK_PRESENT. Set when channel contains a single quad rank DIMM.
22	RW	0	QUAD_RANK_PRESENT. Set when channel contains 1 or 2 quad rank DIMMs.
21:17	RW	15	WRDQDQS_DELAY. Specifies the delay in DCLKs between reads and writes for WRDQDQS training.
16	RW	0	WRLEVEL_DELAY. Specifies the delay used between write CAS indications for write leveling training. $\begin{aligned} & \text { 0: } 16 \text { DCLKs. } \\ & \text { 1: } 32 \text { DCLKs. } \end{aligned}$
15	RW	0	REGISTERED_DIMM. Set when channel contains registered DIMMs.
14:10	RW	0	PHY_FSM_DELAY. Global timer used for bounding the physical layer training. If the timer expires, the FSM will go to the next step and the counter will be reloaded with PHY_FSM_DELAY value. Units are $2^{\wedge} \mathrm{n}$ dclk.
9:5	RW	0	BLOCK_CKE_DELAY. Delay in ns from when clocks and command are valid to the point CKE is allowed to be asserted. Units are in $2^{\wedge} \mathrm{n}$ uclk.
4:0	RW	0	RESET_ON_TIME. Reset will be asserted for the time specified. Units are $2^{\wedge}$ n Uclk.

### 2.15.4 MC_CHANNEL_0_DIMM_INIT_STATUS <br> $\mathrm{MC}_{-}^{-}$CHANNEL_1-DIMM_INIT-STATUS <br> MC_CHANNEL_2_DIMM_INIT_STATUS

The initialization state is stored in this register. This register is cleared on a new training command.

Device Functi Offset Access	$\begin{aligned} & 4,5,6 \\ & 0 \\ & 5 \mathrm{Ch} \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
9	RO	0	RCOMP_CMPLT. When set, indicates that RCOMP command has complete. This bit is cleared by hardware on command issuance and set once the command is complete.
8	RO	0	INIT_CMPLT. This bit is cleared when a new training command is issued. It is set once the sequence is complete regardless of whether all steps passed or not.
7	RO	0	ZQCL_CMPLT. When set, indicates that ZQCL command has completed. This bit is cleared by hardware on command issuance and set once the command is complete.
6	RO	0	WR_DQ_DQS_PASS. Set after a training command when the Write DQ-DQS training step pässes. The bit is cleared by hardware when a new training command is sent.
5	RO	0	WR_LEVEL_PASS. Set after a training command when the write leveling training step passes. The bit is cleared by hardware when a new training command is sent.
4	RO	0	RD_RCVEN_PASS. Set after a training command when the Read Receive Enāble training step passes. The bit is cleared by hardware when a new training command is sent.
3	RO	0	RD_DQ_DQS_PASS. Set after a training command when the Read DQ-DQS training step passes. The bit is cleared by hardware when a new training command is sent.
2:0	RO	0	PHYFSMSTATE. The current state of the top level training FSM.   000: IDLE   001: RD DQ-DQS   010: RcvEn Bitlock   011: Write Level   100: WR DQ-DQS

### 2.15.5 MC_CHANNEL_0_DDR3CMD

MC_CHANNEL-1_DDR3CMD
MC_CHANNEL_2_DDR3CMD
DDR3 Configuration Command. This register is used to issue commands to the DIMMs such as MRS commands. The register is used by setting one of the *_VALID bits along with the appropriate address and destination RANK. The command is then issued directly to the DIMM. Care must be taken in using this register as there is no enforcement of timing parameters related to the action taken by a DDR3CMD write. This register has no effect after MC_CONTROL.INIT_DONE is set.

Device: 4, 5, 6   Function: 0   Offset:   Access as a Dword				
Bit	Type	Reset   Value		
28	RW	0	PRECHARGE_VALI D. Indicates current command is for a precharge   command.	
27	RW	0	ACTI VATE_VALI D. Indicates current command is for an activate command.	
26	RW	0	REG_VALID. Indicates current command is for a registered DI MM config write   Bit is cleared by hardware on issuance. This bit applies only to processors   supporting registered DIMMs.	
25	RW	0	WR_VALI D. Indicates current command is for a write CAS. Bit is cleared by   hardware on issuance.	
24	RW	0	RD_VALI D. Indicates current command is for a read CAS. Bit is cleared by   hardware on issuance.	
23	RW	0	MRS_VALI D. Indicates current command is an MRS command. Bit is cleared   by hardware on issuance.	
$22: 20$	RW	0	RANK. Destination rank for command.   $19: 16$   RW   $15: 0$   RW	MRS_BA. Address bits driven to DDR_BA[2:0] pins for the DRAM command   being issued due to a valid bit being set in this register.

2.15.6 MC_CHANNEL_0_REFRESH_THROTTLE_SUPPORT MC_ CHANNEL_1_ REFRESH_-THROTTLE_ SUPPORT MC_CHANNEL_2_ REFRESH_THROTTLE_ SUPPORT

This register supports Self Refresh and Thermal Throttle functions.

| Device: 4, 5, <br> Function: 0 <br> Offset: <br> Access as a Dword |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| Bit | Type | Reset <br> Value |  |
| $3: 2$ | RW | 0 | I NC_ENTERPWRDWN_RATE. Powerdown rate will be increased during <br> thermal throttling based on the following configurations. <br> 00: tRANKIDLE (Default) <br> 01: 16 <br> $10: 24$ <br> $11: 32$ |
| 1 | RW | 0 | DIS_OP_REFRESH. When set, the refresh engine will not issue opportunistic <br> refresh. |
| 0 | RW | 0 | ASR_PRESENT. When set, indicates DRAMs on this channel can support <br> Automatic Self Refresh. If the DRAM is not supporting ASR (Auto Self Refresh), <br> then Self Refresh entry will be delayed until the temperature is below the 2x <br> refresh temperature. |

2.15 .7


The initial MRS register values for MR0, and MR1 can be specified in this register. These values are used for the automated MRS writes used as a part of the training FSM. The remaining values of the MRS register must be specified here.

Device: 4, 5, 6   Function: 0   Offset: 70h   Access as a Dword			
Bit	Type	Reset   Value	
$31: 16$	RW	0	MR1. The values to write to MR1 for A15:A0.
$15: 0$	RW	0	MR0. The values to write to MR0 for A15:A0.

2.15.8 MC_CHANNEL_0_MRS_VALUE_2

MC_ CHANNEL_1_ MRS_VALUE_- 2
MC_CHANNEL_2_MRS_VALUE_2
The initial MRS register values for MR2. This register also contains the values used for RC0 and RC2 writes for registered DIMMs. These values are used during the automated training sequence when MRS writes or registered DIMM RC writes are used. The RC fields do not need to be programmed if the address inversion and 3T/1T transitions are disabled.

| Device: 4, 5, 6 <br> Function: 0 <br> Offset: 74h <br> Access as a Dword |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| Bit | Type | Reset <br> Value |  |
| $23: 20$ | RW | 0 | RC2. The values to write to the RC2 register on RDIMMS. This value will be <br> written whenever 3T or 1T timings are enabled by hardware. For this reason bit <br> 1 of the RC2 field (bit 21 of this register) will be controlled by hardware. <br> 233: 22] and [20] will be driven with the RDI MM register write command for <br> RC2. |
| $19: 16$ | RW | 0 | RC0. The values to write to the RC0 register on RDIMMS. This value will be <br> written whenever address inversion is enabled or disabled by hardware. For this <br> reason bit 0 of the RC0 field (bit 16 of this register) will be controlled by <br> hardware. [19:17] will be driven with the RDIMM register write command for <br> RC0. |
| $15: 0$ | RW | 0 | MR2. The values to write to MR2 for A15: A0. |

### 2.15 .9 <br> MC CHANNEL_0_RANK <br> PRESENT <br> MC_CHANNEL_1_RANK <br> PRESENT <br> MC_CHANNEL__2_RANK_PRESENT

This register provides the rank present vector.

Device Functi Offset Acces	$\begin{aligned} & 4,5,6 \\ & 0 \\ & \text { 7Ch } \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset   Value	Description
7:0	RW	0	RANK_PRESENT. Vector that represents the ranks that are present. Each bit represents a logical rank. When two or fewer DIMMs are present, [3:0] represents the four possible ranks in DIMM0 and [7:4] represents the ranks that are possible in DIMM1. When three DIMMs are present, then the following applies:   [1:0] represents ranks 1:0 in Slot 0   [3:2] represents ranks 3:2 in Slot 1   [5:4] represents ranks 5:4 in Slot 2

2.15.10 MC_CHANNEL_0_RANK_TIMI NG_A

MC_ $^{-}$CHANNEL_1_RANK_TIMI NG_A
MC_CHANNEL_2_RANK_TIMI NG_A
This register contains parameters that specify the rank timing used. All parameters are in DCLK.

Device: Functio Offset: Access	$\begin{aligned} & 4,5,6 \\ & 0 \\ & 80 h \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
28:26	RW	0	tddWrTRd. Minimum delay between a write followed by a read to different DIMMs.   000: 1   001: 2   010: 3   011: 4   100: 5   101: 6   110: 7   111: 8
25:23	RW	0	tdrWrTRd. Minimum delay between a write followed by a read to different ranks on the same DIMM.   000: 1   001: 2   010: 3   011: 4   100: 5   101: 6   110: 7   111: 8
22:19	RW	0	tsrWrTRd. Minimum delay between a write followed by a read to the same rank.   0000: 10   0001: 11   0010: 12   0011: 13   0100: 14   0101: 15   0110: 16   0111: 17   1000: 18   1001: 19   1010: 20   1011: 21   1100: 22   1101: RSVD   1110: RSVD   1111: RSVD


Device: Functio Offset: Access	$\begin{aligned} & 4,5,6 \\ & 0 \\ & 80 h \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset   Value	Description
18:15	RW	0	tddRdTWr. Minimum delay between Read followed by a Write to different DIMMs.   0000: 2   0001: 3   0010: 4   0011: 5   0100: 6   0101: 7   0110: 8   0111: 9   1000: 10   1001: 11   1010: 12   1011: 13   1100: 14   1101: RSVD   1110: RSVD   1111: RSVD
14:11	RW	0	tdrRdTWr. Minimum delay between Read followed by a write to different ranks on the same DIMM.   0000: 2   0001: 3   0010: 4   0011: 5   0100: 6   0101: 7   0110: 8   0111: 9   1000: 10   1001: 11   1010: 12   1011: 13   1100: 14   1101: RSVD   1110: RSVD   1111: RSVD
10:7	RW	0	tsrRdTWr. Minimum delay between Read followed by a write to the same rank.   0000: RSVD   0001: RSVD   0010: RSVD   0011: 5   0100: 6   0101: 7   0110: 8   0111: 9   1000: 10   1001: 11   1010: 12   1011: 13   1100: 14   1101: RSVD   1110: RSVD   1111: RSVD


Devic Funct Offse Acces	$4,5,6$   0 80h a Dword		
Bit	Type	Reset Value	Description
6:4	RW	0	tddRdTRd. Minimum delay between reads to different DIMMs.   000: 2   001: 3   010: 4   011: 5   100: 6   101: 7   110: 8   111: 9
3:1	RW	0	tdrRdTRd. Minimum delay between reads to different ranks on the same DIMM.   000: 2   001: 3   010: 4   011: 5   100: 6   101: 7   110: 8   111: 9
0	RW	0	tsrRdTRd. Minimum delay between reads to the same rank. $\begin{aligned} & 0: 4 \\ & 1: 6 \end{aligned}$

### 2.15.11 MC CHANNEL 0 RANK TIMING B <br> MC_ $_{-}^{-}$CHANNEL_1_RANK_TI MI NG_B MC_CHANNEL_2_RANK_TIMING_B

This register contains parameters that specify the rank timing used. All parameters are in DCLK.

