
STP16CPS05

Low voltage 16-bit constant current LED sink driver with auto power saving

Datasheet - production data

Features

- Low voltage power supply down to 3 V
- 16 constant current output channels
- Adjustable output current through external resistor
- Serial data IN / parallel data OUT
- Auto power-saving feature minimizes the quiescent current if no active data is detected on the latches
- Can be driven by a 3.3 V microcontroller
- Output current: 5-100 mA
- Max clock frequency 30 MHz
- ESD protection 2.5 kV HBM, 200 V MM

Description

The STP16CPS05 is a monolithic, low voltage, low current power 16-bit shift register designed for LED panel displays. The STP16CPS05 contains a 16-bit serial-in, parallel-out shift register that feeds a 16-bit, D-type storage register. In the output stage, sixteen regulated current sources provide from 5 mA to 100 mA constant current to drive the LEDs. The auto power shut-down and auto power-ON feature allows the device to save power without any external intervention. The output current setup time is 40 ns (typ), thus improving the system performance. The LEDs' brightness can be controlled by using an external resistor to adjust the STP16CPS05 output current. The STP16CPS05 guarantees a 20 V output driving capability, allowing users to connect more LEDs in series. The high clock frequency, 30 MHz, makes the device suitable for high data rate transmission. The 3.3 V voltage supply is useful in applications that interface with a 3.3 V microcontroller.

Table 1. Device summary

Order codes	Package	Packaging
STP16CPS05MTR	SO-24	1000 parts per reel
STP16CPS05TTR	TSSOP24	2500 parts per reel
STP16CPS05XTTR	TSSOP24 Exposed Pad	2500 parts per reel
STP16CPS05PTR	QSOP-24	2500 parts per reel

June 2014 DocID12569 Rev 7 1/30

Contents STP16CPS05

Contents

1	Summary description						
	1.1	Pin connection and description	. 3				
2	Elect	rical ratings	. 5				
	2.1	Absolute maximum ratings	. 5				
	2.2	Thermal data	. 5				
	2.3	Recommended operating conditions	. 6				
3	Elect	rical characteristics	. 7				
4	Equi	valent circuit and outputs	. 9				
5	Timir	ng diagrams	11				
6	Туріс	cal characteristics	14				
7	Test	circuit	18				
8	Pack	age mechanical data	20				
9	Pack	aging mechanical data	27				
10	Revie	sion history	29				

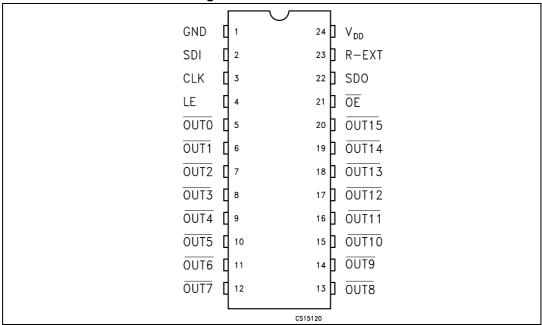

1 Summary description

Table 2. Typical current accuracy

Output voltage	Current accuracy		Output current	V	Temperature	
Output voltage	Between bits	Between ICs	Output current	V _{DD}	remperature	
≥ 1.3 V	± 1.5 %	± 5 %	≥ 20 to 100 mA	3.3 V to 5 V	25 °C	

1.1 Pin connection and description

Figure 1. Pin connection

Note:

The exposed pad should be electrically connected to a metal land electrically isolated or connected to GND

Table 3. Pin descriptiont

Pin N°	Symbol	Name and function
1	GND	Ground terminal
2	SDI	Serial data input terminal
3	CLK	Clock input terminal
4	LE	Latch input terminal
5-20	OUT 0-15	Output terminal
21	OE	Input terminal of output enable (active low)
22	SDO	Serial data out terminal

Summary description STP16CPS05

Table 3. Pin descriptiont (continued)

Pin N°	Symbol	Name and function
23	R-EXT	Input terminal of an external resistor for constant current programing
24	V_{DD}	Supply voltage terminal

