

OPTIREG™ Linear TLS835B2ELVSE

Low Dropout Linear Voltage Regulator

Features

- Wide input voltage range from 3.0 V to 40 V
- Selectable output voltage 5 V or 3.3 V
- Output voltage precision ≤ ±2%
- Output current capability up to 350 mA
- Ultra low current consumption, typical 20 μA
- Very low dropout voltage, typical 100 mV, at output currents below 100 mA
- Stable with ceramic output capacitor of 1 μF
- Enable
- Overtemperature shutdown
- Output current limitation
- Wide temperature range
- Green Product (RoHS compliant)

Potential applications

- Automotive or other supply systems that are connected to the battery permanently
- Automotive supply systems that need to operate in cranking condition

Product validation

Qualified for Automotive Applications. Product Validation according to AEC-Q100/101

Description

The OPTIREG[™] Linear TLS835B2ELVSE is a linear voltage regulator with high performance, very low dropout linear voltage and very low quiescent current.

With an input voltage range of 3 V to 40 V and very low quiescent current of only 20μ A, this regulator is perfectly suitable for automotive or other supply systems permanently connected to the battery.

The new loop concept combines fast regulation and very high stability while requiring only one small ceramic capacitor of 1 μ F at the output. At output currents below 100 mA the device has a very low dropout voltage of only 100 mV (for an output voltage of 5 V) and 120 mV (for an output voltage of 3.3 V). The operating range starts at an input voltage of only 3 V (extended operating range). This makes the TLS835B2ELVSE suitable for automotive systems that need to operate during cranking condition.

The device can be switched on and off by the enable feature.

The output voltage of the TLS835B2ELVSE can be selected between 5 V and 3.3 V by connecting the SEL pin to either V_Q or GND. When the SEL pin is connected to V_Q , the regulator's output is set to 5 V; when the SEL pin is connected to GND, the regulator's output is set to 3.3 V.

Internal protection features such as output current limitation and overtemperature shutdown, protect the device from immediate damage caused by failures such as output shorted to GND, overcurrent or overtemperature conditions.

External components

An input capacitor C_1 is recommended to compensate for line influences. The output capacitor C_Q is necessary for the stability of the regulating circuit. The TLS835B2ELVSE is designed to be stable with low ESR ceramic capacitors.

Туре	Package	Marking
TLS835B2ELVSE	PG-SSOP-14	835B2VSE

Table of contents

	Features1
	Potential applications
	Product validation
	Description
	Table of contents 3
1	Block diagram
2 2.1 2.2	Pin configuration5Pin assignment TLS835B2ELVSE5Pin definitions and functions TLS835B2ELVSE5
3 3.1 3.2 3.3	General product characteristics7Absolute maximum ratings7Functional range8Thermal resistance9
4 4.1 4.2 4.3 4.4 4.5 4.6 4.7	Block description and electrical characteristics10Voltage regulation10Typical performance characteristics voltage regulator14Current consumption18Typical performance characteristics current consumption19Enable20Typical performance characteristics enable21Output voltage selection22
5 5.1 5.2 5.2.1 5.2.2 5.3 5.4 5.5	Application information23Application diagram23Selection of external components23Input pin23Output pin23Thermal considerations24Reverse polarity protection24Further application information24
6	Package information
7	Revision history