Device: Functio Offset: Access	$\begin{aligned} & 4,5,6 \\ & 0 \\ & \text { 84h } \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
20:16	RW	0	B2B_CAS_DELAY. Controls the delay between CAS commands in DCLKS. The minimum spacing is 4 DCLKS. Values below 3 have no effect. A value of 0 disables the logic. Setting the value between 3-31 also spaces the read data by 0-29 DCLKS. The value entered is one less than the spacing required, i.e. a spacing of 5 DCLKS between CAS commands (or 1 DCLK on the read data) requires a setting of 4 .
15:13	RW	0	tddWrTWr. Minimum delay between writes to different DIMMs.   000: 2   001: 3   010: 4   011: 5   100: 6   101: 7   110: 8   111: 9
12:10	RW	0	tdrWrTWr. Minimum delay between writes to different ranks on the same DIMM.   000: 2   001: 3   010: 4   011: 5   100: 6   101: 7   110: 8   111: 9
9	RW	0	ts $\mathbf{r W r T W r}$. Minimum delay between writes to the same rank. $\begin{aligned} & 0: 4 \\ & 1: 6 \end{aligned}$
8:6	RW	0	tRRD. Specifies the minimum time between activate commands to the same rank.
5:0	RW	0	tFAW. Four Activate Window. Specifies the time window in which four activates are allowed the same rank.

### 2.15.12 MC_CHANNEL_ O_BANK TIMING <br> $\mathrm{MC}_{-}^{-}$CHANNEL_1-BANK-TIMING <br> MC_CHANNEL_2_BANK_TIMING

This register contains parameters that specify the bank timing parameters. These values are in DCLK. The values in these registers are encoded where noted. All of these values apply to commands to the same rank only.

```
Device: 4, 5, 6
```

Function: 0
Offset: 88h
Access as a Dword

Bit	Type	Reset   Value	Description
$21: 17$	RW	0	tWTPr. Minimum Write CAS to Precharge command delay.
$16: 13$	RW	0	tRTPr. Minimum Read CAS to Precharge command delay.
$12: 9$	RW	0	tRCD. Minimum delay between Activate and CAS commands.
$8: 4$	RW	0	tRAS. Minimum delay between Activate and Precharge commands.
$3: 0$	RW	0	tRP. Minimum delay between Precharge command and Activate command.

### 2.15.13 MC_CHANNEL_0_REFRESH_TIMING <br> MC_CHANNEL_1_REFRESH_TI MI NG MC_CHANNEL_2_REFRESH_TIMING

This register contains parameters that specify the refresh timings. Units are in DCLK.

Device: Functio Offset: Access	$\begin{aligned} & 4,5,6 \\ & 0 \\ & \text { 8Ch } \\ & \text { is a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
29:19	RW	0	tTHROT_OPPREF. The minimum time between two opportunistic refreshes.   Should be set to tRFC in DCLKS. Zero is an invalid encoding. A value of 1 should be programmed to disable the throttling of opportunistic refreshes. By setting this field to tRFC, current to a single DIMM can be limited to that required to support this scenario without significant performance impact:   - 8 panic refreshes in tREFI to one rank   - 1 opportunistic refresh every tRFC to another rank   - full bandwidth delivered by the third and fourth ranks   Platforms that can supply peak currents to the DIMMs should disable opportunistic refresh throttling for max performance.
18:9	RW	0	tREFI_8. Average periodic refresh interval divided by 8.
8:0	RW	0	tRFC. Delay between the refresh command and an activate or refresh command.

### 2.15.14 MC_CHANNEL_0_CKE_TI MI NG

MC_ ${ }^{-}$CHANNEL_-1_CKE_TI MI NG
MC_CHANNEL__ 2_CKE_TI MI NG
This register contains parameters that specify the CKE timings. All units are in DCLK.

Device Functi Offset: Access	4, 5, 6   0   90h   a Dword		
Bit	Type	Reset Value	Description
31:24	RW	0	tRANKIDLE. Rank will go into powerdown after it has been idle for the specified number of dclks. tRANKIDLE covers max(txxxPDEN). Minimum value is tWRAPDEN. If CKE is being shared between ranks then both ranks must be idle for this amount of time. A Power Down Entry command will be requested for a rank after this number of DCLKs if no request to the rank is in the MC.
23:21	RW	0	tXP. Minimum delay from exit power down with DLL and any valid command. Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL. Slow exit precharge powerdown is not supported.
20:11	RW	0	tXSDLL. Minimum delay between the exit of self refresh and commands that require a locked DLL.
10:3	RW	0	tXS. Minimum delay between the exit of self refresh and commands not requiring a DLL.
2:0	RW	0	tCKE. CKE minimum pulse width.

### 2.15.15 MC_CHANNEL_0_ZQ_TIMI NG

MC_CHANNEL_1_ZQ-TIMING
MC_CHANNEL_2_ZQ_TIMI NG
This register contains parameters that specify ZQ timing. All units are DCLK unless otherwise specified. The register encodings are specified where applicable.

Device: 4, 5, 6   Function: 0   Offset:   94h   Access as a Dword			
Bit	Type	Reset   Value	
30	RW	1	Parallel_ZQ. Enable ZQ calibration to different ranks in parallel.
29	RW	1	tZQenable. Enable the issuing of periodic ZQCS calibration commands.
$28: 8$	RW	16410	ZQ_ Interval. Nominal interval between periodic ZQ calibration in increments   of maintenance counter intervals.
$7: 5$	RW	4	tZQCS. Specifies ZQCS cycles in increments of 16. This is the minimum delay   between ZQCS and any other command. This register should be programmed to   at least 64/16=4='100' to conform to the DDR3 spec.
$4: 0$	RW	0	tZQI nit. Specifies ZQI nit cycles in increments of 32. This is the minimum delay   between ZQCL and any other command. This register should be programmed to   at least 512/32=16='10000' to conform to the DDR3 spec.

### 2.15.16 MC CHANNEL 0 RCOMP PARAMS <br> MC_CHANNEL-1_RCOMP-PARAMS <br> MC_ CHANNEL_2-RCOMP_PARAMS

This register contains parameters that specify Rcomp timings.

Device Functi Offset Acces	$\begin{aligned} & \text { 4, 5, } 6 \\ & 0 \\ & 98 \mathrm{~h} \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
16	RW	1	RCOMP_EN. Enable Rcomp. When set, the Integrated Memory Controller will do the programmed blocking of requests and send indications.
15:10	RW	2	RCOMP_CMD_DCLK. Delay from the start of an RCOMP command blocking period in which the command rcomp update is done. Program this field to 15 for all configurations.
9:4	RW	9	RCOMP LENGTH. Number of Dclks during which all commands are blocked for an RCOM $\overline{\text { P }}$ update. Data RCOMP update is done on the last DCLK of this period. Program this field to 31 for all configurations.
3:0	RW	0	RCOMP INTERVAL. Duration of interval between Rcomp in increments of maintenance counter intervals. Register value is (maintenance counter intervals-1). For example, a setting of 0 will produce one maintenance counter interval.

### 2.15.17 MC_CHANNEL_0_ODT_PARAMS1 <br> MC_CHANNEL_1-ODT_PARAMS1 <br> MC_CHANNEL_2_ODT_PARAMS1

This register contains parameters that specify ODT timings. All values are in DCLK.

| Device: <br> Function: 0, 5, <br> Offset: <br> 9Ch <br> Access as a Dword |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| Bit | Type | Reset <br> Value |  |
| $26: 24$ | RW | 0 | TAOFD. ODT turn off delay. |
| $23: 20$ | RW | 6 | MCODT_DURATI ON. Controls the duration of MC ODT activation. BL/2 + 2. |
| $19: 16$ | RW | 4 | MCODT_DELAY. Controls the delay from Rd CAS to MC ODT activation. This <br> value is tCAS-1. |
| $15: 12$ | RW | 5 | ODT_RD_DURATI ON. Controls the duration of Rd ODT activation. This value <br> is BL/2 + 2. |
| $11: 8$ | RW | 0 | ODT_RD_DELAY. Controls the delay from Rd CAS to ODT activation. This <br> value is tCAS-tWL. |
| $7: 4$ | RW | 5 | ODT_WR_DURATI ON. Controls the duration of Wr ODT activation. value is <br> BL/2+ 2. |
| $3: 0$ | RW | 0 | ODT_WR_DELAY. Controls the delay from Wr CAS to ODT activation. This <br> value is always 0. |

### 2.15.18 MC_CHANNEL_0_ODT_PARAMS2 <br> MC_- CHANNEL_- ${ }^{-}$ODT_- PARAMS2 <br> MC_CHANNEL_2_ODT_PARAMS2

The FORCE_ODT fields are directly mapped to pins. When the force bits are set, the corresponding pin on the interface is always driven high regardless of the cycle that is being generated. This register is used in debug only and not during normal operation.

