Grove - Temperature&Humidity Sensor Pro(DHT22)

This is a powerful sister version of our Grove - Temperature&Humidity Sensor Pro. It has more complete and accurate performance than the basic version. The detecting range of this sensor is 5% RH - 99% RH, and -40°C - 80°C. And its accuracy reaches up to 2% RH and 0.5°C. A professional choice for applications that have relatively strict requirements.

Item	Min	Norm	Max	Unit
Input voltage (VCC)	3.3	-	6	V
I/O Logic Level	-	based on VCC	-	V
Measuring Current Supply	1	-	1.5	mA
Standby Current Supply	40	-	50	uA

Specification

Measuring range (Humidity)	5%	-	99%	RH
Measuring range (Temperature)	-40	-	80	°C
Accuracy (Humidity)	-	-	±2%	RH
Accuracy (Temperature)	-	-	±0.5	°C
Resolution (Humidity)	-	-	0.1%	RH
Resolution (Temperature)	-	-	0.1	°C
Repeatability (Humidity)	-	-	±0.3%	RH
Repeatability (Temperature)	-	-	±0.2	°C
Long-term Stability	-	-	±0.5%	RH/year
Signal Collecting Period	-	2	-	S
Respond Time 1/e(63%)	6	_	20	S
Signal pin mode	-	Digital	-	-

Tip More details about Grove modules please refer to Grove System

Platforms Supported

Arduino	Raspberry Pi		
00	B		

Caution

The platforms mentioned above as supported is/are an indication of the module's software or theoritical compatibility. We only provide software library or code examples for Arduino platform in most cases. It is not possible to provide software library / demo code for all possible MCU platforms. Hence, users have to write their own software library.

Getting Started

Play With Arduino

Hardware

Materials required

Note

1 Please plug the USB cable gently, otherwise you may damage the port. Please use the USB cable with 4 wires inside, the 2 wires cable can't transfer data. If you are not sure about the wire you have, you can click here to buy

2 Each Grove module comes with a Grove cable when you buy. In case you lose the Grove cable, you can click here to buy

- Step 1. Connect Grove Temperature&Humidity Sensor Pro to port D2 of Grove-Base Shield.
- Step 2. Plug Grove Base Shield into Seeeduino.
- Step 3. Connect Seeeduino to PC via a USB cable.

Note

If we don't have Grove Base Shield, We also can directly connect Grove - Temperature and Humidity Sensor Pro to Seeeduino as below.

Seeeduino	Temperature&Humidity Sensor Pro
5V	Red
GND	Black
Not Conencted	White
D2	Yellow

Software

- Step 1. Download the Seeed DHT library from Github.
- Step 2. Refer to How to install library to install library for Arduino.
- Step 3. Restart the Arduino IDE. Open " DHTtester" example via the path: File → Examples \rightarrow Grove_Humidity_Temperature_Sensor-master \rightarrow DHTtester. Through this demo, we can read the temperature and relative humidity information of the environment.

File	Edit Sketch	Tools Help					
	New	Ctrl+N					Ø
	Open	Ctrl+O					_
	Open Recent	: >					•
	Sketchbook	>	various DHT humidity/temperature sensors				^
	Examples	3	Built-in Examples				
	Close	Ctrl+W	01.Basics	>			
	Save	Ctrl+S	02.Digital	>			
	Save As	Ctrl+Shift+S	03.Analog	>			
	Dage Setup	Ctrl+Shift+D	04.Communication	>			
	Print	Ctrl+D	05.Control	>			
	FILL	Cuttr	06.Sensors	>			
	Preferences	Ctrl+Comma	07.Display	>			
	Ouit	Ctrl+O	08.Strings	>			
13	// Connect p	in 1 (on the let	09.USB	>			
14	// Connect p	in 2 of the sen	10.StarterKit_BasicKit	>			
15	// Connect p	in 4 (on the ri	11.ArduinoISP	>			
16	// Connect a	10K resistor fi					
17			Examples for Arduino/Genuino Uno				
18	DHT dht(DHTP)	IN, DHTTYPE);	EEPROM	>			
19			SoftwareSerial	>			
			SPI	>			
			Wire	>			
			Examples from Custom Libraries				
			Grove Temperature And Humidity Sensor	2	DHTtester		