OPTIREG[™] Linear TLS835B2ELVSE Low Dropout Linear Voltage Regulator

Block diagram

1 Block diagram

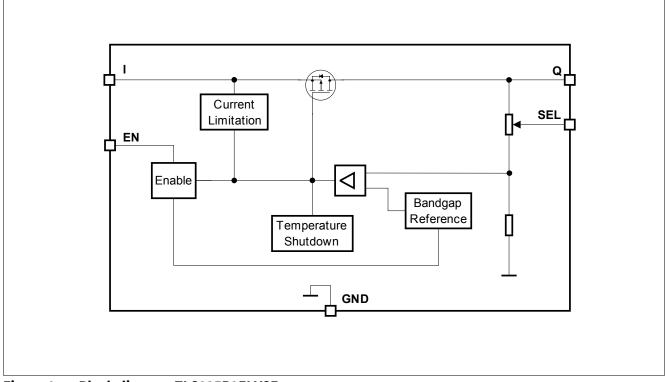


Figure 1 Block diagram TLS835B2ELVSE

Pin configuration

2 Pin configuration

2.1 Pin assignment TLS835B2ELVSE

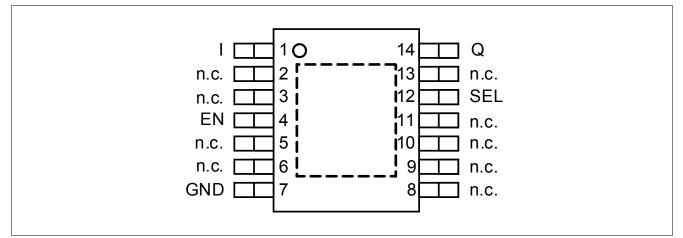


Figure 2 Pin configuration TLS835B2ELVSE

2.2 Pin definitions and functions TLS835B2ELVSE

Pin	Symbol	Function
1	I	Input It is recommended to place a small ceramic capacitor to GND, close to the pins, to compensate for line influences
2	n. c.	Not connected Leave open or connect to GND
3	n. c.	Not connected Leave open or connect to GND
4	EN	Enable (integrated pull-down resistor) Enable the IC with high level input signal Disable the IC with low level input signal
5	n. c.	Not connected Leave open or connect to GND
6	n. c.	Not connected Leave open or connect to GND
7	GND	Ground
8	n. c.	Not connected Leave open or connect to GND
9	n. c.	Not connected Leave open or connect to GND
10	n. c.	Not connected Leave open or connect to GND
11	n. c.	Not connected Leave open or connect to GND

Downloaded from Arrow.com.

Pin configuration

Pin	Symbol	Function
12	SEL	Output voltage selection
		Connect to Q to select 5 V output voltage
		Connect to GND to select 3.3 V output voltage
13	n. c.	Not connected
		Leave open or connect to GND
14	Q	Output voltage
		Connect output capacitor C _o to GND close to the pin, respecting the values
		specified for its capacitance and ESR in "Functional range" on Page 8
Pad	-	Exposed pad
		Connect to heatsink area;
		Connect to GND

General product characteristics

3 General product characteristics

3.1 Absolute maximum ratings

Table 1Absolute maximum ratings1)

 $T_i = -40^{\circ}$ C to 150°C; all voltages with respect to ground (unless otherwise specified)

Parameter	Symbol		Value	S	Unit	Note or	Number	
		Min.	Тур.	Max.		Test Condition		
Input I, enable EN	I		-			1	I	
Voltage	V _I , V _{EN}	-0.3	-	45	V	-	P_4.1.1	
Output Q		<u>.</u>			-+		1	
Voltage	V _Q	-0.3	-	7	V	-	P_4.1.2	
Select SEL	I			-			I	
voltage	V _{SEL}	-0.3	-	7	V	-	P_4.1.3	
Temperatures				1				
Junction temperature	T	-40	-	150	°C	-	P_4.1.5	
Storage temperature	T _{stg}	-55	-	150	°C	-	P_4.1.6	
ESD absorption				1				
ESD susceptibility to GND	V _{ESD}	-2	-	2	kV	²⁾ HBM	P_4.1.7	
ESD susceptibility to GND	V _{ESD}	-750	-	750	V	³⁾ CDM at all pins	P_4.1.8	
				-		•	1	

1) Not subject to production test, specified by design.

2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 k Ω , 100 pF)

3) ESD susceptibility, Charged Device Model "CDM" according JEDEC JESD22-C101

Notes

- 1. Exceeding the absolute max ratings may cause permanent damage to the device and affects the device's reliability.
- 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as operation outside the normal operating range. Protection functions are not designed for continuous repetitive operation.

OPTIREG[™] Linear TLS835B2ELVSE Low Dropout Linear Voltage Regulator

General product characteristics

3.2 Functional range

Table 2Functional range

 $T_i = -40^{\circ}$ C to 150°C; all voltages with respect to ground (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or	Number	
		Min.	Тур.	Max.		Test Condition		
Input voltage range	VI	$V_{\rm Q,nom} + V_{\rm dr}$	-	40	V	1)_	P_4.2.1	
Extended input voltage range	V _{I,ext}	3.0	-	40	V	2)_	P_4.2.2	
Enable voltage range	V _{EN}	0	-	40	V	-	P_4.2.3	
Capacitance of output capacitor for stability	C _Q	1	-	-	μF	3)4) _	P_4.2.4	
Equivalent series resistance of output capacitor	ESR(C _Q)	-	-	50	Ω	3) _	P_4.2.5	
Junction temperature	T _i	-40	-	150	°C	-	P_4.2.6	

1) Output current is limited internally and depends on the input voltage, see electrical characteristics for more details.

