




#### N-channel 60 V, 80 m $\Omega$ typ., 12 A, STripFET II Power MOSFET in a DPAK package

## Features





| Order code  | V <sub>DS</sub> | R <sub>DS(on)</sub> max. | I <sub>D</sub> | Ртот |
|-------------|-----------------|--------------------------|----------------|------|
| STD12NF06T4 | 60 V            | 0.1 Ω                    | 12 A           | 30 W |

- Exceptional dv/dt capability
- 100% avalanche tested
- · Low gate charge

#### **Applications**

· Switching applications

#### **Description**

This Power MOSFET has been developed using STMicroelectronics' unique STripFET process, which is specifically designed to minimize input capacitance and gate charge. This renders the device suitable for use as primary switch in advanced high-efficiency isolated DC-DC converters for telecom and computer applications, and applications with low gate charge driving requirements.



# Product status link STD12NF06T4

| Product summary |               |  |  |
|-----------------|---------------|--|--|
| Order code      | STD12NF06T4   |  |  |
| Marking         | D12NF06       |  |  |
| Package         | DPAK          |  |  |
| Packing         | Tape and reel |  |  |



## 1 Electrical ratings

Table 1. Absolute maximum ratings

| Symbol                         | Parameter                                             | Value      | Unit |  |
|--------------------------------|-------------------------------------------------------|------------|------|--|
| $V_{DS}$                       | Drain-source voltage                                  | 60         | V    |  |
| $V_{DGR}$                      | Drain-gate voltage ( $R_{GS}$ = 20 k $\Omega$ )       | 60         | V    |  |
| V <sub>GS</sub>                | Gate-source voltage                                   | ±20        | V    |  |
| I <sub>D</sub>                 | Drain current (continuous) at T <sub>C</sub> = 25 °C  | 12         | A    |  |
| קי                             | Drain current (continuous) at T <sub>C</sub> = 100 °C | 8.5        |      |  |
| I <sub>DM</sub> <sup>(1)</sup> | Drain current (pulsed)                                | 48         | А    |  |
| P <sub>TOT</sub>               | Total power dissipation at T <sub>C</sub> = 25 °C     | 30         | W    |  |
| dv/dt <sup>(2)</sup>           | Peak diode recovery voltage slope                     | 15         | V/ns |  |
| E <sub>AS</sub> (3)            | Single pulse avalanche energy                         | 140        | mJ   |  |
| T <sub>stg</sub>               | Storage temperature range                             | -55 to 175 | °C   |  |
| T <sub>J</sub>                 | Operating junction temperature range                  | -55 (0 175 |      |  |

- 1. Pulse width is limited by safe operating area.
- 2.  $I_{SD} \le$  12 A, di/dt  $\le$  200 A/ns,  $V_{DD}$  = 80%  $V_{(BR)DSS}$
- 3. Starting  $T_J = 25$  °C,  $I_D = 6$  A,  $V_{DD} = 30$  V.

Table 2. Thermal data

| Symbol            | Parameter                            | Value | Unit |
|-------------------|--------------------------------------|-------|------|
| R <sub>thJC</sub> | Thermal resistance, junction-to-case | 5     | °C/W |
| R <sub>thJA</sub> | Thermal resistance, junction-ambient | 100   | C/VV |

DS2577 - Rev 8 page 2/15



#### 2 Electrical characteristics

( $T_C$  = 25 °C unless otherwise specified).

Table 3. Static

| Symbol               | Parameter                         | Test conditions                                                                    | Min. | Тур. | Max. | Unit |
|----------------------|-----------------------------------|------------------------------------------------------------------------------------|------|------|------|------|
| V <sub>(BR)DSS</sub> | Drain-source breakdown voltage    | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$                                      | 60   |      |      | V    |
|                      |                                   | V <sub>GS</sub> = 0 V, V <sub>DS</sub> = 60 V                                      |      |      | 1    |      |
| I <sub>DSS</sub>     | Zero gate voltage drain current   | $V_{GS} = 0 \text{ V, } V_{DS} = 60 \text{ V,}$ $T_C = 125 ^{\circ}\text{C}^{(1)}$ |      |      | 10   | μА   |
| I <sub>GSS</sub>     | Gate-body leakage current         | V <sub>DS</sub> = 0 V, V <sub>GS</sub> = ±20 V                                     |      |      | ±100 | nA   |
| V <sub>GS(th)</sub>  | Gate threshold voltage            | $V_{DS} = V_{GS}, I_D = 250 \mu A$                                                 | 2    | 3    | 4    | V    |
| R <sub>DS(on)</sub>  | Static drain-source on-resistance | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 6 A                                       |      | 80   | 100  | mΩ   |