STP16CPS05 Electrical ratings

2 Electrical ratings

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DD}	Supply voltage	0 to 7	V
Vo	Output voltage	-0.5 to 20	V
I _O	Output current	100	mA
V _I	Input voltage	-0.4 to V _{DD}	V
I _{GND}	GND terminal current	1600	mA
f _{CLK}	Clock frequency	50	MHz
T _J	Junction temperature range ⁽¹⁾	-40 to+170	°C

^{1.} Such absolute value is achieved according the thermal shutdown

2.2 Thermal data

Table 5. Thermal data

Symbol	Parameter		Value	Unit
T _{OPR}	Operating temperature range	-40 to +125	°C	
T _{STG}	Storage temperature range	-55 to +150	°C	
	Thermal resistance junction ⁽¹⁾	SO-24	42.7	°C/W
		TSSOP24	55	°C/W
R _{thJA}		TSSOP24 ⁽²⁾ Exposed Pad	37.5	°C/W
		QSOP-24	55	°C/W

^{1.} According to jedec standard 51-7B

^{2.} The exposed pad should be soldered directly to the PCB to realize the thermal benefits.

Electrical ratings STP16CPS05

2.3 Recommended operating conditions

Table 6. Recommended operating conditions at 25 °C

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V_{DD}	Supply voltage		3.0		5.5	V
Vo	Output voltage				20	V
Io	Output current	OUTn	5		100	mA
I _{OH}	Output current	SERIAL-OUT			+1	mA
I _{OL}	Output current	SERIAL-OUT			-1	mA
V _{IH}	Input voltage		0.7V _{DD}		V _{DD}	V
V _{IL}	Input voltage		-0.3		0.3V _{DD}	V
t _{wLAT}	LE pulse width		10			ns
t _{wCLK}	CLK pulse width		8			ns
t _{wEN}	OE pulse width	V _{DD} = 3.3 V to 5.0 V	100			ns
t _{SETUP(D)}	Setup time for DATA	V _{DD} = 3.3 V to 5.0 V	14			ns
t _{HOLD(D)}	Hold time for DATA		5			ns
t _{SETUP(L)}	Setup time for LATCH		15			ns
f _{CLK}	Clock frequency	Cascade operation (1)			30	MHz

^{1.} If the device is connected in cascade, it may not be possible achieve the maximum data transfer. Please considered the timings carefully.

577

3 Electrical characteristics

Table 7. Electrical characteristics (V_{DD} = 3.3 V to 5 V, T = 25 °C, unless otherwise specified)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
V_{IH}	Input voltage high level		0.7V _{DD}		V_{DD}	V	
V _{IL}	Input voltage low level		GND		0.3V _{DD}	V	
I _{OH}	Output leakage current	V _{OH} = 20 V			10	μΑ	
V _{OL}	Output voltage (Serial-OUT)	I _{OL} = 1 mA			0.4	V	
V _{OH}	Output voltage (Serial-OUT)	I _{OH} = -1 mA	V _{DD} -0.4V			V	
I _{OL1}		$V_{O} = 0.3 \text{ V}, R_{ext} = 3.9 \text{ k}\Omega$	4.25	5	5.75		
I _{OL2}	Output current	$V_{O} = 0.3 \text{ V, R}_{ext} = 970 \Omega$	19	20	21	mA	
I _{OL3}		$V_{O} = 1.3 \text{ V, R}_{ext} = 190 \Omega$	96	100	104		
ΔI_{OL1}	Output current error	$V_O = 0.3 \text{ VR}_{EXT} = 3.9 \text{ k}\Omega$		± 5	± 8		
Δl _{OL2}	between bit	$V_{O} = 0.3 \text{ VR}_{EXT} = 970 \Omega$		± 1.5	± 3	%	
Δl _{OL3}	(All Output ON)	$V_{O} = 1.3 \text{ VR}_{EXT} = 190 \Omega$		± 1.2	± 3		
R _{SIN(up)}	Pull-up resistor		150	300	600	kΩ	
R _{SIN(down)}	Pull-down resistor		100	200	400	kΩ	
	Shut-down current	V _{DD} = 3.3 V		120	170	μΑ	
I _{DD(SH)}	All Latched Data = L	V _{DD} = 5 V		140	200	μΑ	
I _{DD(OFF1)}	Supply current (OFF)	R _{EXT} = 970 OUT 0 to 15 = OFF		5			
I _{DD(OFF2)}	Зарріў сапені (ОГГ)	R _{EXT} = 240 OUT 0 to 15 = OFF		12.5		m Λ	
I _{DD(ON1)}	Supply current (ON)	R _{EXT} = 970 OUT 0 to 15 = ON		5.5		mA	
I _{DD(ON2)}	Supply current (ON)	R _{EXT} = 240 OUT 0 to 15 = ON		13			
Thermal	Thermal protection			170		°C	