2) If $V_{l,ext,min} \le V_l \le V_{Q,nom} + V_{dr}$, then $V_Q = V_l - V_{dr}$. If $V_l < V_{l,ext,min}$, then V_Q can drop to 0 V.

3) Not subject to production test, specified by design.

4) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%

Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the electrical characteristics table.

OPTIREG™ Linear TLS835B2ELVSE Low Dropout Linear Voltage Regulator

General product characteristics

3.3 Thermal resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to **www.jedec.org**.

Table 3 Thermal resistance of TLS835B2ELVSE in PG-SSOP-14 package

Parameter	Symbol		Value	Unit	Note or	Number	
		Min.	Тур.	Max.		Test Condition	
Junction to case	R _{thJC}	-	10	-	K/W	1) _	P_4.3.1
Junction to ambient	R _{thJA}	-	41	-	K/W	¹⁾²⁾ 2s2p board	P_4.3.2
Junction to ambient	R _{thJA}	-	125	-	K/W	¹⁾³⁾ 1s0p board, footprint only	P_4.3.3
Junction to ambient	R _{thJA}	-	59	-	K/W	¹⁾³⁾ 1s0p board, 300 mm ² heatsink area on PCB	P_4.3.4
Junction to ambient	R _{thJA}	-	51	-	K/W	¹⁾³⁾ 1s0p board, 600 mm ² heatsink area on PCB	P_4.3.5

1) Not subject to production test, specified by design

 Specified R_{thJA} value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board. The product (chip + package) was simulated on a 76.2 × 114.3 × 1.5 mm³ board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

3) Specified R_{thJA} value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board. The product (chip + package) was simulated on a 76.2 × 114.3 × 1.5 mm³ board with 1 copper layer (1 × 70 μ m Cu).

infineon

Low Dropout Linear Voltage Regulator

Block description and electrical characteristics

4 Block description and electrical characteristics

4.1 Voltage regulation

The output voltage V_Q is divided by a resistor network. This fractional voltage is compared to an internal voltage reference and the pass transistor is driven accordingly.

The control loop stability depends on the following factors:

- output capacitor C_Q
- load current
- chip temperature
- internal circuit design

Output capacitor

To ensure stable operation, the capacitance of the output capacitor and its equivalent series resistor (ESR) requirements as specified in **"Functional range" on Page 8** must be maintained. The output capacitor must be sized according to the requirements of the application to be able to buffer load steps.

Input capacitors, reverse polarity protection diode

An input capacitor C_1 is recommended to compensate for line influences.

In order to block influences such as pulses and high frequency distortion at the input, an additional reverse polarity protection diode and a combination of several capacitors for filtering should be used. Connect the capacitors close to the component's terminals.

Smooth ramp-up

In order to prevent overshoots during startup, a smooth ramp-up function is implemented. This ensures almost no output voltage overshoots during startup, mostly independent from load and output capacitance.

Output current limitation

If the load current exceeds the specified limit, due to a short-circuit for example, then the output current is limited and the output voltage decreases.

Overtemperature shutdown

The overtemperature shutdown circuit prevents the IC from immediate destruction in case of a fault condition (for example a permanent short-circuit at the output) by switching off the power stage. After the IC has cooled down, the regulator restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed. However, any junction temperature above 150°C is outside the maximum ratings and therefore significantly reduces the lifetime of the IC.