<sup>1.</sup> Defined by design, not subject to production test.

Table 4. Dynamic

| Symbol           | Parameter                    | Test conditions                                                     | Min. | Тур. | Max. | Unit |
|------------------|------------------------------|---------------------------------------------------------------------|------|------|------|------|
| 9 <sub>fs</sub>  | Forward transconductance     | $V_{DS} = 15 \text{ V}, I_D = 6 \text{ A}$                          | -    | 5    |      | S    |
| C <sub>iss</sub> | Input capacitance            |                                                                     | -    | 315  |      | pF   |
| C <sub>oss</sub> | Output capacitance           | $V_{DS}$ = 25 V, f = 1 MHz, $V_{GS}$ = 0 V                          | -    | 70   |      | pF   |
| C <sub>rss</sub> | Reverse transfer capacitance |                                                                     | -    | 30   |      | pF   |
| Qg               | Total gate charge            | $V_{DD} = 48 \text{ V}, I_D = 20 \text{ A}, V_{GS} = 10 \text{ V},$ | -    | 10   | 12   | nC   |
| Q <sub>gs</sub>  | Gate-source charge           | $R_G$ = 4.7 Ω<br>(see Figure 14. Test circuit for gate              | -    | 3.0  |      | nC   |
| Q <sub>gd</sub>  | Gate-drain charge            | charge behavior)                                                    | -    | 3.5  |      | nC   |

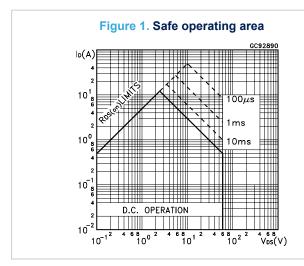
Table 5. Switching times

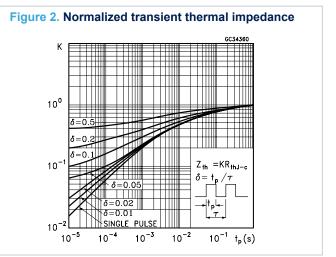
| Symbol              | Parameter           | Test conditions                                                                                                 | Min. | Тур. | Max. | Unit |
|---------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>  | Turn-on delay time  | V 00 V I 40 A D 4.7.0                                                                                           | -    | 7    | -    | ns   |
| t <sub>r</sub>      | Rise time           | V <sub>DD</sub> = 30 V, I <sub>D</sub> = 12 A, R <sub>G</sub> = 4.7 V <sub>GS</sub> = 10 V (see Figure 13. Test | -    | 18   | -    | ns   |
| t <sub>d(off)</sub> | Turn-off delay time | circuit for resistive load switching times)                                                                     | -    | 17   | -    | ns   |
| t <sub>f</sub>      | Fall time           |                                                                                                                 | -    | 6    | -    | ns   |