Electrical characteristics STP16CPS05

Table 8. Switching characteristics (V_{DD} = 3.3 to 5 V, T = 25 $^{\circ}$ C)

Symbol	Parameter	Т	est conditions	1	Min	Тур	Max	Unit
+	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$		35	55	ns
t _{PLH1}	$CLK-\overline{OUTn}$, $LE = H$, $\overline{OE} = L$			$V_{DD} = 5 V$		17.5	26	115
toure	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$		33.5	52	ns
t _{PLH2}	LE-OUTn, OE = L			V _{DD} = 5 V		17	20	113
t _{PLH3}	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$		53.5	84.5	ns
PLH3	OE-OUTn, LE = H			$V_{DD} = 5 V$		28.5	40.5	
t _{PLH}	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$		19	27.5	ns
PLH	CLK-SDO			$V_{DD} = 5 V$		13	18.5	110
	Propagation delay time, CLK-OUTn, LE = H,		$V_{DD} = 3.3 \text{ V}$		13	19	ns	
t _{PHL1}	OE = L	$V_{IH} = V_{DD}$ $V_{IL} = GND$	$V_{DD} = 5 V$		8.5	12		
t	Propagation delay time,	$I_{O} = 20 \text{ mA}$ $V_{L} = 3.0 \text{ V}$	V _{DD} = 3.3 V		10	14.5	ns	
t _{PHL2}	LE-OUTn, OE = L	$R_{EXT} = 1 K\Omega$	$R_L = 60 \Omega$	$V_{DD} = 5 V$		6.5	9	1115
toure	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$		10.5	15	ns
t _{PHL3}	OE-OUTn, LE = H			$V_{DD} = 5 V$		7.5	10.5	113
t _{PHL}	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$		23	33	ns
PHL	CLK-SDO			$V_{DD} = 5 V$		15.5	21.5	113
	Output rise time			$V_{DD} = 3.3 \text{ V}$		23.5	31.5	
t _{ON}	10~90 % of voltage waveform			$V_{DD} = 5 V$		9	10.5	ns
	Output fall time			V _{DD} = 3.3 V		4.6	5.5	
t _{OFF}	90~10 % of voltage waveform			V _{DD} = 5 V		3.5	5	ns
t _r	CLK rise time (1)						5000	ns
t _f	CLK fall time (1)				_		5000	ns

^{1.} In order to achieve high cascade data transfer, please consider tr/tf timings carefully.

577

4 Equivalent circuit and outputs

Figure 2. OE terminal

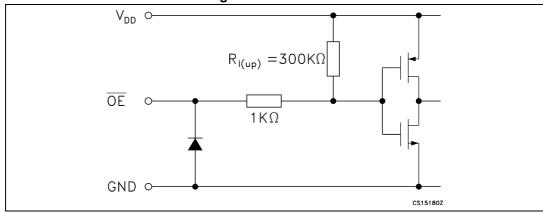


Figure 3. LE terminal

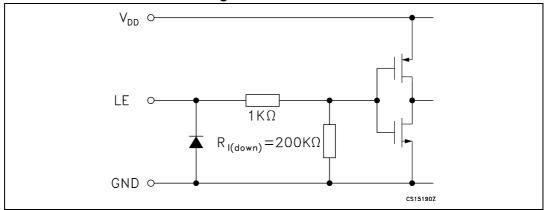
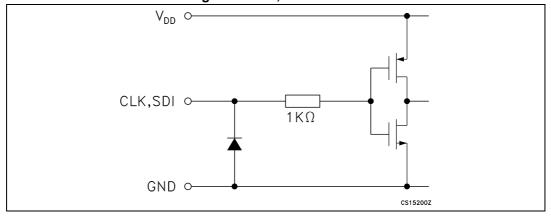