Device: 4, 5,   Function: 0   Offset:   Access as a Dword			
Bit	Type	Reset   Value	
9	RW	0	MCODT_Writes. Drive MC ODT on reads and writes.
8	RW	0	FORCE_MCODT. Force MC ODT to always be asserted.
7	RW	0	RSVD.
6	RW	0	RSVD.
5	RW	0	FORCE_ODT5. Force ODT pin 5 to always be asserted.
4	RW	0	FORCE_ODT4. Force ODT pin 4 to always be asserted.
3	RW	0	FORCE_ODT3. Force ODT pin 3 to always be asserted.
2	RW	0	FORCE_ODT2. Force ODT pin 2 to always be asserted.
1	RW	0	FORCE_ODT1. Force ODT pin 1 to always be asserted.
0	RW	0	FORCE_ODT0. Force ODT pin 0 to always be asserted.

2.15.19 MC_CHANNEL_O_ODT_MATRIX_RANK_0_3_RD $\mathrm{MC}^{-} \mathrm{CHANNEL}^{-} \mathrm{I}^{-}$ODT $^{-}$MATRIX $\mathrm{RANK}^{-} \mathrm{O}^{-}$RD MC_CHANNEL_2_ODT-MATRIX_RANK_O_3_RD

This register contains the ODT activation matrix for RANKS 0 to 3 for Reads.

Device: 4, 5, 6   Function: 0   Offset: A4h   Access as a Dword			
Bit	Type	Reset   Value	
$31: 24$	RW	1	ODT_RD3. Bit patterns driven out onto ODT pins when Rank3 is read.
$23: 16$	RW	1	ODT_RD2. Bit patterns driven out onto ODT pins when Rank2 is read.
$15: 8$	RW	4	ODT_RD1. Bit patterns driven out onto ODT pins when Rank1 is read.
$7: 0$	RW	4	ODT_RDO. Bit patterns driven out onto ODT pins when Rank0 is read.

2.15.20 MC_CHANNEL_0_ODT_MATRIX_RANK_4_7_RD
$\mathrm{MC}_{-}^{-} \mathrm{CHANNEL}_{-1}^{-} \mathrm{ODT}_{-}^{-}$MATRIX_RANK-4-7-RD
MC_CHANNEL_2_ODT-MATRIX_RANK_4-7_RD
This register contains the ODT activation matrix for RANKS 4 to 7 for Reads.

Device: 4, 5, 6   Function:)0   Offset:   A8h   Access as aword			
Bit	Type	Reset   Value	
$31: 24$	RW	1	ODT_RD7. Bit patterns driven out onto ODT pins when Rank7 is read.
$23: 16$	RW	1	ODT_RD6. Bit patterns driven out onto ODT pins when Rank6 is read.
$15: 8$	RW	4	ODT_RD5. Bit patterns driven out onto ODT pins when Rank5 is read.
$7: 0$	RW	4	ODT_RD4. Bit patterns driven out onto ODT pins when Rank4 is read.

2.15.21 MC_CHANNEL_ O_ODT_MATRIX_RANK O_3 WR $\mathrm{MC}^{-}$CHANNEL $1^{-}$ODT $^{-}$MATRIX ${ }^{-}$RANK $\mathrm{O}^{-} 3^{-}$WR MC_ CHANNEL_2_ODT-MATRIX_RANK_0_3_WR

This register contains the ODT activation matrix for RANKS 0 to 3 for Writes.

| Device: 4, 5, 6 <br> Function: 0 <br> Offset: ACh <br> Access as a Dword |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| Bit | Type | Reset <br> Value |  |
| $31: 24$ | RW | 9 | ODT_WR3. Bit patterns driven out onto ODT pins when Rank3 is written. |
| $23: 16$ | RW | 5 | ODT_WR2. Bit patterns driven out onto ODT pins when Rank2 is written. |
| $15: 8$ | RW | 6 | ODT_WR1. Bit patterns driven out onto ODT pins when Rank1 is written. |
| $7: 0$ | RW | 5 | ODT_WR0. Bit patterns driven out onto ODT pins when Rank0 is written. |

### 2.15.22 MC_CHANNEL_0_ODT_MATRIX_RANK 4 7 WR MC CHANNEL $1^{-}$ODT MATRIX RANK 4- ${ }^{-}$WR MC_ CHANNEL_2_ODT_MATRIX_RANK_4_ $\mathbf{7}^{-}$WR

This register contains the ODT activation matrix for RANKS 4 to 7 for Writes.

Device: 4, 5,   Function: 0   Offset:   BOh   Access as a Dword			
Bit	Type	Reset   Value	
$31: 24$	RW	9	ODT_WR7. Bit patterns driven out onto ODT pins when Rank7 is written.
$23: 16$	RW	5	ODT_WR6. Bit patterns driven out onto ODT pins when Rank6 is written.
$15: 8$	RW	6	ODT_WR5. Bit patterns driven out onto ODT pins when Rank5 is written.
$7: 0$	RW	5	ODT_WR4. Bit patterns driven out onto ODT pins when Rank4 is written

2.15.23 MC_CHANNEL_0_WAQ_PARAMS

MC_ CHANNEL_1_ WAQ_PARAMS
MC_CHANNEL_2_WAQ_PARAMS
This register contains parameters that specify settings for the Write Address Queue.

Device:   Function: 0,   Offset:   Access ah a Dword   Act			
Bit	Type	Reset   Value	
$29: 25$	RW	6	PRECASWRTHRESHOLD. Threshold above which Medium-Low Priority reads   cannot PRE-CAS write requests.
$24: 20$	RW	31	PARTWRTHRESHOLD. Threshold used to raise the priority of underfill   requests in the scheduler. Set to 31 to disable.
$19: 15$	RW	31	ISOCEXI TTHRESHOLD. Write Major Mode ISOC Exit Threshold. When the   number of writes in the WAQ drops below this threshold, the MC will exit write   major mode in the presence of a read.
$14: 10$	RW	31	ISOCENTRYTHRESHOLD. Write Major Mode ISOC Entry Threshold. When the   number of writes in the WAQ exceeds this threshold, the MC will enter write   major mode in the presence of a read.
$9: 5$	RW	22	WMENTRYTHRESHOLD. Write Major Mode Entry Threshold. When the number   of writes in the WAQ exceeds this threshold, the MC will enter write major   mode.
$4: 0$	RW	22	WMEXITTHRESHOLD. Write Major Mode Exit Threshold. When the number of   writes in the WAQ drop below this threshold, the MC will exit write major mode.

2.15.24 MC_CHANNEL_0_SCHEDULER_PARAMS

MC_ CHANNEL_1_SCHEDULER_PARAMS
MC_CHANNEL_2_SCHEDULER_PARAMS
These are the parameters used to control parameters within the scheduler.

Device: 4, 5, 6   Function: 0   Offset:   Access as a Dword			
Bit	Type	Reset   Value	
12	RW	1	CS_FOR_CKE_TRANSITI ON. Specifies if chip select is to be asserted when   CKE transitions with PowerDown entry/exit and SelfRefresh exit.
11	RW	0	FLOAT_EN. When set, the address and command lines will float to save power   when commands are not being sent out. This setting may not work with   RDIMMs.
$10: 6$	RW	7	PRECASRDTHRESHOLD. Threshold above which Medium-Low Priority reads   can PRE-CAS write requests.
5	RW	0	DISABLE_I SOC_RBC_RESERVE. When set this bit will prevent any RBC's   from being reserved for ISOC.
3	RW	0	ENABLE2N. Enable 2n Timing.
$2: 0$	RW	0	PRIORITYCOUNTER. Upper 3 MSB of 8 bit priority time out counter.

### 2.15.25 MC_CHANNEL_ O_MAI NTENANCE_OPS MC_CHANNEL_1_MAI NTENANCE-OPS MC_CHANNEL_-2_MAI NTENANCE_OPS

This register enables various maintenance operations such as ZQ, RCOMP, etc.

Device: 4, 5, 6   Function: 0   Offset: BCh   Access as a Dword			
Bit	Type	Reset   Value	
$12: 0$	RW	0	MAI NT_CNTR. Value to be loaded in the maintenance counter. This counter   sequences the rate to ZQ, RCOMP in increments of maintenance counter   intervals.

### 2.15.26 MC_CHANNEL_0_TX_BG_SETTINGS <br> MC CHANNEL 1 TX BG SETTINGS MC_CHANNEL_2_TX_BG_SETTINGS

These are the parameters used to set the Start Scheduler for TX clock crossing. This is used to send commands to the DIMMs.

The NATIVE RATIO is UCLK multiplier of BCLK $=\mathrm{U}$
ALIEN RATION is DCLK multiplier of BCLK = D
PIPE DEPTH $=8$ UCLK (design dependent variable)
MIN SEP DELAY $=670$ ps (design dependent variable, Internally this is logic delay of FIFO + clock skew between U and D)

TOTAL EFFECTIVE DELAY $=$ PIPE DEPTH * UCLK PERIOD in ps + MIN SEP DELAY
DELAY FRACTION = (TOTAL EFFECTIVE DELAY * D) / (UCLK PERIOD in ps * G.C.D(U,D)
Determine OFFSET MULTIPLE using the equation
FLOOR ((OFFSET MULTIPLE +1) / G.C.D (U,D)) > DELAY FRACTION
OFFSET VALUE $=$ MOD $($ OFFSET MULTIPLE, U) $<=$ Final answer for OFFSET MULTIPLE

Device: 4, 5, 6   Function: 0   Offset: COh   Access as a Dword			
Bit	Type	Reset   Value	
$23: 16$	RW	2	OFFSET. TX offset setting.
$15: 8$	RW	1	ALI ENRATI O. Dclk ratio to BCLK. TX Alien Ratio setting.
$7: 0$	RW	4	NATI VERATI O. Uclk ratio to BCLK. TX Native Ratio setting.

2.15.27 MC_CHANNEL_0_RX_BGF SETTI NGS

MC_CHANNEL_1_RX_BGF_SETTI NGS MC_CHANNEL__ 2_RX_BGF_SETTI NGS

These are the parameters used to set the Rx clock crossing BGF.