OPTIREG[™] Linear TLS835B2ELVSE Low Dropout Linear Voltage Regulator

Block description and electrical characteristics

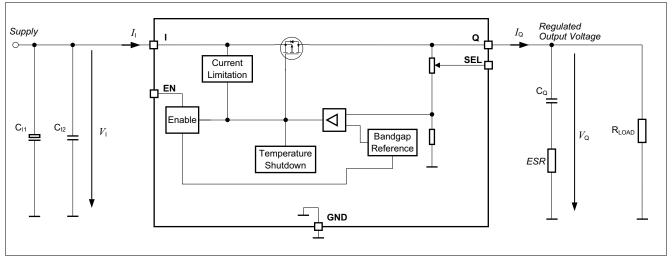


Figure 3 Voltage regulation

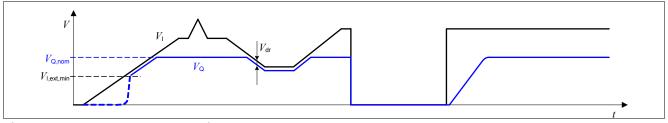


Figure 4 Output voltage vs. input voltage

OPTIREG[™] Linear TLS835B2ELVSE

Low Dropout Linear Voltage Regulator

Block description and electrical characteristics

Table 4 Electrical characteristics voltage regulator

 T_j = -40°C to 150°C, V_l = 13.5 V, all voltages with respect to ground (unless otherwise specified) Typical values are given at T_j = 25°C

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
5 V output voltage			-				
Output voltage accuracy	V _Q	4.9	5.0	5.1	V	0.05 mA $\leq I_Q \leq$ 350 mA 5.8 V $\leq V_1 \leq$ 28 V SEL connected to Q	P_5.1.1
Output voltage accuracy	V _Q	4.9	5.0	5.1	V	0.05 mA $\leq I_Q \leq 175$ mA 5.45 V $\leq V_1 \leq 40$ V SEL connected to Q	P_5.1.2
Dropout voltage V _{dr} = V ₁ - V _Q	V _{dr}	-	250	500	mV	¹⁾ / _Q = 250 mA, SEL connected to Q	P_5.1.7
Dropout voltage V _{dr} = V ₁ - V _Q	V _{dr}	-	100	200	mV	¹⁾ / _Q = 100 mA, SEL connected to Q	P_5.1.9
Power supply ripple rejection	PSRR	_	60	-	dB	²⁾ $f_{ripple} = 100 \text{ Hz}$ $V_{ripple} = 0.5 V_{pp}$ $I_Q = 10 \text{ mA}$ SEL connected to Q	P_5.1.10
3.3 V output voltage							
Output voltage accuracy	V _Q	3.23	3.3	3.37	V	0.05 mA $\leq I_Q \leq$ 350 mA 4.21 V $\leq V_1 \leq$ 28 V SEL connected to GND	P_5.1.12
Output voltage accuracy	V _Q	3.23	3.3	3.37	V	0.05 mA $\leq I_Q \leq 175$ mA 3.79 V $\leq V_1 \leq 40$ V SEL connected to GND	P_5.1.13
Dropout voltage V _{dr} = V ₁ - V _Q	V _{dr}	-	300	600	mV	¹⁾ I _Q = 250 mA, SEL connected to GND	P_5.1.18
Dropout voltage V _{dr} = V ₁ - V _Q	V _{dr}	-	120	240	mV	¹⁾ I _Q = 100 mA, SEL connected to GND	P_5.1.20
Power supply ripple rejection	PSRR	-	63	-	dB	$^{2)} f_{ripple} = 100 \text{ Hz}$ $V_{ripple} = 0.5 V_{pp}$ $I_Q = 10 \text{ mA}$ SEL connected to GND	P_5.1.21
Other electrical characteristic	S						
Output current limitation	I _{Q,max}	351	500	780	mA	$0 V < V_Q < V_{Q,nom} - 0.1 V$	P_5.1.24
Load regulation steady-state	$\Delta V_{Q,load}$	-15	-5	-	mV	$I_{\rm Q} = 0.05 \text{ mA to } 350 \text{ mA}$ $V_{\rm I} = 6.5 \text{ V}$	P_5.1.29
Line regulation	$\Delta V_{\rm Q,line}$	-	1	10	mV	$V_1 = 8 V \text{ to } 32 V$	P_5.1.30

steady-state

*I*_Q = 5 mA

OPTIREG™ Linear TLS835B2ELVSE

Low Dropout Linear Voltage Regulator

Block description and electrical characteristics

Table 4Electrical characteristics voltage regulator (cont'd)

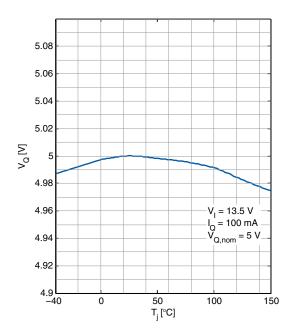
 T_j = -40°C to 150°C, V_l = 13.5 V, all voltages with respect to ground (unless otherwise specified) Typical values are given at T_j = 25°C