Figure 4. CLK, SDI terminal

577

Figure 5. SDO terminal

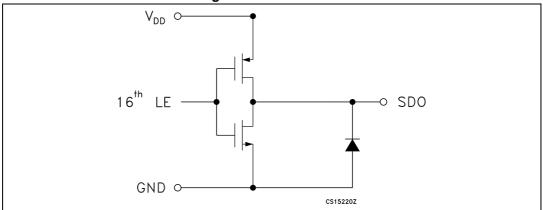
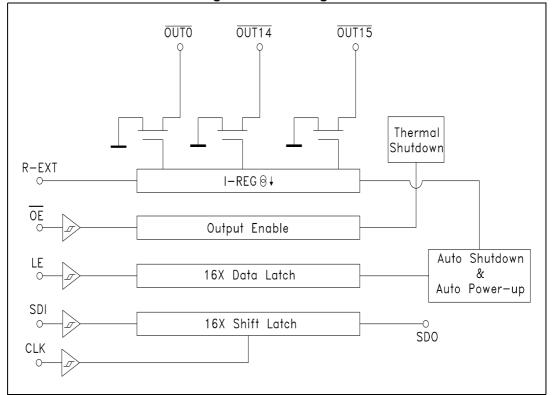



Figure 6. Block diagram

57

STP16CPS05 Timing diagrams

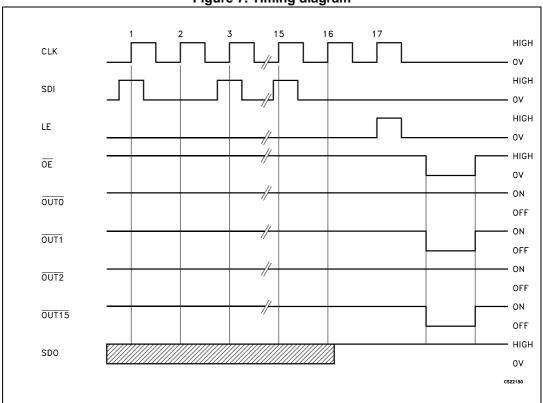

5 Timing diagrams

Table 9. Truth table

CLOCK	LE	ŌĒ	SERIAL- IN	OUT0 OUT7 OUT15	SDO
	Н	L	Dn	Dn Dn - 7 Dn -15	Dn - 15
7	L	L	Dn + 1	No change	Dn - 14
	Н	L	Dn + 2	Dn + 2 Dn - 5 Dn -13	Dn - 13
7	Х	L	Dn + 3	Dn + 2 Dn - 5 Dn -13	Dn - 13
7	Х	Н	Dn + 3	OFF	Dn - 13

Note: OUTn = ON when Dn = H OUTn = OFF when Dn = L

Figure 7. Timing diagram

Timing diagrams STP16CPS05

Note: Latch and output enable terminals are Level-sensitive and are not synchronized with rising or falling edge of CLK signal

- 2 When LE terminal is at low level, the latch circuit holds previous set of data
- 3 When LE terminal is at high level, the latch circuit refreshes new set of data from SDI chain
- When \overline{OE} is at low level the output terminals Out 0 to Out 15 respond to data in the latch 4 circuits, either '1' for ON or '0' for OFF.
- 5 When OE is at high level, all output terminals are switched OFF.

Table 10. Enable IO: shut-down truth table

CLOCK	LE	SDI ₀ SDI ₇ SDI ₁₅	SH	Auto Power-up	OUTn
	Н	All = L	Active	Not active	OFF
7	L	No change	No change	No change	No change
了	Н	One or more = H	Not active	Active	Х

Note: At the power-up the device starts in shut-down mode.