Device: 4, 5, 6Function:Offset: C8hAccess as a Dword			
Bit	Type	Reset Value	Description
26:24	RW	2	PTRSEP. RX FIFO pointer separation settings. THIS FIELD IS NOT USED BY HARDWARE. RX Pointer separation can be modified via the round trip setting (larger value causes a larger pointer separation).
23:16	RW	0	OFFSET. RX offset setting.
15:8	RW	1	ALI ENRATIO. QcIk to BCLK ratio. RX Alien Ratio setting.
7:0	RW	2	NATI VERATI O. UcIk to BCLK ratio. RX Native Ratio setting.

2.15.28 MC_CHANNEL_0_EW_BGF_SETTI NGS MC $^{-}$CHANNEL ${ }^{-} 1^{-}$EW $^{-}$BGF $^{-}$SETTI NGS MC_CHANNEL_2_EW_BGF_SETTI NGS

These are the parameters used to set the early warning RX clock crossing BGF.

Device: 4, 5, 6   Function: 0   Offset: CCh   Access as a Dword			
Bit	Type	Reset   Value	
$15: 8$	RW	1	ALI ENRATI O. Dclk to Bclk ratio. Early warning Alien Ratio setting.

2.15.29 MC_CHANNEL_0_EW_BGF_OFFSET_SETTI NGS

MC CHANNEL 1-EW BGF OFFSET ${ }^{-}$SETTI NGS
MC_CHANNEL_2_EW_BGF_OFFSET_SETTI NGS
These are the parameters to set the early warning RX clock crossing BGF.

Device: 4, 5, 6   Function: 0   Offset: DOh   Access as a Dword			
Bit	Type	Reset   Value	
$15: 8$	RW	2	EVENOFFSET. Early warning even offset setting.
$7: 0$	RW	0	ODDOFFSET. Early warning odd offset setting.

### 2.15.30 MC_CHANNEL_ O_ROUND TRIP_LATENCY <br> MC_- $^{-}$CHANNEL_1-ROUND_TRIP_-LATENCY <br> MC_ CHANNEL_ $_{-}^{-}$- ROUND_TRIP_- LATENCY

These are the parameters to set the early warning RX clock crossing the Bubble Generator FIFO (BGF) used to go between different clocking domains. These settings provide the gearing necessary to make that clock crossing.

```
Device: 4, 5, 6
```

Function: 0
Offset: D4h
Access as a Dword

Bit	Type	Reset   Value	Description
$7: 0$	RW	0	ROUND_TRI P_LATENCY. Round trip latency for reads. Units are in UCLK. This   register must be programmed with the appropriate time for read data to be   retuned from the pads after a READ CAS is sent to the DIMMs.

### 2.15.31 MC_CHANNEL_0_PAGETABLE_PARAMS1 <br> MC_CHANNEL_1_PAGETABLE-PARAMS1 <br> MC_CHANNEL_2_PAGETABLE_PARAMS1

These are the parameters used to control parameters for page closing policies.

Device   Functi Offset   Acces	$\begin{aligned} & \text { 4, 5, } 6 \\ & 0 \\ & \text { D8h } \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
15:8	RW	0	RSVD.
7:0	RW	0	ADAPTIVETI MEOUTCOUNTER. Upper 8 MSBs of a 12 -bit counter. This counter adapts the interval between assertions of the page close flag. For a less aggressive page close, the length of the count interval is increased and vice versa for a more aggressive page close policy.

2.15.32

$\begin{aligned} & \mathrm{MC}^{-} \boldsymbol{\mathrm { TX }} \\ & \mathrm{CO}_{-}^{-} \mathrm{BC} \end{aligned}$	

Channel Bubble Generator ratios for CMD and DATA.

Device: 4, 5, 6   Function: 0   Offset: EOh   Access as a Dword			
Bit	Type	Reset   Value	
$15: 8$	RW	1	ALI ENRATI O. DCLK to BCLK ratio.
$7: 0$	RW	4	NATI VERATI O. UCLK to BCLK ratio.

### 2.15.33 MC_TX_BG_CMD_OFFSET_SETTINGS CHO <br>  <br> MC_TX_BG_CMD_OFFSET_SETTI NGS_CH2

Integrated Memory Controller Channel Bubble Generator Offsets for CMD FIFO. The Data command FIFOs share the settings for channel 0 across all three channels. The register in Channel 0 must be programmed for all configurations.

Device: 4, 5, 6   Function: 0   Offset: E4h   Access as a Dword			
Bit	Type	Reset Value	Description
9:8	RW	0	PTROFFSET. FIFO pointer offset.
7:0	RW	0	BGOFFSET. BG offset.

2.15.34 MC TX BG DATA OFFSET SETTI NGS CHO MC $^{-}$TX $^{-}$BG $^{-}$DATA ${ }^{-}$OFFSET- SETTI NGS ${ }^{-}$CH1 MC_ $_{-}^{-} \mathbf{T X}_{-}^{-}$BG_D_ $_{\text {- }}$

Integrated Memory Controller Channel Bubble Generator Offsets for DATA FIFO.

Device: 4, 5,   Function: 0   Offset:   Access as a Dword			
Bit	Type	Reset   Value	
$16: 14$	RW	0	RDPTROFFSET. Read FIFO pointer offset.
$13: 10$	RW	0	WRTPTROFFSET. Write FIFO pointer offset.
$9: 8$	RW	0	PTROFFSET. FIFO pointer offset.
$7: 0$	RW	0	BGOFFSET. BG offset.

### 2.16 Integrated Memory Controller Channel Address Registers

\subsection*{2.16 .1 <br> |  |
| :---: |
|  |  |
|  |  |

Channel 0 DIMM Organization Descriptor Register.

Device: Functio Offset: Access	$\begin{aligned} & 4 \\ & 1 \\ & 48 \mathrm{~h}, 4 \mathrm{Ch}, 50 \mathrm{~h} \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset   Value	Description
12:10	RW	0	RANKOFFSET. Rank Offset for calculating RANK. This corresponds to the first logical rank on the DIMM. The rank offset is always programmed to 0 for the DIMM 0 DOD registers. (DIMM 0 rank offset is always 0 .) DIMM 1 DOD rank offset is either 4 for two DIMMs per channel or 2 if there are three DIMMs per channel. DIMM2 DOD rank offset is always 4 as it is only used in three DIMMs per channel case.
9	RW	0	DI MMPRESENT. DIMM slot is populated.
8:7	RW	0	NUMBANK. Defines the number of (real, not shadow) banks on these DIMMs.   00: Four-banked   01: Eight-banked   10: Sixteen-banked
6:5	RW	0	NUMRANK. Number of Ranks. Defines the number of ranks on these DIMMs.   00: Single Ranked   01: Double Ranked   10: Quad Ranked
4:2	RW	0	NUMROW. Number of Rows. Defines the number of rows within these DIMMs.   000: 2^12 Rows   001: 2^13 Rows   010: 2^14 Rows   011: 2^15 Rows   100: 2^16 Rows
1:0	RW	0	NUMCOL. Number of Columns. Defines the number of columns within on these DIMMs.   00: 2^10 columns   01: 2^11 columns   10: $2^{\wedge} 12$ columns   11: RSVD.

### 2.16.2 MC_DOD_CH1_0

MC_DOD_CH1-1
MC_DOD_CH1_2
Channel 1 DIMM Organization Descriptor Register.

Device: 5   Function: 1   Offset: 48h, 4Ch, 50h   Access as a Dword			
Bit	Type	Reset Value	Description
12:10	RW	0	RANKOFFSET. Rank Offset for calculating RANK. This corresponds to the first logical rank on the DIMM. The rank offset is always programmed to 0 for the DIMM 0 DOD registers. (DIMM 0 rank offset is always 0 .) DIMM 1 DOD rank offset is either 4 for two DIMMs per channel or 2 if there are three DIMMs per channel. DIMM2 DOD rank offset is always 4 as it is only used in three DIMMs per channel case.
9	RW	0	DI MMPRESENT. DIMM slot is populated.
8:7	RW	0	NUMBANK. Defines the number of (real, not shadow) banks on these DIMMs.   00: Four-banked   01: Eight-banked   10: Sixteen-banked
6:5	RW	0	NUMRANK. Number of Ranks. Defines the number of ranks on these DIMMs.   00: Single Ranked   01: Double Ranked   10: Quad Ranked
4:2	RW	0	NUMROW. Number of Rows. Defines the number of rows within these DIMMs.   000: 2^12 Rows   001: 2^13 Rows   010: 2^14 Rows   011: 2^15 Rows   100: 2^16 Rows
1:0	RW	0	NUMCOL. Number of Columns. Defines the number of columns within on these DIMMs.   00: 2^10 columns   01: 2^11 columns   10: 2^12 columns   11: RSVD.

2.16 .3

MC_DOD_CH2_0
MC_DOD_CH2-1
MC_DOD_CH2_2
Channel 2 DIMM Organization Descriptor Register.

Device: Functio Offset: Access	$\begin{aligned} & 6 \\ & 1 \\ & 48 \mathrm{~h}, 4 \mathrm{Ch}, 50 \mathrm{~h} \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
12:10	RW	0	RANKOFFSET. Rank Offset for calculating RANK. This corresponds to the first logical rank on the DIMM. The rank offset is always programmed to 0 for the DIMM $O$ DOD registers. (DIMM 0 rank offset is always 0 .) DIMM 1 DOD rank offset is either 4 for two DIMMs per channel or 2 if there are three DIMMs per channel. DIMM2 DOD rank offset is always 4 as it is only used in three DIMMs per channel case.
9	RW	0	DI MMPRESENT. DIMM slot is populated.
8:7	RW	0	NUMBANK. Defines the number of (real, not shadow) banks on these DIMMs.   00: Four-banked   01: Eight-banked   10: Sixteen-banked
6:5	RW	0	NUMRANK. Defines the number of ranks on these DIMMs.   00: Single Ranked   01: Double Ranked   10: Quad Ranked
4:2	RW	0	NUMROW. Defines the number of rows within these DIMMs.   000: 2^12 Rows   001: 2^13 Rows   010: 2^14 Rows   011: 2^15 Rows   100: 2^16 Rows
1:0	RW	0	NUMCOL. Defines the number of columns within on these DIMMs.   00: 2^10 columns   01: 2^11 columns   10: $2^{\wedge} 12$ columns   11: RSVD