Parameter	Symbol	ol Values		Unit	Note or Test Condition	Number	
		Min.	Тур.	Max.			
Overtemperature shutdown threshold	T _{j,sd}	151	175	200	°C	²⁾ T_j increasing	P_5.1.31
Overtemperature shutdown threshold hysteresis	T _{j,sdh}	-	15	-	К	²⁾ <i>T</i> _j decreasing	P_5.1.32

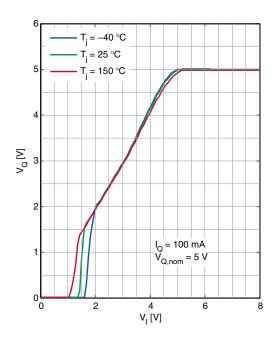
1) Measured when the output voltage V_Q has dropped by 100 mV while input voltage was gradually decreased.

2) Not subject to production test, specified by design

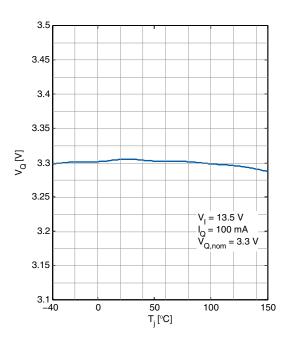
OPTIREG[™] Linear TLS835B2ELVSE

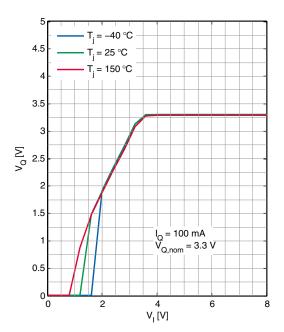


Low Dropout Linear Voltage Regulator

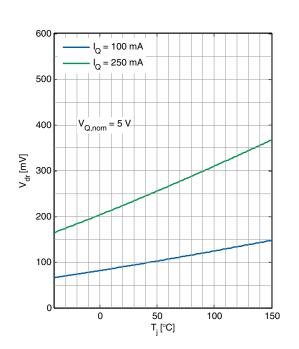

Block description and electrical characteristics

4.2 Typical performance characteristics voltage regulator

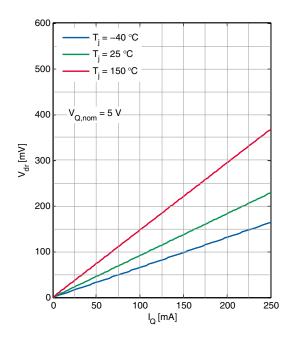

Output voltage V_Q versus junction temperature T_j

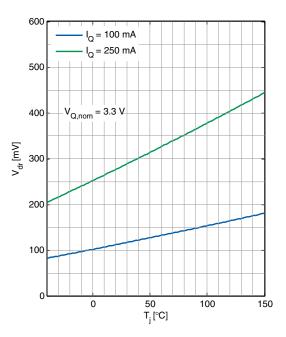

Output voltage V_Q versus input voltage V₁

Output voltage V_Q versus junction temperature T_i

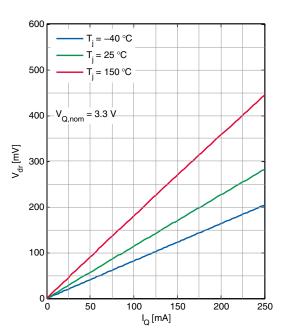


Output voltage V_{Q} versus input voltage V_{I}

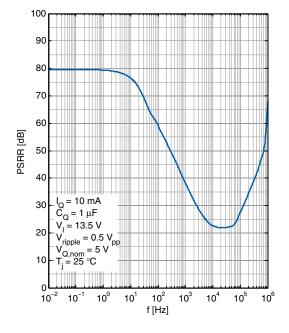

Data Sheet



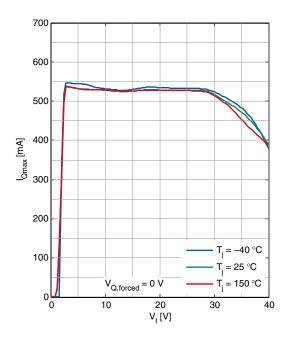
Dropout voltage V_{dr} versus junction temperature T_j