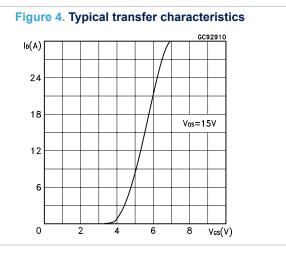
DS2577 - Rev 8 page 3/15

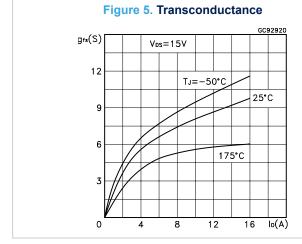


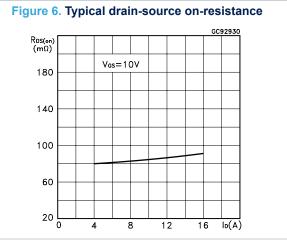
Table 6. Source-drain diode


| Symbol                          | Parameter                     | Test conditions                                                                     | Min. | Тур. | Max. | Unit |
|---------------------------------|-------------------------------|-------------------------------------------------------------------------------------|------|------|------|------|
| I <sub>SD</sub>                 | Source-drain current          |                                                                                     | -    |      | 12   | Α    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed) |                                                                                     | -    |      | 48   | Α    |
| V <sub>SD</sub> <sup>(2)</sup>  | Forward on voltage            | V <sub>GS</sub> = 0 V, I <sub>SD</sub> = 12 A                                       | -    |      | 1.3  | V    |
| t <sub>rr</sub>                 | Reverse recovery time         | I <sub>SD</sub> = 12 A, di/dt = 100 A/μs,                                           | -    | 50   |      | ns   |
| Q <sub>rr</sub>                 | Reverse recovery charge       | V <sub>DD</sub> = 30 V, T <sub>J</sub> = 150 °C                                     | -    | 65   |      | nC   |
| I <sub>RRM</sub>                | Reverse recovery current      | (see Figure 15. Test circuit for inductive load switching and diode recovery times) | -    | 3.5  |      | А    |


- 1. Pulse width is limited by safe operating area.
- 2. Pulse test: pulse duration = 300 μs, duty cycle 1.5%.


DS2577 - Rev 8 page 4/15





#### 2.1 Electrical characteristics (curves)











DS2577 - Rev 8 page 5/15



Figure 7. Typical gate charge characteristics

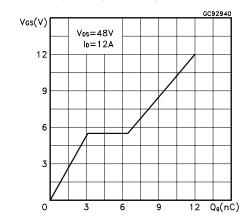



Figure 8. Typical capacitance characteristics

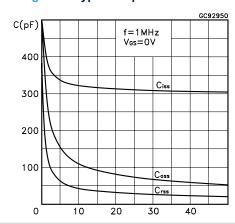



Figure 9. Normalized gate threshold vs temperature

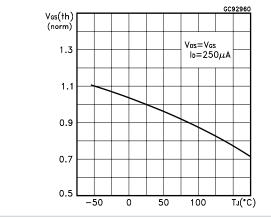



Figure 10. Normalized on-resistance vs temperature

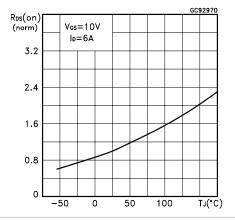



Figure 11. Typical reverse diode forward characteristics

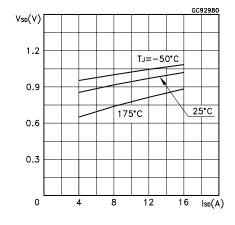
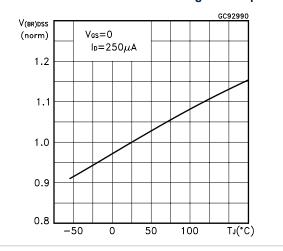




Figure 12. Normalized breakdown voltage vs temperature

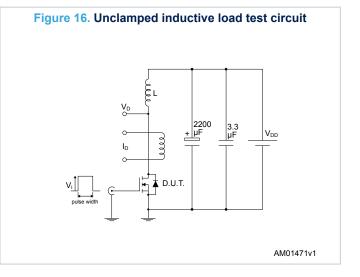


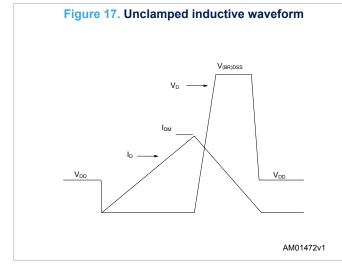
DS2577 - Rev 8 page 6/15

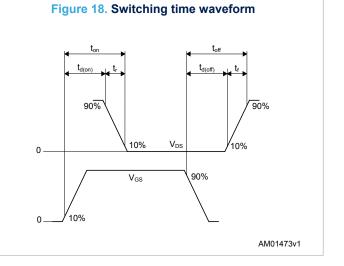


#### 3 Test circuits

Figure 13. Test circuit for resistive load switching times


V<sub>D</sub>


V<sub>D</sub>


D.U.T.