2.16.4 MC_SAG CHO_0
$\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CHO}^{-} 1$
$\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CHO}^{-} 2$
MC $^{-}$SAG $^{-} \mathrm{CHO}^{-} 3$
$\mathrm{MC}_{-}^{-} \mathrm{SAG}^{-} \mathrm{CHO}_{-}^{-} 4$
MC_SAG-CHO-5
MC-SAG CHO- 6
MC_SAG_CHO_7
MC_SAG_CH1_0
MC-SAG CH1 1
MC ${ }^{-}$SAG $^{-} \mathrm{CHI}^{-1} 2$
MC $^{-}$SAG $^{-} \mathrm{CH1}^{-} 3$
$\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CHI}^{-} 4$
MC_SAG_CH1_5
MC_SAG_CH1_6
MC_SAG_CH1-7
$\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CH}_{2}^{-} \mathbf{0}$
$\mathrm{MC}^{-} \mathrm{SAG}^{-} \mathrm{CH}^{-}-1$
MC_SAG_CH2_2
MC_SAG_CH2_3
MC SAG CH2-4
MC_SAG_CH2_5
MC SAG CH2 ${ }^{-6}$
MC_SAG_CH2_7
Channel Segment Address Registers. For each of the 8 interleave ranges, they specify the offset between the System Address and the Memory Address and the System Address bits used for level 1 interleave, which should not be translated to Memory Address bits. Memory Address is calculated from System Address and the contents of these registers by the following algorithm:

```
m[39:16] = SystemAddress[39:16] + (sign extend {Offset[23:0]});
```

m[15:6] = SystemAddress[15:6];
If (Removed[2]) \{bit 8 removed\};
If (Removed[1]) \{bit 7 removed\};
If (Removed[0]) \{bit 6 removed\};
MemoryAddress[36:6] = m[36:6];

The table below summarizes the combinations of removed bits and divide-by-3 operations for the various supported interleave configurations. All other combinations are not supported.

Note: If any of bits [8:6] are removed, the higher order bits are shifted down.

Removed [8:6]	Divide-By-3	Interleave
000	0	None
001	0	2-Way
011	0	4-Way
000	1	3-Way
001	1	6-Way

Device: 4
Function: 1
Offset: 80h, 84h, 88h, 8Ch, 90h, 94h, 98h, 9Ch
Access as a Dword

Bit	Type	Reset   Value	Description
27	RW	0	DI VBY3. This bit indicates the rule is a 3 or 6 way interleave.
$26: 24$	RW	0	REMOVED. These are the bits to be removed after offset subtraction. These   bits correspond to System Address [8,7,6].
$23: 0$	RW	0	OFFSET. This value should be subtracted from the current system address to   create a contiguous address space within a channel. BITS 9:0 ARE RESERVED   AND MUST ALWAYS BE SET TO 0.

### 2.17 Integrated Memory Controller Channel Rank Registers

2.17.1 MC_RIR_LIMIT_CHO_0

MC_ RIR_LIMIT- $\mathrm{CHO}_{-}^{-} 1$
MC_RIR_LIMIT_CHO_2
MC RIR LIMIT CHO 3
MC $^{-}$RIR $^{-}$LIMIT- $\mathrm{CHO}_{-}^{-} 4$
MC $^{-}$RIR $^{-}$LIMIT ${ }^{-} \mathrm{CHO}^{-} 5$
MC_RIR_LIMIT_CHO_6
MC_ $_{-}^{-}$RIR $_{-}^{-}$LIMIT $\mathbf{M I C O}_{-}^{-} \mathbf{C H}^{-7}$
MC_ $^{-} \mathrm{RIR}_{-}^{-}$LIMIT_- $\mathrm{CHI}_{-}^{-} \mathbf{0}$
MC_RIR_LIMIT_CH1_1
MC_ RIR_LIMIT_CH1-2

MC_RIR_LIMIT_CH1-4
MC_RIR_LIMIT_CH1_5
MC_RIR_LIMIT_CH1_6
MC RIR LIMIT CH1-7
MC ${ }^{-}$RIR $^{-}$LIMIT ${ }^{-} \mathrm{CH}^{-} \mathbf{-}$
MC $^{-}$RIR $^{-}$LIMIT ${ }^{-} \mathrm{CH}_{2}^{-}-1$
MC $^{-}$RIR $^{-}$LIMIT ${ }^{-} \mathrm{CH}^{-}{ }^{-} 2$
MC_ $\mathrm{RIR}_{-}^{-}$ㄴIMIT_- $\mathrm{CH}_{2}^{-}{ }_{-}^{-}$
MC_ RIR_LIMIT_CH2_4
MC_ $_{-}^{-}$RIR $_{-}^{-}$LIMIT ${ }^{-} \mathrm{CH}_{2}^{-}{ }^{-} 5$
MC_ RIR ${ }^{-}$LIMIT_- $\mathrm{CH}_{2}^{-}{ }^{-} 6$
MC_RIR_LIMIT_CH2_7

Channel Rank Limit Range Registers.

Device:   Function: 2   Offset:   Access as a Dword      Bit Type Reset   Value    $9: 0$ RW 0 LI MIT. This specifies the top of the range being mapped to the ranks specified   in the MC_RIR_WAY_CH registers. The most significant bits of the lowest   address in this range is one greater than the limit field in the RIR register with   the next lower index. This field is compared against MA[37:28].

2.17.2 MC_RIR_WAY_CHO_O

MC_RIR_WAY ${ }^{-} \mathrm{CHO}_{-}^{-} 1$
MC_ $^{-}$RIR_WAY ${ }_{-}^{-} \mathrm{CHO}_{-}^{-} 2$
MC_RIR_WAY-CHO_3
MC_RIR_WAY_CHO_4
MC_RIR_WAY_CHO_5
MC_RIR_WAY CHO_6
MC ${ }^{-}$RIR WAY ${ }^{-} \mathbf{C H O}^{-} 7$
MC $^{-}$RIR $^{-}$WAY $^{-} \mathrm{CHO}^{-} 8$
MC- RIR $^{-}$WAY $^{-} \mathrm{CHO}^{-} 9$
MC_ RIR_WAY_CHO_10
MC_RIR_WAY_CHO_ 11
MC_ $^{-}$RIR_WAY_- $^{-} \mathrm{CHO}_{-}^{-} 12$
MC_RIR_WAY_CHO_ 13
MC_RIR_WAY_CHO_ 14
MC_RIR_WAY_CHO-15
MC_RIR_WAY_CHO_16
MC_RIR_WAY_CHO_17
MC RIR WAY CHO 18
MC RIR WAY CHO 19
MC $^{-}$RIR $^{-}$WAY $^{-}$CHO $^{-} 20$
MC $^{-}$RIR $^{-}$WAY $^{-}$CHO $^{-} 21$
MC_ $_{-}^{-}$RIR_WAY_- $^{-} \mathrm{CHO}_{-}^{-} 22$
MC_RIR_WAY_CHO_ 23
MC_ RIR_WAY_CHO_24
MC_RIR_WAY_CHO_25
MC_RIR_WAY_CHO_ 26
MC_RIR_WAY_CHO_ 27
MC_RIR_WAY_CHO_ 28
MC_RIR_WAY_CHO_29
MC RIR WAY CHO 30
MC_RIR_WAY_CHO_31
Channel Rank Interleave Way Range Registers. These registers allow the user to define the ranks and offsets that apply to the ranges defined by the LIMIT in the MC_RIR_LIMIT_CH registers. The mappings are as follows:

RIR_LIMIT_CH\{chan\}[0] -> RIR_WAY_CH\{chan\}[3:0]

RIR_LIMIT_CH\{chan\}[1] -> RIR_WAY_CH\{chan\}[7:6]
RIR_LIMIT_CH\{chan\}[2] -> RIR_WAY_CH\{chan\}[11:10]
RIR_LIMIT_CH\{chan\}[3]-> RIR_WAY_CH\{chan\}[15:14]
RIR_LIMIT_CH\{chan\}[4]-> RIR_WAY_CH\{chan\}[19:18]
RIR_LIMIT_CH\{chan\}[5] -> RIR_WAY_CH\{chan\}[23:22]
RIR_LIMIT_CH\{chan\}[6] -> RIR_WAY_CH\{chan\}[27:26]
RIR_LIMIT_CH\{chan\}[7] -> RIR_WAY_CH\{chan\}[31:28]

Device Functi Offset: C4h, C Access	80h, 84h, 88h, 8 Ch, $90 h, 94 h, 98 h, 9 C h, ~ A 0 h, ~ A 4 h, ~ A 8 h, ~ A C h, ~ B 0 h, ~ B 4 h, ~ B 8 h, ~ B C h, ~ C O h, ~$ CCh, D0h, D4h, D8h, DCh, E0h, E4h, E8h, ECh, F0h, F4h, F8h, FCh a Dword		
Bit	Type	Reset Value	Description
13:4	RW	0	OFFSET. Defines the offset used in the rank interleave. This is a 2's complement value.
3:0	RW	0	RANK. Defines which rank participates in WAY(n). If MC_CONTROL.CLOSED_PAGE=1, this field defines the DRAM rank selected whēn MemoryAddress[ $\overline{7}: 6]=(n)$. If MC_CONTROL.CLOSED_PAGE $=0$, this field defines which rank is selected when MemoryAddress[13:1 $\overline{2}]=(n)$. ( $n$ ) is the instantiation of the register. This field is organized by physical rank. Bits [3:2] are the encoded DIMM ID(slot). Bits [1:0] are the rank within that DIMM.