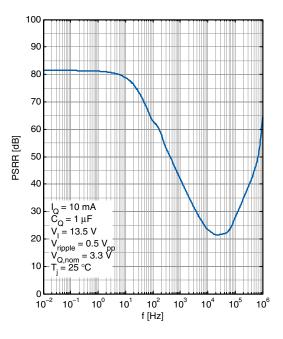

Dropout voltage V_{dr} versus output current I_o

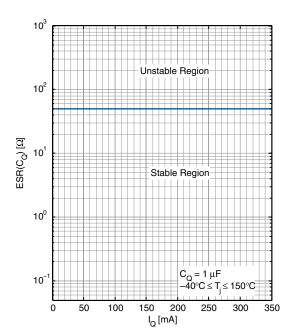
Dropout voltage *V*_{dr} versus junction temperature *T*_i



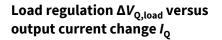
Dropout voltage V_{dr} versus output current I_o

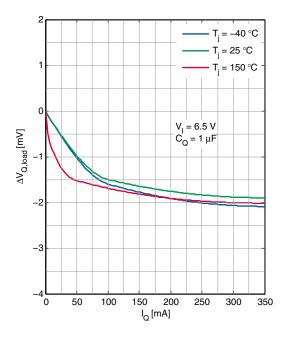


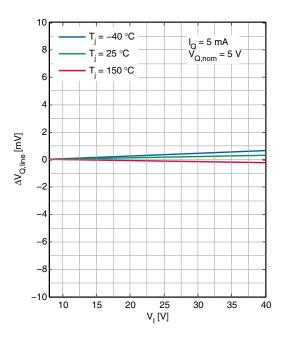

Power supply ripple rejection *PSRR* versus ripple frequency *f*


Maximum output current *I*_Q versus input voltage *V*_I

Power supply ripple rejection *PSRR* versus ripple frequency *f*




Equivalent series resistance of output capacitor $ESR(C_Q)$ versus output current I_Q


Data Sheet

Line regulation $\Delta V_{Q,line}$ versus input voltage V_{I}

OPTIREG™ Linear TLS835B2ELVSE

Low Dropout Linear Voltage Regulator

Block description and electrical characteristics

4.3 Current consumption

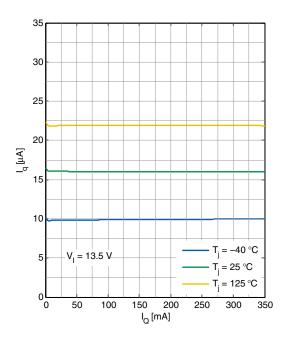
Table 5 Electrical characteristics current consumption

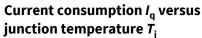
 T_j = -40°C to 150°C, V_l = 13.5 V (unless otherwise specified) Typical values are given at T_j = 25°C

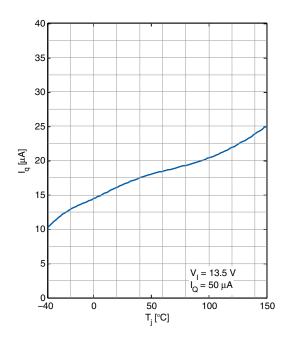
Parameter	rameter Symbol Values		Unit	Note or Test Condition	Number		
		Min.	Тур.	Max.			
Current consumption $I_q = I_1$	I _{q,off}	-	-	1	μA	<i>V</i> _{EN} = 0 V; <i>T</i> _j < 105°C	P_5.3.1
$\overline{\text{Current consumption}}$	I _{q,off}	-	-	2	μA	V _{EN} = 0.4 V; T _j < 125°C	P_5.3.3
Current consumption $I_q = I_1 - I_Q$	/ _q	-	17	25	μA	I _Q = 0.05 mAT _j T _j = 25°C	P_5.3.4
$\overline{\text{Current consumption}}$ $I_q = I_1 - I_Q$	/ _q	-	20	30	μA	<i>I</i> _Q = 0.05 mA <i>T</i> _j < 125°C	P_5.3.5
Current consumption $I_q = I_1 - I_Q$	/ _q	-	22	33	μA	¹⁾ $I_{\rm Q} = 350 \text{ mA}$ $T_{\rm j} < 125^{\circ}\text{C}$	P_5.3.6