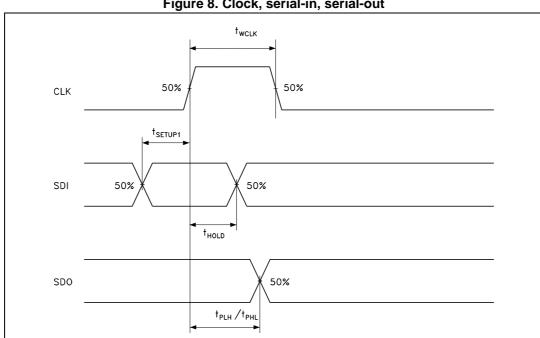


Figure 8. Clock, serial-in, serial-out

STP16CPS05 Timing diagrams

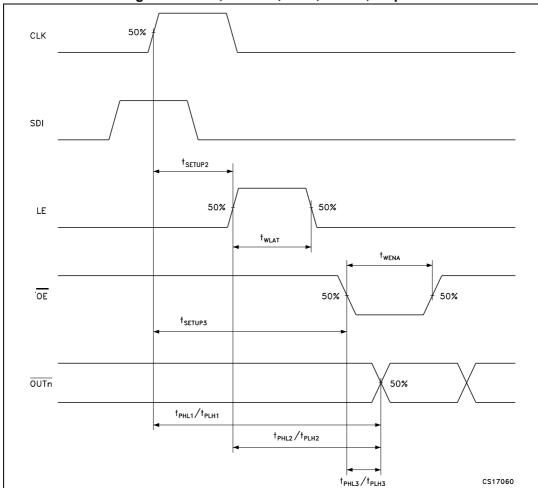
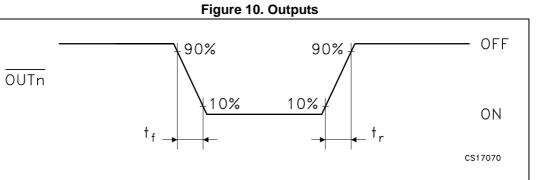



Figure 9. Clock, serial-in, latch, enable, outputs

\7/

6 Typical characteristics

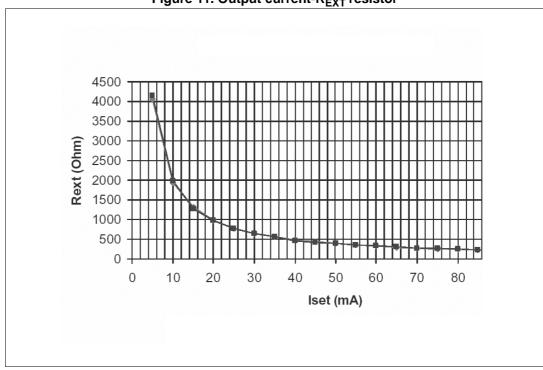


Figure 11. Output current-R_{EXT} resistor

Table 11. Output current- R_{EXT} resistor

Rext (Ω)	Output current (mA)
976	20
780	25
652	30
560	35
488	40
433	45
389	50
354	55
325	60
300	65
278	70
259	75
241	80
229	85
215	90

57

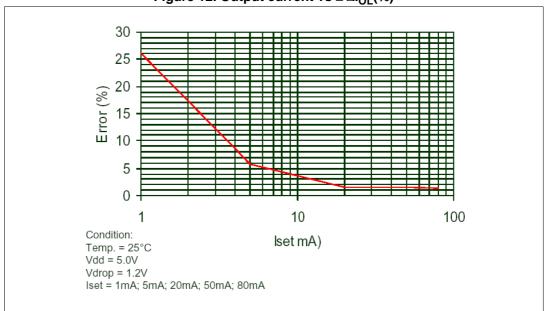
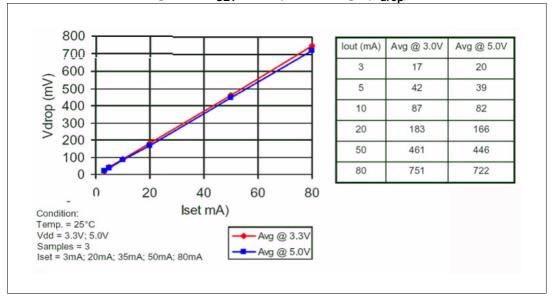
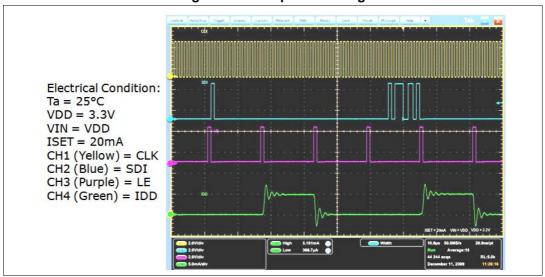