### 2.17.3 MC_RIR_WAY_CH1_0

MC_RIR_WAY_CH1-1
MC_RIR_WAY_CH1-2
MC_RIR_WAY_CH1-3
MC_RIR_WAY_CH1_4
MC-RIR WAY ${ }^{-} \mathbf{C H I}^{-} 5$
MC RIR WAY CH1 6
MC_RIR_WAY-CH1-7
MC-RIR ${ }^{-}$WAY $^{-} \mathrm{CHI}^{-} 8$
MC $^{-}$RIR $^{-}$WAY $^{-} \mathrm{CHI}^{-} 9$
MC $^{-}$RIR $^{-}$WAY $^{-} \mathbf{C H 1}^{-} 10$
MC_ RIR_WAY ${ }^{-} \mathbf{C H 1}_{-11}^{-1}$
MC_RIR_WAY_CH1_12
MC_RIR_WAY_CH1_13
MC- RIR_WAY_CH1-14
MC_ ${ }^{-}$RIR_WAY $_{-}^{-}$CH1_- $^{-15}$
MC_RIR_WAY_CH1_ 16
MC-RIR WAY CH1-17
MC $^{-}$RIR $^{-}$WAY $^{-}$CH1 $^{-18}$
MC_RIR_WAY_CH1-19
MC RIR WAY CH1 20
MC ${ }^{-}$RIR $^{-}$WAY $^{-}$CH1 $^{-} 21$
MC $^{-}$RIR $^{-}$WAY $^{-} \mathrm{CHI}^{-} 22$
MC_RIR_WAY_CH1_23

MC_RIR_WAY_CH1_24
MC_ RIR_WAY ${ }^{-} \mathrm{CHI}^{-} 25$
MC-RIR WAY ${ }^{-}$CH1 $^{-} 26$
MC_RIR_WAY_CH1_ 27
MC_RIR_WAY_CH1_28
MC_ RIR_WAY ${ }_{-}^{-} \mathrm{CH}^{-} \mathbf{-} 29$
MC- RIR WAY CH1-30
MC_RIR_WAY_CH1_31
Channel Rank Interleave Way Range Registers. These registers allow the user to define the ranks and offsets that apply to the ranges defined by the LIMIT in the MC_RIR_LIMIT_CH registers. The mappings are as follows:

RIR_LIMIT_CH\{chan\}[0] -> RIR_WAY_CH\{chan\}[3:0]
RIR_LIMIT_CH\{chan\}[1]-> RIR_WAY_CH\{chan\}[7:6]
RIR_LIMIT_CH\{chan\}[2]-> RIR_WAY_CH\{chan\}[11:10]
RIR_LIMIT_CH\{chan\}[3] -> RIR_WAY_CH\{chan\}[15:14]
RIR_LIMIT_CH\{chan\}[4]-> RIR_WAY_CH\{chan\}[19:18]
RIR_LIMIT_CH\{chan\}[5] -> RIR_WAY_CH\{chan\}[23:22]
RIR_LIMIT_CH\{chan\}[6] -> RIR_WAY_CH\{chan\}[27:26]
RIR_LIMIT_CH\{chan\}[7] -> RIR_WAY_CH\{chan\}[31:28]

Device Functi Offset C4h, Acces	5 2   80h, $84 \mathrm{~h}, 88 \mathrm{~h}, 8 \mathrm{Ch}, 90 \mathrm{~h}, 94 \mathrm{~h}, 98 \mathrm{~h}, 9 \mathrm{Ch}, \mathrm{A} 0 \mathrm{~h}, \mathrm{~A} 4 \mathrm{~h}, \mathrm{~A} 9 \mathrm{~h}, \mathrm{ACh}, \mathrm{B0h}, \mathrm{~B} 4 \mathrm{~h}, \mathrm{B8h}, \mathrm{BCh}, \mathrm{COh}$, CCh, D0h, D4h, D8h, DCh, E0h, E4h, E8h, ECh, F0h, F4h, F8h, FCh a Dword		
Bit	Type	Reset   Value	Description
13:4	RW	0	OFFSET. Defines the offset used in the rank interleave. This is a 2's complement value.
3:0	RW	0	RANK. Defines which rank participates in WAY(n). If MC_CONTROL.CLOSED_PAGE=1, this field defines the DRAM rank selected whēn MemoryAddress[ $\overline{7}: 6]=(n)$. If MC_CONTROL.CLOSED_PAGE $=0$, this field defines which rank is selected when MemoryAddress[13:1 $\overline{2}]=(n)$. (n) is the instantiation of the register. This field is organized by physical rank. Bits [3:2] are the encoded DIMM ID(slot). Bits [1:0] are the rank within that DIMM.

2.17.4 MC RIR WAY CH2 0

MC_RIR_WAY_CH2 $_{-}^{-} 1$
MC_RIR_WAY_CH2- $^{-} \mathbf{N H}^{-}$
MC_RIR_WAY ${ }^{-} \mathrm{CH}_{2}^{-}{ }^{-} 3$
MC_RIR ${ }_{-}^{-}$WAY $_{-}^{-} \mathrm{CH}_{2}^{-} 4$
MC_RIR_WAY_CH2-5
MC_RIR_WAY ${ }^{-} \mathbf{C H 2}^{-}{ }^{-} 6$
MC_RIR $^{-}$WAY $^{-} \mathrm{CH}^{-} 7$
MC $^{-}$RIR $^{-}$WAY $^{-} \mathrm{CH}^{-} 8$
MC_RIR_WAY_CH2_9
MC ${ }^{-}$RIR WAY ${ }^{-}$CH2 $^{-10}$
MC $^{-}$RIR $^{-}$WAY $^{-} \mathrm{CH}^{-} 11$
MC $^{-}$RIR $^{-}$WAY $^{-} \mathrm{CH}^{-} 12$
MC- RIR_WAY ${ }_{-}^{-}$CH2_- $^{-} 13$
MC $^{-}$RIR $^{-}$WAY $^{-} \mathrm{CH}_{2}^{-} 14$
MC_RIR_WAY_CH2_15
MC_ $^{-}$RIR R_WAY $_{-}^{-} \mathrm{CH}_{2}^{-} 16$
MC_RIR_WAY_CH2_17
MC_RIR_WAY ${ }^{-} \mathrm{CH}_{2}^{-} 18$
MC- RIR-WAY ${ }^{-} \mathrm{CH}_{2}^{-} 19$
MC $^{-}$RIR $^{-}$WAY $^{-}$CH2 $^{-} 20$
MC_RIR_WAY_CH2_21
MC-RIR WAY CH2- 22
MC ${ }^{-}$RIR WAY ${ }^{-}$CH2 $^{-} 23$
MC $^{-}$RIR $^{-}$WAY $^{-} \mathrm{CH}^{-} 24$
MC_ RIR_WAY_CH2_25
MC_ $^{-}$RIR_WAY $^{-} \mathrm{CH}_{2}^{-} 26$
MC- RIR_WAY ${ }_{-}^{-}$CH2_- $^{-} 27$
MC_ ${ }^{-}$RIR_WAY_- $^{-} \mathrm{CH}_{2}^{-} 28$
MC_RIR_WAY_CH2_29
MC_RIR_WAY ${ }^{-} \mathbf{C H}_{2}^{-} 30$
MC_RIR_WAY_CH2_31
Channel Rank Interleave Way Range Registers. These registers allow the user to define the ranks and offsets that apply to the ranges defined by the LIMIT in the MC_RIR_LIMIT_CH registers. The mappings are as follows:

RIR_LIMIT_CH\{chan\}[0]-> RIR_WAY_CH\{chan\}[3:0]
RIR_LIMIT_CH\{chan\}[1] -> RIR_WAY_CH\{chan\}[7:6]
RIR_LIMIT_CH\{chan\}[2] -> RIR_WAY_CH\{chan\}[11:10]
RIR_LIMIT_CH\{chan\}[3] -> RIR_WAY_CH\{chan\}[15:14]
RIR_LIMIT_CH\{chan\}[4] -> RIR_WAY_CH\{chan\}[19:18]
RIR_LIMIT_CH\{chan\}[5] -> RIR_WAY_CH\{chan\}[23:22]
RIR_LIMIT_CH\{chan\}[6] -> RIR_WAY_CH\{chan\}[27:26]
RIR_LIMIT_CH\{chan\}[7] -> RIR_WAY_CH\{chan\}[31:28]

Device   uncti   Offset   C4h,   Acces	$\begin{aligned} & 80 h, 84 h, 88 h, 8 C h, 90 h, 94 h, 98 h, 9 C h, A 0 h, A 4 h, A 8 h, A C h, \text { B0h, B4h, B8h, BCh, C0h, } \\ & \text { CCh, D0h, D4h, D8h, DCh, E0h, E4h, E8h, ECh, F0h, F4h, F8h, FCh } \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
13:4	RW	0	OFFSET. Defines the offset used in the rank interleave. This is a 2's complement value.
3:0	RW	0	RANK. Defines which rank participates in WAY(n). If MC_CONTROL.CLOSED_PAGE=1, this field defines the DRAM rank selected whēn MemoryAddress[ $\overline{7}: 6]=(n)$. If MC_CONTROL.CLOSED_PAGE=0, this field defines which rank is selected when MemoryAddress[13:1立]=(n). (n) is the instantiation of the register. This field is organized by physical rank. Bits [3:2] are the encoded DIMM ID(slot). Bits [1:0] are the rank within that DIMM.

### 2.18 Memory Thermal Control

### 2.18.1 MC THERMAL CONTROLO <br> MC_- THERMAL_CONTROL1 MC_THERMAL_CONTROL2

Controls for the Integrated Memory Controller thermal throttle logic for each channel.

Device: 4, 5, 6   Function: 3   Offset: 48h   Access as a Dword			
Bit	Type	Reset Value	Description
2	RW	1	APPLY SAFE. Enable the application of safe values while MC_THĒRMAL_PARAMS_B.SAFE_INTERVAL is exceeded.
1:0	RW	0	THROTTLE_MODE. Selects throttling mode. When in lockstep mode, this field should only be non-zero for Channel0.   0 : Throttle disabled   1: Open Loop: Throttle when Virtual Temperature is greater than   MC_THROTTLE_OFFSET.   2: C̄losed Loop: Throttle when MC_CLOSED_LOOP.THROTTLE_NOW is set.   3: Closed Loop: Throttle when MC_DDR_THERM_COMMAND. TH HROTTLE is set and the MC_DDR_THERM pin is asserted OR OLTT will be implemented (Condition $\overline{1}$ ).

2.18.2 MC_THERMAL_STATUSO

MC-THERMAL_STATUS1
MC_-THERMAL_ STATUS2
Status registers for the thermal throttling logic for each channel.

Device: 4, 5,   Function: 3   Offset: 4Ch   Access as a Dword			
Bit	Type	Reset   Value	
$29: 4$	RO	0	CYCLES_THROTTLED. The number of throttle cycles, in increments of 256   Dclks, triggered in any rank in the last SAFE_I NTERVAL number of ZQs.
$3: 0$	RO	0	RANK_TEMP. The bit specifies whether the rank is above throttling threshold.

### 2.18.3 MC_THERMAL_DEFEATUREO <br> MC THERMAL DEFEATURE1 <br> MC_THERMAL_ DEFEATURE2

Thermal Throttle defeature register for each channel.