1) Not subject to production test, specified by design

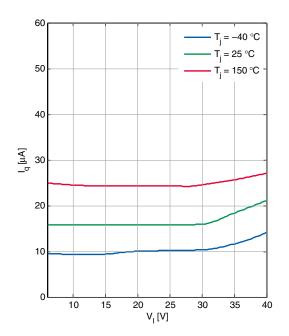
OPTIREG[™] Linear TLS835B2ELVSE




Low Dropout Linear Voltage Regulator


Block description and electrical characteristics

4.4 Typical performance characteristics current consumption


Current consumption I_q versus output current I_Q

Current consumption I_q versus input voltage V_l

4.5 Enable

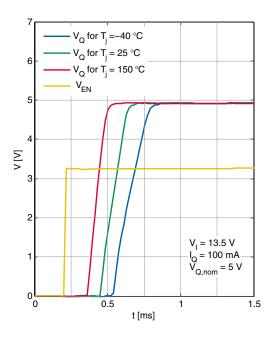
The TLS835B2ELVSE can be switched on and off by the enable feature. Applying a "high" level as specified below with $V_{\text{EN}} \ge 2$ V to the EN pin enables the device. Applying a "low" level as specified below with $V_{\text{EN}} \le 0.8$ V shuts down the device. The enable feature has a built-in hysteresis to avoid toggling between the ON/OFF state, when a signal with slow slope is applied to the EN pin.

Table 6Electrical characteristics enable

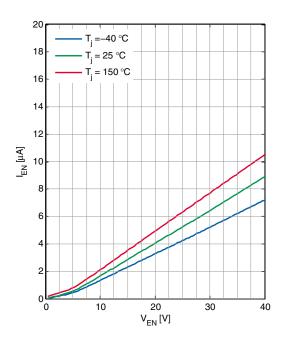
 T_j = -40°C to 150°C, V_l = 13.5 V, all voltages with respect to ground (unless otherwise specified) Typical values are given at T_j = 25°C

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Enable "high" input voltage	V _{EN,H}	2	-	-	V	-	P_5.5.1
Enable "low" input voltage	V _{EN,L}	-	-	0.8	V	-	P_5.5.2
Enable threshold hysteresis	V _{EN,Hy}	90	-	-	mV	-	P_5.5.3
Enable "high" input current	I _{EN,H}	-	-	1	μΑ	<i>V</i> _{EN} = 5 V	P_5.5.4
Enable "high" input current	I _{EN,H}	-	-	6	μΑ	$V_{\rm EN} \le 18 {\rm V}$	P_5.5.5
Enable internal pull-down resistor	R _{EN}	2.8	10	20	MΩ	-	P_5.5.6

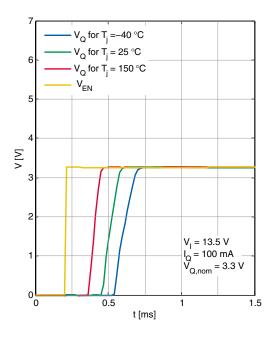
OPTIREG™ Linear TLS835B2ELVSE



Low Dropout Linear Voltage Regulator


Block description and electrical characteristics

4.6 Typical performance characteristics enable


Output voltage V_Q versus time *t* (EN switched on)

Enable input current $I_{\rm EN}$ versus enable input voltage $V_{\rm EN}$

Output voltage V_Q versus time *t* (EN switched on)

OPTIREG[™] Linear TLS835B2ELVSE

Low Dropout Linear Voltage Regulator

Block description and electrical characteristics

4.7 Output voltage selection

The output voltage V_Q of TLS835B2ELVSE can be selected by the SEL pin as follows: SEL pin connected to Q: V_Q = 5 V; SEL pin connected to GND: V_Q = 3.3 V.

Application information

5 Application information

5.1 Application diagram

Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

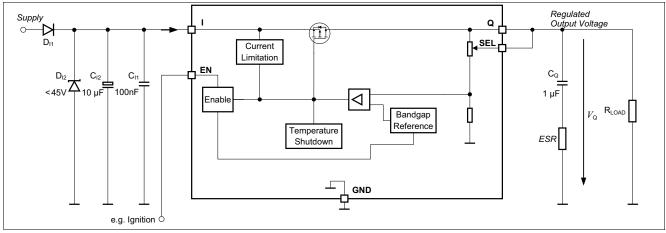


Figure 5 Application diagram

Note: This is a very simplified example of an application circuit. The function must be verified in the real application.