AM01468v1

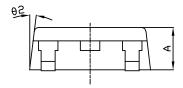
Figure 14. Test circuit for gate charge behavior  $\begin{array}{c} 12\sqrt{\phantom{+0}} \\ 12\sqrt{\phantom{+0}} \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 100$ 

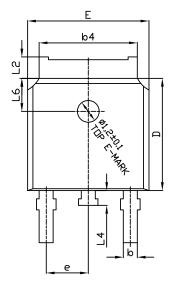


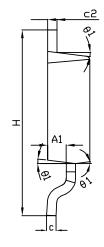


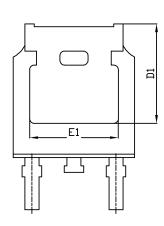


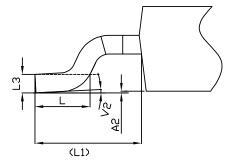
DS2577 - Rev 8 page 7/15





#### 4 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.


#### 4.1 DPAK (TO-252) type C package information


Figure 19. DPAK (TO-252) type C package outline











0068772\_C\_31

DS2577 - Rev 8

Downloaded from Arrow.com.

page 8/15

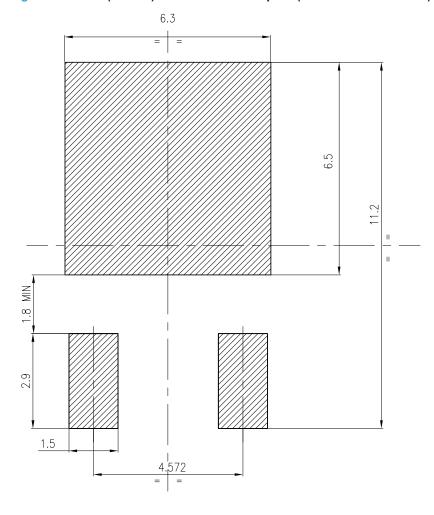


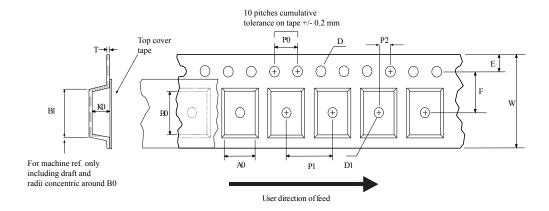
Table 7. DPAK (TO-252) type C mechanical data

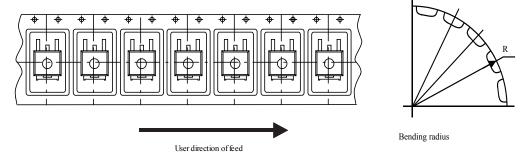
| Dim. |       | mm       |       |
|------|-------|----------|-------|
| DIM. | Min.  | Тур.     | Max.  |
| А    | 2.20  | 2.30     | 2.38  |
| A1   | 0.90  | 1.01     | 1.10  |
| A2   | 0.00  |          | 0.10  |
| b    | 0.72  |          | 0.85  |
| b4   | 5.13  | 5.33     | 5.46  |
| С    | 0.47  |          | 0.60  |
| c2   | 0.47  |          | 0.60  |
| D    | 6.00  | 6.10     | 6.20  |
| D1   | 5.15  | 5.40     | 5.65  |
| Е    | 6.50  | 6.60     | 6.70  |
| E1   | 4.70  | 4.85     | 5.00  |
| е    | 2.186 | 2.286    | 2.386 |
| Н    | 9.80  | 10.10    | 10.40 |
| L    | 1.40  | 1.50     | 1.70  |
| L1   |       | 2.90 REF |       |
| L2   | 0.90  |          | 1.25  |
| L3   |       | 0.51 BSC |       |
| L4   | 0.60  | 0.80     | 1.00  |
| L6   |       | 1.80 BSC |       |
| θ1   | 5°    | 7°       | 9°    |
| θ2   | 5°    | 7°       | 9°    |
| V2   | 0°    |          | 8°    |