Device: 4, 5, 6   Function: 3   Offset: 50h   Access as a Dword			
Bit	Type	Reset   Value	
0	RW1S	0	THERM_REG_LOCK. When set, no further modification of all thermal throttle   registers are allowed. This bit must be set to the same value for all channels.

2.18.4 MC_THERMAL_PARAMS_AO

MC_THERMAL_PARAMS_A1
MC_THERMAL_PARAMS_A2
Parameters used by Open Loop Throughput Throttling (OLTT) and Closed Loop Thermal Throttling (CLTT).

Device: 4, 5, 6   Function: 3   Offset: 60h   Access as a Dword			
Bit	Type	Reset   Value	
$31: 24$	RW	0	CKE_ASSERT_ENERGY. Energy of having CKE asserted when no command is   issued.
$23: 16$	RW	0	CKE_DEASSERT_ENERGY. Energy of having CKE de-asserted when no   command is issued.
$15: 8$	RW	0	WRCMD_ENERGY. Energy of a write including data transfer.
$7: 0$	RW	0	RDCMD_ENERGY. Energy of a read including data transfer.

2.18.5 MC_THERMAL_PARAMS_BO

MC_THERMAL_PARAMS_B1
MC_THERMAL_PARAMS_B2
Parameters used by the thermal throttling logic.

Device Functio Offset: Access	$\begin{aligned} & 4,5,6 \\ & 3 \\ & 64 h \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
31:26	RW	1	SAFE_I NTERVAL. Safe values for cooling coefficient and duty cycle will be applied while the SAFE_INTERVAL is exceeded. This interval is the number of ZQ intervals since the last time the MC_COOLING_COEF or MC_CLOSED_LOOP registers have been written. A register to write to ${ }^{-} \mathrm{MC}$ _ COOLING_COEF or MC_CLOSED_LOOP will re-apply the normal MC_COOL̄ING_COEF and MC_CLOSED_LOOP.MIN_THROTTLE_DUTY_CYC - values. The register value written need ${ }^{-}$not be diffērent; writing the current value will suffice. The MC_THERMAL_STATUS.CYCLES_THROTTLED field is reloaded when the number of Z̄Q intervals exceeds this value. This field must not be programmed to 0 ; this value is illegal.
25:16	RW	255	SAFE_DUTY_CYC. This value replaces MC_CL̄OSED_LOOP.MIN_THROTTLE_DUTY_CYC while the MC_THERMAL_PARAMS_B. SAFE_INT̄ERVAL is exceeded.
15:8	RW	1	SAFE_COOL_COEF. This value replaces MC_COOLING_COEF while the THERMAL_PARAMS_B.SAFE_INTERVAL is exceeded.
7:0	RW	0	ACTCMD_ENERGY. Energy of an Activate/Precharge Cycle.

2.18.6 MC_COOLI NG_COEFO

MC_COOLING_COEF1 MC_ COOLI NG_COEF2

Heat removed from DRAM 8 DCLKs. This should be scaled relative to the per command weights and the initial value of the throttling threshold. This includes idle command and refresh energies. If 2 X refresh is supported, the worst case of 2 X refresh must be assumed.

When there are more than 4 ranks attached to the channel, the thermal throttle logic is shared.

Device: 4, 5, 6   Function: 3   Offset: 80h   Access as a Dword			
Bit	Type	Reset   Value	
$31: 24$	RW	255	RANK3. Rank 3 Cooling Coefficient.
$23: 16$	RW	255	RANK2. Rank 2 Cooling Coefficient.
$15: 8$	RW	255	RANK1. Rank 1 Cooling Coefficient.
$7: 0$	RW	255	RANK0. Rank 0 Cooling Coefficient.

2.18.7 MC CLOSED LOOPO

MC_CLOSED_LOOP1
MC_CLOSED_LOOP2
This register controls the closed loop thermal response of the DRAM thermal throttle logic. It supports immediate thermal throttle and 2 X refresh. In addition, the register is used to configure the throttling duty cycle.

Device Functi Offset Access	$\begin{aligned} & 4,5,6 \\ & 3 \\ & 84 h \\ & \text { a Dword } \end{aligned}$		
Bit	Type	Reset Value	Description
17:8	RW	64	MI N_THROTTLE_DUTY_CYC. This parameter represents the minimum number of DCLKs of operation allowed after throttling. In order to provide actual command opportunities, the number of clocks between CKE de-assertion and first command should be considered. When in Lockstep, this field may not be changed when throttling is possible. This includes THROTTLE_NOW or DDR_THERM\# pin assertion, depending on throttling mode selected.
4	RW	0	REF_2X_NOW. Direct control of dynamic $2 X$ refresh if MC_THERMAL_CONTROL.THROTTLE_MODE $=2$. This bit can be set only when MC_CHANNEL_X_REFRESH_THROTTLEE_SUPPORT.ASR_PRESENT bit is set.
3:0	RW	0	THROTTLE_NOW. Throttler Vector to directly control throttling if MC_THERMĀL_CONTROL.THROTTLE_MODE $=2$.

### 2.18.8 MC_THROTTLE_OFFSET0 <br> MC_THROTTLE_OFFSET1 <br> MC_THROTTLE_OFFSET2

Compared against bits [36:29] of virtual temperature of each rank stored in RANK_VIRTUAL_TEMP to determine the throttle point. Recommended value for each rank is 255.

When there are more than 4 ranks attached to the channel, the thermal throttle logic is shared.

Device: 4, 5, 6   Function: 3   Offset: 88h   Access as a Dword			
Bit	Type	Reset   Value	Description
$31: 24$	RW	0	RANK3. Rank 3 throttle offset.
$23: 16$	RW	0	RANK2. Rank 2 throttle offset.
$15: 8$	RW	0	RANK1. Rank 1 throttle offset.
$7: 0$	RW	0	RANK0. Rank 0 throttle offset.

### 2.18.9 MC_RANK_VIRTUAL_TEMPO

MC_ RANK_VI RTUAL_- TEMP1
MC_RANK_VIRTUAL_TEMP2
This register contains the 8 most significant bits [37:30] of the virtual temperature of each rank. The difference between the virtual temperature and the sensor temperature can be used to determine how fast fan speed should be increased. The value stored is right shifted one bit to the right with respect to the corresponding MC_Throttle_Offset register value. For example when When a rank throttle offset is set to $0 \times 40$, the value read from the corresponding in MC_RANK_VIRTUAL_TEMP register is $0 \times 20$.

When there are more than 4 ranks attached to the channel, the thermal throttle logic is shared.

Device: 4, 5, 6   Function: 3   Offset: 98h   Access as a Dword			
Bit	Type	Reset   Value	
$31: 24$	RO	0	RANK3. Rank 3 virtual temperature.
$23: 16$	RO	0	RANK2. Rank 2 virtual temperature.
$15: 8$	RO	0	RANK1. Rank 1 virtual temperature.
$7: 0$	RO	0	RANK0. Rank 0 virtual temperature.

### 2.18.10 MC_DDR_THERM_COMMANDO <br> MC_DDR_THERM_COMMAND1 <br> MC_DDR_THERM_COMMAND2

This register contains the command portion of the DDR_THERM\# functionality as described in the Intel ${ }^{\circledR}$ Xeon ${ }^{\circledR}$ Processor 5500 Series Datasheet, Volume 1 (i.e. what an assertion of the pin does).

Device: 4, 5, 6   Function: 3   Offset: 9Ch   Access as a Dword			
Bit	Type	Reset   Value	
3	RW	0	THROTTLE. Force throttling when DDR_THERM\# pin is asserted.
2	RW	0	RSVD.
1	RW	0	DISABLE_EXTTS. Response to DDR_THERM\# pin is disabled. ASSERTION and   DEASSERTION fields in the register MC_DDR_THERM_STATUS are frozen.
0	RW1S	0	LOCK. When set, all bits in this register are RO and cannot be written. Reset   will clear the lock.

2.18.11 MC_DDR_THERM_STATUSO

MC_DDR-THERM_STATUS1
MC_ ${ }^{-}$DDR_THERM_ STATUS2 $^{-}$
This register contains the status portion of the DDR_THERM\# functionality as described in the Intel ${ }^{\circledR}$ Xeon ${ }^{\circledR}$ Processor 5500 Series Datasheet, Volume 1 (i.e. what is happening or has happened with respect to the pin).

Device: 4, 5, 6
Function: 3
Offset: A4h
Access as a Dword

Bit	Type	Reset   Value	Description
2	RO	0	ASSERTI ON. An assertion edge was seen on DDR_THERM\#. Write-1-to-clear.
1	RO	0	DEASSERTI ON. A de-assertion edge was seen on DDR_THERM\#. Write-1-to-   clear.
0	RO	0	STATE. Present logical state of DDR_THERM\# bit. This is a static indication of   the pin, and may be several clocks out of date due to the delay between the pin   and the signal.   STATE $=0$ means DDR_THERM\# is deasserted   STATE $=1$ means DDR_THERM\# is asserted

### 2.19 I ntegrated Memory Controller Miscellaneous Registers

### 2.19.1 MC_DI MM_CLK_RATI O_STATUS

Contains status information about DIMM clock ratio.

Device: 3   Function: 4   Offset: 50h   Access as a Dword			
Bit	Type	Reset Value	Description
28:24	RO	0	MAX_RATIO. Maximum ratio allowed by the part.   Value - Qclk   00000 - RSVD   00110-800Mhz   01000-1066Mhz   01010-1333Mhz
4:0	RO	0	QCLK_RATI O. Current ratio of Qclk.   Value - Qclk.   00000 - RSVD   00110-800Mhz   01000-1066Mhz   01010-1333Mhz

### 2.19.2 MC_DI MM_CLK_RATIO

Requested DIMM clock ratio (Qclk). This is the data rate going to the dimm. The clock sent to the DIMM is $1 / 2$ of QCLK rate.

Device:   Function:   Offset:   O4h   Access as a Dword
Bit
$4: 0$
Type

## 3 DI MM Population Requirements

### 3.1 General Population Requirements

The Intel $® 5500$ platform offers a wide variety of DIMM configurations. Key parameters used in defining various DIMM configurations are listed in Table 3-1.