5.2 Selection of external components

5.2.1 Input pin

Figure 5 shows an example of the input circuitry for a linear voltage regulator. A ceramic capacitor at the input, in the range of 100 nF to 470 nF, is recommended to filter out the high frequency disturbances imposed by the line, for example ISO pulses 3a/b. This capacitor must be placed very close to the input pin of the linear voltage regulator on the PCB.

An aluminum electrolytic capacitor in the range of $10 \,\mu\text{F}$ to $470 \,\mu\text{F}$ is recommended as an input buffer to smooth out high energy pulses, such as ISO pulses 2a. This capacitor must be placed close to the input pin of the linear voltage regulator.

An overvoltage suppressor diode can be used to further suppress any high voltage beyond the maximum rating of the linear voltage regulator and to protect the device from damage due to overvoltage.

The external components at the input pin are optional, but they are recommended to deal with possible external disturbances.

5.2.2 Output pin

An output capacitor is mandatory for the stability of linear voltage regulators. Furthermore it serves as an energy buffer during load jumps, to compensate and maintain a constant output voltage potential. It must be dimensioned according to the specific requirements of the application. The requirements for the output capacitor are given in **"Functional range" on Page 8**.

Data Sheet

Application information

TLS835B2ELVSE is designed to also be stable with low ESR capacitors. According to the automotive requirements, ceramic capacitors with X5R or X7R dielectrics are recommended.

The output capacitor should be placed as close as possible to the voltage regulator's output pin and GND pin and on the same side of the PCB as the regulator itself.

In case of input voltage or load current transients, the capacitance should be dimensioned accordingly. The configuration has to be verified in the real application to ensure that the output stability requirements are fulfilled.

5.3 **Thermal considerations**

From the known input voltage, the output voltage and the load profile of the application, the total power dissipation can be calculated as follows:

$$P_D = (V_I - V_Q)I_Q + V_I I_q$$

with

- P_D: continuous power dissipation
- V_i: input voltage
- V_o: output voltage
- I_o: output current
- I_a: quiescent current

The maximum acceptable thermal resistance R_{thJA} is given by:

$$R_{thJA} = \frac{T_{j,max} - T_a}{P_D} \tag{5.2}$$

with

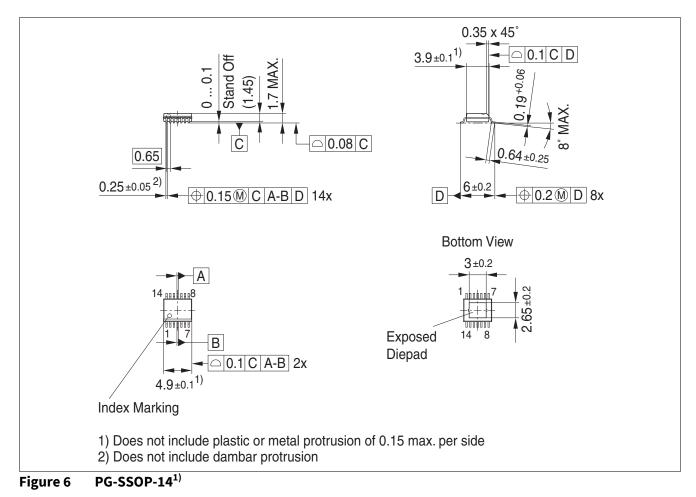
- $T_{i,max}$: maximum allowed junction temperature
- T_a: ambient temperature

Based on the above calculation the proper PCB type and the necessary heat sink area can be determined by referencing the specification for "Thermal resistance" on Page 9.

5.4 **Reverse polarity protection**

TLS835B2ELVSE is not protected against reverse polarity faults and must be protected by external components against negative supply voltage. An external reverse polarity diode is necessary. The absolute maximum ratings of the device as specified in "Absolute maximum ratings" on Page 7 must be maintained.

5.5 **Further application information**


For further information you may contact https://www.infineon.com/

(5.1)

Package information

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages

https://www.infineon.com/packages

¹⁾ Dimensions in mm

Revision history

7 Revision history

Revision	Date	Changes
1.1	2018-09-17	Editorial changes Updated <i>T</i> to <i>T_j</i> in graph of "Equivalent series resistance of output capacitor <i>ESR</i> (<i>C_Q</i>) versus output current <i>I_Q</i> "
1.0	2018-03-09	Initial Version