Note

This Grove - Temperature&Humidity Sensor Pro and our another product Grove-Temperature and Humidity Sensor are sharing this library. No matter which product you are using, make sure that you have made the definition line of the sensor of your board into effect and commented out the definition lines of other specs. For example, the sensor we used on Grove - Temperature and Humidity Sensor Pro is DHT 22. So the definition part of the sensor spec should be:

- Step 4. Upload the demo. If you do not know how to upload the code, please check How to upload code.
- Step 5. Open the Serial Monitor of Arduino IDE by click Tool-> Serial Monitor. Or tap the Ctrl + Shift + M key at the same time. if every thing goes well, you will get the result.

The result should be like:

COM27					_		\times
						5	Send
DHTxx test!							^
Humidity: 43.50 %	Temperature: 24.90 *C						
Humidity: 43.50 %	Temperature: 24.90 *C						
Humidity: 43.50 %	Temperature: 24.90 *C						
Humidity: 43.50 %	Temperature: 24.90 *C						
Humidity: 43.10 %	Temperature: 24.90 *C						
Humidity: 43.10 %	Temperature: 24.90 *C						
Humidity: 43.10 %	Temperature: 24.90 *C						
Humidity: 43.10 %	Temperature: 24.90 *C						
Humidity: 42.70 %	Temperature: 24.90 *C						
Humidity: 42.70 %	Temperature: 24.90 *C						
Humidity: 42.70 %	Temperature: 24.90 *C						
Humidity: 42.70 %	Temperature: 24.90 *C						
Humidity: 42.60 %	Temperature: 24.90 *C						
Humidity: 42.60 %	Temperature: 24.90 *C						
Humidity: 42.60 %	Temperature: 24.90 *C						
Humidity: 42.60 %	Temperature: 24.90 *C						
Humidity: 42.30 %	Temperature: 24.90 *C						
Humidity: 42.30 %	Temperature: 24.90 *C						
Humidity: 42.30 %	Temperature: 24.90 *C						
Humidity: 42.30 %	Temperature: 24.90 *C						
Humidity: 41.90 %	Temperature: 24.90 *C						
Humidity: 41.90 %	Temperature: 24.90 *C						~
Autoscroll			No line ending $$	9600 baud	~ C	lear out	tput

Play With Raspberry Pi (With Grove Base Hat for Raspberry Pi)

Hardware

• Step 1. Things used in this project:

Raspberry pi	Grove Base Hat for RasPi	Grove - Temp & Hum Sensor Pro
Get ONE Now	Get ONE Now	Get ONE Now

- Step 2. Plug the Grove Base Hat into Raspberry.
- Step 3. Connect the temperature and humidity sensor pro to port 12 of the Base Hat.
- Step 4. Connect the Raspberry Pi to PC through USB cable.

Note

For step 3 you are able to connect the temperature and humidity sensor pro toany GPIO Port but make sure you change the command with the corresponding port number.

Software

- Step 1. Follow Setting Software to configure the development environment.
- Step 2. Download the source file by cloning the grove.py library.

• Step 3. Excute below commands to run the code.

cd Seeed_Python_DHT sudo python setup.py install cd ~/Seeed_Python_DHT/examples nano dht_simpleread.py

Change the sensor = seeed_dht.DHT("11", 12) to sensor = seeed_dht.DHT("22", 12), Following is the dht_simpleread.py code.

import time import seeed_dht def main():

for DHT11/DHT22
sensor = seeed_dht.DHT("22", 12)
for DHT10
sensor = seeed_dht.DHT("10")

```
while True
```

humi, temp = sensor.read()
if not humi is None:
 print('DHT{0}, humidity {1:.1f}%, temperature {2:.1f}*'.format(sensor.dht_typ
humi, temp))
 olso:

```
else:
```

print('DHT{0}, humidity & temperature: {1}'.format(sensor.dht_type, temp))
time.sleep(1)

```
if __name__ == '__main__':
main()
```