Table 3-1. Key Parameters for DI MM Configurations

Parameter	Possible Values
\# of Channels	1,2, or 3
\# of DIMM Slots per channel	Two DI MM slots or Three DIMM slots
\# of DIMMs Populated per channel	1DPC, 2DPC, or 3DPC (required three DIMM slots per channel)
DI MM Type	RDI MM (w/ECC), UDI MM (w/ or w/o ECC)   MetaSDRAM* R-DIMM (8 GB module only)
DI MM Raw Cards	RDIMM Raw Cards as defined by JEDEC:   A(1Rx8), B (2Rx8), C (1Rx4), D (2Rx4), E/J (2Rx4), F (4Rx4), or H   $(4 R \times 8)$   UDIMM Raw Cards as defined by JEDEC:   A (1Rx8), B (2Rx8), C (1Rx16¹), D (1Rx8 w/ECC), E (2Rx8 w/ECC)
DIMM Frequencies	DDR3-800, DDR3-1066, or DDR3-1333

## Notes:

1. UDIMM Raw Card C(1Rx16) is not supported in RDIMM/UDIMM combo designs (a combo platform can support either RDIMM only or UDIMM only but not a mix of both types).

Following are generic population requirements:

- All DIMMs must be DDR3 DIMMs.
- The Intel ${ }^{\circledR}$ Xeon ${ }^{\circledR}$ processor 5500 series does not support low voltage (1.35V) DDR3 memory. If 1.35 V (DDR3L) and 1.50 V (DDR3) DIMMs are mixed, the DIMMs will run at 1.50 V .
- Registered DIMMs must be ECC only, Unbuffered DIMMs can be ECC or non-ECC.
- Mixing of Registered and Unbuffered DIMMs is not allowed.
- Mixing of MetaSDRAM* R-DIMM with any other DIMM type is not allowed.
- It is allowed to mix ECC and non-ECC Unbuffered DIMMs. The presence of a single non-ECC Unbuffered DIMM will result in disabling ECC functionality.
- DIMMs with different timing parameters can be installed on different slots within the same channel, but only timings that support the slowest DIMM will be applied to all. As a consequence, faster DIMMs will be operated at timings supported by the slowest DIMM populated. The same interface frequency (DDR3-800, DDR3-1066, or DDR3-1333) will be applied to all DIMMs on all channels on the platform (both processors).
- DIMMs with DDR3-1333 speed are allowed only when one DIMM Per Channel (1DPC) is populated. If two 1333 MT/s capable UDIMMs or RDIMMs are detected in the same channel, BIOS would flag this as a warning and force the speed to 1066 MT/s.
- DIMMs with DDR3-1066 speed are allowed only when two DIMMs Per Channel (2DPC) are populated. If three 1066 MT/s capable UDIMMs or RDIMMs are detected in the same channel, BIOS will force the speed to $800 \mathrm{MT} / \mathrm{s}$.
- When one quad rank DIMMs is used, it must be populated in DIMM slot0 (farthest away from the CPU) of a given channel
- Mixing of quad ranks DIMMs (RDIMM Raw Cards F and H) in one channel and three DIMMs in other channel (3DPC) on the same CPU socket is not allowed. If such configuration is detected on a CPU socket, BIOS would flag this as a warning and disable the QR DIMM channel(s).


### 3.2 Populating DI MMs Within a Channel

### 3.2.1 DI MM Population for Three Slots per Channel

For three slot per channel configurations, the Intel 5500 platform requires DIMMs within a channel to be populated starting with the DIMMs farthest from the processor in a "fill-farthest" approach (see Figure 3-1). In addition, when populating a Quad-rank DIMM with a Single- or Dual-rank DIMM in the same channel, the Quad-rank DIMM must be populated farthest from the processor. Note that Quad-rank DIMMs and UDIMMs are not allowed in three slots populated configurations. Intel recommends checking for correct DIMM placement during BIOS initialization. Additionally, Intel strongly recommends that all designs follow the DIMM ordering, command clock, and control signal routing documented in Figure 3-1. This addressing must be maintained to be compliant with the reference BIOS code supplied by Intel. All allowed DIMM population configurations for three slots per channel are shown in Table 3-2 and Table 3-3.

Figure 3-1. DI MM Population within a Channel for Three Slots per Channel


Note: ODT[5:4] is muxed with CS[7:6]\#.

Table 3-2. RDI MM Population Configurations within a Channel for Three Slots per Channel

Configuration Number	Maximum Supported Speed ${ }^{1}$	1N or 2N	DI MM2	DI MM1	DI MMO
1	DDR3-1333	1N	Empty	Empty	Single-rank
2	DDR3-1333	1N	Empty	Empty	Dual-rank
3	DDR3-1066	1N	Empty	Empty	Quad-rank
4	DDR3-1066	1N	Empty	Single-rank	Single-rank
5	DDR3-1066	1N	Empty	Single-rank	Dual-rank
6	DDR3-1066	1N	Empty	Dual-rank	Single-rank
7	DDR3-1066	1N	Empty	Dual-rank	Dual-rank
8	DDR3-800	1N	Empty	Single-rank	Quad-rank
9	DDR3-800	1N	Empty	Dual-rank	Quad-rank
10	DDR3-800	1N	Empty	Quad-rank	Quad-rank
11	DDR3-800	1N	Single-rank	Single-rank	Single-rank
12	DDR3-800	1N	Single-rank	Single-rank	Dual-rank
13	DDR3-800	1N	Single-rank	Dual-rank	Single-rank
14	DDR3-800	1N	Dual-rank	Single-rank	Single-rank
15	DDR3-800	1N	Single-rank	Dual-rank	Dual-rank
16	DDR3-800	1N	Dual-rank	Single-rank	Dual-rank
17	DDR3-800	1N	Dual-rank	Dual-rank	Single-rank
18	DDR3-800	1N	Dual-rank	Dual-rank	Dual-rank

Notes:

1. If a DIMM faster than the maximum supported speed is populated, BIOS will force the memory to run at the maximum supported speed.

Table 3-3. UDI MM Population Configurations within a Channel for Three Slots per Channel

Configuration   Number	Maximum Supported   Speed 1	1N or 2N	DIMM2	DI MM1	DI MMO
1	DDR3-1333	1N	Empty	Empty	Single-rank
2	DDR3-1333	$1 N$	Empty	Empty	Dual-rank
3	DDR3-1066	$2 N$	Empty	Single-rank	Single-rank
4	DDR3-1066	$2 N$	Empty	Single-rank	Dual-rank
5	DDR3-1066	$2 N$	Empty	Dual-rank	Single-rank
6	DDR3-1066	$2 N$	Empty	Dual-rank	Dual-rank

Notes:

1. If a DIMM faster than the maximum supported speed is populated, BIOS will force the memory to run at the maximum supported speed.

Table 3-4. MetaSDRAM* R-DI MM ${ }^{1}$ Population Configurations within a Channel for Three Slots per Channel

Configuration   Number	Maximum Supported   Speed 2	1N or 2N	DI MM2	DI MM1	DI MM0
1	DDR3-1066	1N	Empty	Empty	Dual-rank
2	DDR3-1066	1N	Empty	Dual-rank	Dual-rank
3	DDR3-1066	1N	Dual-rank	Dual-rank	Dual-rank

Notes:

1. 8 GB DDR3 MetaSDRAM R-DIMM only. Designers considering the support of MetaSDRAM R-DIMM are recommended to review the platform VR design guidelines as the DC/AC load requirement may be different from that of RDIMM/UDIMM.
2. If a DIMM faster than the maximum supported speed is populated, BIOS will force the memory to run at the maximum supported speed.

### 3.2.2 DI MM Population for Two Slots per Channel

For two slot per channel configurations, the Intel 5500 platform requires DIMMs within a channel to be populated starting with the DIMMs farthest from the processor in a "fillfarthest" approach (see Figure 3-2). In addition, when populating a Quad-rank DIMM with a Single- or Dual-rank DIMM in the same channel, the Quad-rank DIMM must be populated farthest from the processor. Intel recommends checking for correct DIMM placement during BIOS initialization. Additionally, Intel strongly recommends that all designs follow the DIMM ordering, command clock, and control signal routing documented in Figure 3-2. This addressing must be maintained to be compliant with the reference BIOS code supplied by Intel. All allowed DIMM population configurations for two slots per channel are shown in Table 3-5 and Table 3-6.

Figure 3-2. DIMM Population Within a Channel for Two Slots per Channel


Table 3-5. RDI MM Population Configurations Within a Channel for Two Slots per Channel

Configuration   Number	Maximum Supported   Speed 1	1N or 2N	DI MM1	DI MM0
1	DDR3-1333	1N	Empty	Single-rank
2	DDR3-1333	1N	Empty	Dual-rank
3	DDR3-1066	1N	Empty	Quad-rank
4	DDR3-1066	1N	Single-rank	Single-rank
5	DDR3-1066	1 N	Single-rank	Dual-rank
6	DDR3-1066	1 N	Dual-rank	Single-rank
7	DDR3-1066	1 N	Dual-rank	Dual-rank
8	DDR3-800	1 N	Single-rank	Quad-rank
9	DDR3-800	1 N	Dual-rank	Quad-rank
10	DDR3-800	1 N	Quad-rank	Quad-rank

Notes:

1. If a DIMM faster than the maximum supported speed is populated, BIOS will force the memory to run at the maximum supported speed.

Table 3-6. UDI MM Population Configurations within a Channel for Two Slots per Channel

Configuration   Number	Maximum Supported Speed $^{\mathbf{1}}$	1N or 2N	DI MM1	DI MMO
1	DDR3-1333	1N	Empty	Single-rank
2	DDR3-1333	1N	Empty	Dual-rank
3	DDR3-1066	$2 N$	Single-rank	Single-rank
4	DDR3-1066	$2 N$	Single-rank	Dual-rank
5	DDR3-1066	$2 N$	Dual-rank	Single-rank
6	DDR3-1066	$2 N$	Dual-rank	Dual-rank

Notes:

1. If a DIMM faster than the maximum supported speed is populated, BIOS will force the memory to run at the maximum supported speed.

Table 3-7. MetaSDRAM R-DI MM ${ }^{1}$ Population Configurations within a Channel for Two Slots per Channel

Configuration   Number	Maximum Supported Speed 2	1N or 2N	DI MM1	DI MM0
1	DDR3-1066	1N	Empty	Dual-rank
2	DDR3-1066	$1 N$	Dual-rank	Dual-rank

## Notes:

1. 8 GB DDR3 MetaSDRAM R-DIMM only.
2. If a DIMM faster than the maximum supported speed is populated, BIOS will force the memory to run at the maximum supported speed.