Figure 12. Output current vs $\pm \Delta I_{OL}$ (%)



14 12 10 Idd ON @3.3V 8 ---Idd ON @ 5.0V -Idd OFF @3.3V 6 Idd OFF @5.0V **Electrical Condition:** Ta = 25°C VDD = 3.3V; 5.0V 2 $\mathsf{VIN} = \, \mathsf{VDD}$ 0 20 0 40 60 80 100

Figure 14. I_{DD} ON\OFF

Figure 15. Auto power saving

Note:

Auto power-saving feature minimizes the quiescent current if no active data is detected on the latches and auto-power-up the device at fist active data latched.

577

Electrical Condition:

Ta = 25°C

VDD = 3.3V

VIN = VDD

VLED = 3.0V

ISET = 20mA

RL = 60 OHM

CL = 10pF

CH1 (Yellow) = CLK

CH2 (Blue) = SDI

CH3 (Purple) = LE

CH4 (Green) = IDD

Figure 16. First output ON after switching from auto power saving to normal mode operating condition

Note:

When the device goes from auto power saving to normal operative condition, the first output that switch ON shows TON condition as seen in the plot above.

Test circuit STP16CPS05

7 Test circuit

Figure 17. DC characteristic

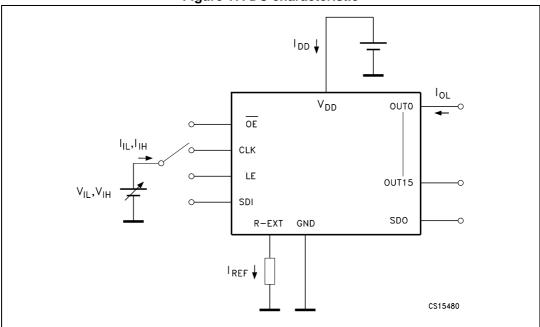
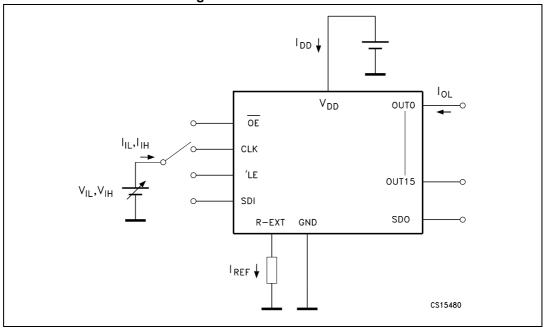



Figure 18. AC characteristic

57

STP16CPS05 Test circuit

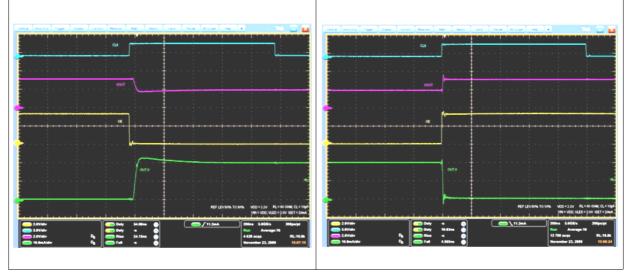

 $C = 10\mu F$ $V_{DD} = 3.3 \text{ to } 5V$ $V_{DD} = 3.3 \text{ to } 5V$

Figure 19. Typical application schematic

Note: V_L will be determined by the V_F of the LEDs

Table 12. Turn ON output current characteristics ⁽¹⁾

Table 13. Turn OFF output current characteristics ⁽²⁾

- 1. Reference level for the $T_{\mbox{ON}}$ characteristics is 50% of OE signal to 90% of output current
- 2. Reference level for the $T_{\mbox{\scriptsize OFF}}$ characteristics is 50% of OE signal to 10% of output current