Success

If everything goes well, you will be able to see the following result by running python dht_simpleread.py

pi @raspberrypi :~/Seeed_Python_DHT/examples
DHT22, humidity 39.2 %, temperature 29.1 *
DHT22, humidity 39.2 %, temperature 29.1 *
DHT22, humidity 39.2 %, temperature 29.1 *
DHT22, humidity 39.1 %, temperature 29.1 *
DHT22, humidity 40.0 %, temperature 29.1 *
DHT22, humidity 39.9 %, temperature 29.1 *
DHT22, humidity 40.3 %, temperature 29.1 *
DHT22, humidity 42.0 %, temperature 29.1 *

You can quit this program by simply press Ctrl + C.

Play With Raspberry Pi (with GrovePi_Plus)

Hardware

Materials required

Raspberry pi	GrovePi_Plus	Temperature&Humidity Sensor Pro
Get One Now	Get One Now	Get One Now

- Step 1. Plug the GrovePi_Plus into Raspberry.
- Step 2. Connect Grove Temperature&Humidity Sensor Pro to D4 port of GrovePi_Plus.
- Step 3. Connect the Raspberry to PC via USB cable.

Software

If this is the first time you use GrovePi, please do this part step by step. If you are an old friend with GrovePi, you can skip Step1 and Step2.

• Step 1. Setting Up The Software. In the command line, type the following commands:

sudo curl -kL dexterindustries.com/update_grovepi | bash

sudo reboot

cd /home/pi/Desktop

git clone https://github.com/DexterInd/GrovePi.git

For more detail about this part, please refer to Setting Software.

• Step 2. Follow Updating the Firmware to update the newest firmware of GrovePi.

Note

We firmly suggest you to update the firmware, or for some sensors you may get errors.

• Step 3. Configure the parameter

```
cd /home/pi/Desktop/GrovePi/Software/Python/
sudo nano grove_dht_pro.py
```

Note

The Grove - Temperature&Humidity Sensor and the Grove - Temperature&Humidity Sensor pro share the same python code which named grove_dht_pro.py . The only difference is that for the sentence [temp,humidity] = grovepi.dht(sensor,blue) . We use the parameter blue for Grove - Temperature&Humidity Sensor while we use white for the Grove - Temperature&Humidity Sensor pro. The default value is blue, so for this sensor you need to change the code.

Change the default parameter [temp, humidity] = grovepi.dht(sensor, blue) into [temp, humidity] = grovepi.dht(sensor, white). Then the code should be like:

Then tap Ctrl + X to quit nano. Tap Y to save the change.

• Step 4. Run the following command to get the result.

The result should be like:

pi @raspberrypi :~/GrovePi/Software/Python <mark>\$</mark> sudo python grove_dht_pro.py
temp = 22.90 C humidity =42.30%
temp = 22.90 C humidity =42.30%
temp = 22.90 C humidity = 42.30 %
temp = 22.90 C humidity =42.30%
temp = 22.90 C humidity = 42.30%
temp = 22.90 C humidity = 42.30%
temp = 22.90 C humidity = 42.30%
temp = 22.90 C humidity = 42.30%
temp = 22.90 C humidity = 42.30%
temp = 22.90 C humidity = 42.30%

temp = 22.90 C humidity = 42.30%

Schematic Online Viewer

Resources

- [Zip] Temperature&Humidity Sensor Pro in eagle format
- [PDF] Temperature&Humidity Sensor Pro PCB in PDF format
- [PDF] Temperature&Humidity Sensor Pro Schematic in PDF format
- [Library] Temperature&Humidity Sensor Pro library
- [Datasheet] AM2302-CN.pdf
- [Datasheet] AM2302-EN.pdf