DS2577 - Rev 8 page 9/15







Figure 20. DPAK (TO-252) recommended footprint (dimensions are in mm)

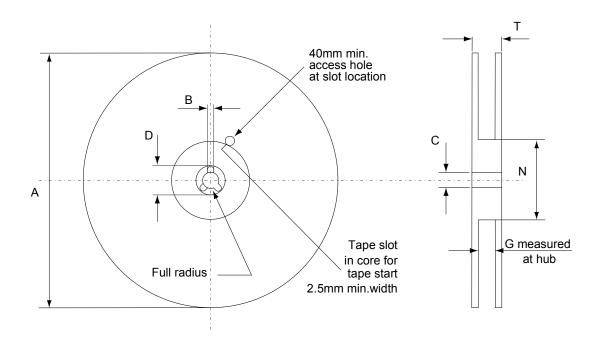

FP\_0068772\_31



#### 4.2 DPAK (TO-252) packing information

Figure 21. DPAK (TO-252) tape outline






AM08852v1

DS2577 - Rev 8 page 11/15



Figure 22. DPAK (TO-252) reel outline



AM06038v1

Table 8. DPAK (TO-252) tape and reel mechanical data

|      | Таре |      |      | Reel                                               |      |
|------|------|------|------|----------------------------------------------------|------|
| Dim. | mm   |      | Dim. |                                                    | mm   |
| Dim. | Min. | Max. | Dim. | Min. M  3  1.5  12.8  20.2  16.4  50  2  e qty. 25 | Max. |
| A0   | 6.8  | 7    | Α    |                                                    | 330  |
| В0   | 10.4 | 10.6 | В    | 1.5                                                |      |
| B1   |      | 12.1 | С    | 12.8                                               | 13.2 |
| D    | 1.5  | 1.6  | D    | 20.2                                               |      |
| D1   | 1.5  |      | G    | 16.4                                               | 18.4 |
| E    | 1.65 | 1.85 | N    | 50                                                 |      |
| F    | 7.4  | 7.6  | Т    |                                                    | 22.4 |
| K0   | 2.55 | 2.75 |      |                                                    |      |
| P0   | 3.9  | 4.1  | Base | qty.                                               | 2500 |
| P1   | 7.9  | 8.1  | Bulk | qty.                                               | 2500 |
| P2   | 1.9  | 2.1  |      |                                                    |      |
| R    | 40   |      |      |                                                    |      |
| Т    | 0.25 | 0.35 |      |                                                    |      |
| W    | 15.7 | 16.3 |      |                                                    |      |

DS2577 - Rev 8 page 12/15



### **Revision history**

Table 9. Document revision history

| Date        | Revision | Changes                                                                                   |
|-------------|----------|-------------------------------------------------------------------------------------------|
| 09-Sep-2004 | 3        | Complete document                                                                         |
| 07-Aug-2006 | 4        | The document has been reformatted                                                         |
| 19-Feb-2007 | 5        | Typo mistake on page 1                                                                    |
| 15-Apr-2009 | 6        | Table 1: Device summary has been updated Mechanical data updated                          |
| 26-Nov-2009 | 7        | Updated Q <sub>rr</sub> in <i>Table 7: Source drain diode</i> .                           |
| 06-Oct-2022 | 8        | The part number STD12NF06 has been removed and the document has been updated accordingly. |





#### **Contents**

| 1   | Elec   | trical ratingstrical ratings             | 2    |
|-----|--------|------------------------------------------|------|
| 2   | Elec   | trical characteristics                   | 3    |
|     | 2.1    | Electrical characteristics (curves)      | 5    |
| 3   | Test   | circuits                                 | 7    |
| 4   | Pac    | kage information                         | 8    |
|     | 4.1    | DPAK (TO-252) type C package information | 8    |
|     | 4.2    | DPAK (TO-252) packing information        | . 11 |
| Rev | /ision | history                                  | 13   |



#### **IMPORTANT NOTICE - READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics - All rights reserved

DS2577 - Rev 8 page 15/15