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

57/

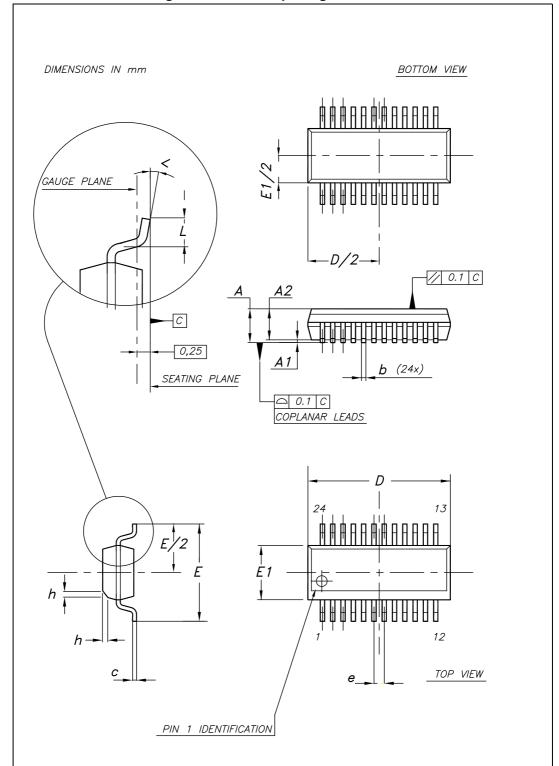


Figure 20. QSOP-24 package dimensions

5/

DocID12569 Rev 7

21/30

Table 14. QSOP-24 mechanical data

Dim.	mm.		
	Min	Тур	Max
А	1.54	1.62	1.73
A1	0.1	0.15	0.25
A2		1.47	
b	0.31	0.2	
С	0.254	0.17	
D	8.56	8.66	8.76
Е	5.8	6	6.2
E1	3.8	3.91	4.01
е		0.635	
L	0.4	0.635	0.89
h	0.25	0.33	0.41
<	8°	0°	

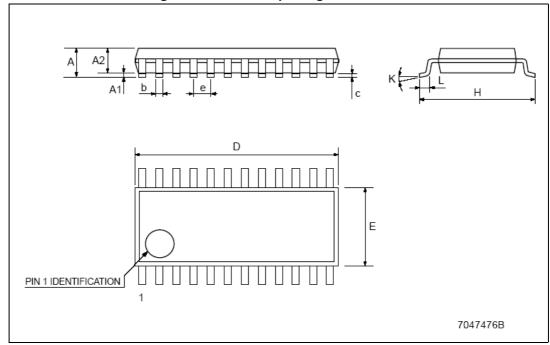


Figure 21. TSSOP24 package dimensions

Table 15. TSSOP24 mechanical data

Dim.	mm		
	Min.	Тур.	Max.
Α			1.1
A1	0.05		0.15
A2	0.9		
b	0.19		0.30
С	0.09		0.20
D	7.7		7.9
E	4.3		4.5
е	0.65 BSC		
Н	6.25		6.5
K	0° 8°		8°
L	0.50 0.70		0.70

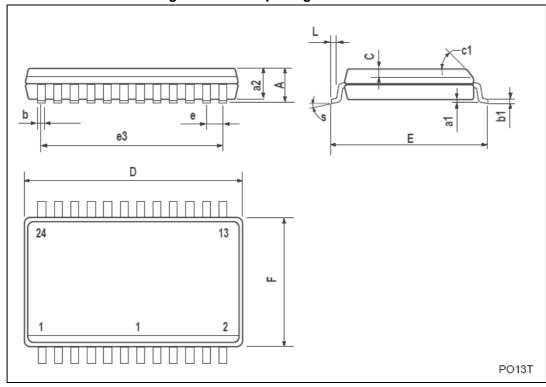


Figure 22. SO-24 package dimensions

Table 16. SO-24 mechanical data

Dim.	mm.		
	Min	Тур	Мах
А			2.65
a1	0.1		0.2
a2	2.49		2.45
b	0.35		0.49
b1	0.23		0.32
С		0.5	
c1	45°(typ.)		
D	15.20		15.60
E	10.00		10.65
е	1.27		
e3	13.97		
F	7.40		7.60
L	0.50		1.27
S	°(max.) 8		

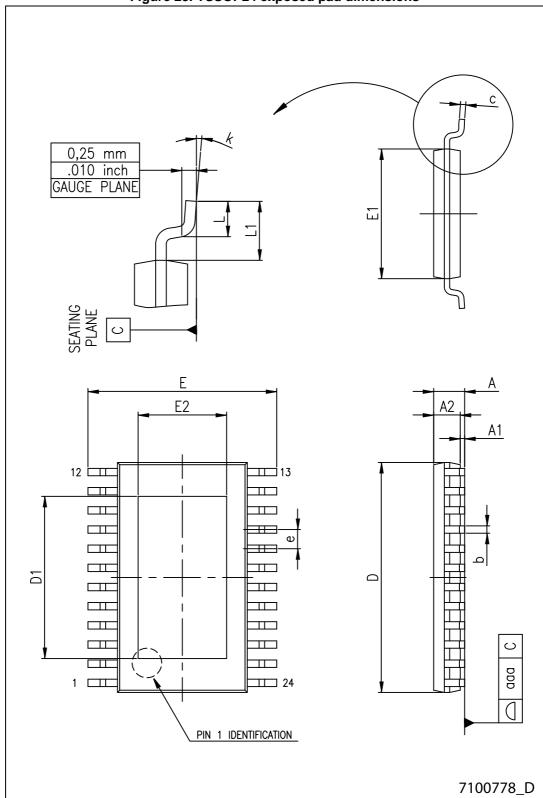


Figure 23. TSSOP24 exposed pad dimensions

5//

DocID12569 Rev 7

25/30

Table 17. TSSOP24 exposed pad mechanical data

Dim.	mm		
	Min.	Тур.	Max.
А			1.20
A1			0.15
A2	0.80	1.00	1.05
b	0.19		0.30
С	0.09		0.20
D	7.70	7.80	7.90
D1	4.80	5.00	5.2
E	6.20	6.40	6.60
E1	4.30	4.40	4.50
E2	3.00	3.20	3.40
е		0.65	
L	0.45	0.60	0.75
L1		1.00	
k	0		8
aaa			0.10

9 Packaging mechanical data

A Po Note: Drawing not in scale

Figure 24. TSSOP24, TSSOP24 exposed pad and SO-24 reel dimensions

Table 18. TSSOP24 and TSSOP24 exposed pad tape and reel mechanical data

Dim.	mm		
	Min.	Тур.	Max.
А		-	330
С	12.8	-	13.2
D	20.2	-	
N	60	-	
Т		-	22.4
Ao	6.8	-	7
Во	8.2	-	8.4
Ko	1.7	-	1.9
Po	3.9	-	4.1
Р	11.9	-	12.1

Table 19. SO-24 tape and reel mechanical data

Dim.	mm.		
	Min	Тур	Max
А		-	330
С	12.8	-	13.2
D	20.2	-	
N	60	-	
Т		-	30.4
Ao	10.8	-	11.0
Во	15.7	-	15.9
Ko	2.9	-	3.1
Po	3.9	-	4.1
Р	11.9	-	12.1

577

STP16CPS05 Revision history

10 Revision history

Table 20. Document revision history

Date	Revision	Changes
28-Jul-2006	1	First release
22-Dec-2006	2	Final datasheet
17-May-2007	3	Updated Table 8 on page 8
10-Jul-2007	4	Updated Table 9: Truth table on page 11
28-Feb-2008	5	Updated Table 19: TSSOP24 exposed pad on page 25 Added QSOP-24 package information Table 14 and Figure 20 on page 21
19-Jan-2010	6	Updated Table 6 on page 6
17-Jun-2014	7	Updated Section 8: Package mechanical data. Added Section 9: Packaging mechanical data. Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

