## $9.5 \Omega$ Row, 16-Channel, Differential 8-Channel, $\pm 15 \mathrm{~V} /+12 \mathrm{~V} / \pm 5 \mathrm{~V}$ iCMOS Multiplexers

## Data Sheet

## FEATURES

$9.5 \Omega$ on resistance at $25^{\circ} \mathrm{C}$ Up to $\mathbf{3 0 0} \mathbf{~ m A}$ of continuous current Fully specified at $\pm 15 \mathrm{~V} /+12 \mathrm{~V} / \pm 5 \mathrm{~V}$ 3 V logic-compatible inputs Rail-to-rail operation Break-before-make switching action 28-lead TSSOP and 32-lead, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ LFCSP

## APPLICATIONS

## Medical equipment

Audio and video routing
Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Communication systems

## FUNCTIONAL BLOCK DIAGRAMS



Figure 1.


Figure 2.
of high voltage devices has been able to achieve. Unlike analog ICs using conventional CMOS processes, $i \mathrm{CMOS}$ components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications where low distortion is critical. iCMOS construction ensures ultralow power dissipation, making the devices ideally suited for portable and battery-powered instruments.

Table 1. Related Devices

| Device No. | Description |
| :--- | :--- |
| ADG1206/ADG1207 | Low capacitance, low charge injection, <br> and low leakage 8-/16-channel $\pm 15 \mathrm{~V}$ <br> multiplexers |

## TABLE OF CONTENTS

Features ..... 1
Applications. ..... 1
General Description ..... 1
Functional Block Diagrams. .....  1
Revision History ..... 2
Specifications ..... 3
$\pm 15$ V Dual Supply ..... 3
12 V Single Supply. .....  4
$\pm 5 \mathrm{~V}$ Dual Supply .....  6
Continuous Current per Channel ..... 7
REVISION HISTORY
6/2016-Rev. B to Rev. C
Changes to Analog Inputs Parameter, Table 7 ..... 8
Added Digital Inputs Parameter, Table 7 ..... 8
4/2016-Rev. A to Rev. B
Changed CP-32-2 to CP-32-7 Throughout
Changed LFCSP_VQ to LFCSP Throughout
Changes to Figure 4 and Table 9 ..... 9
Changes to Figure 6 and Table 10 ..... 11
Updated Outline Dimensions ..... 20
Changes to Ordering Guide ..... 20
3/2009—Rev. 0 to Rev. A
Change to I ID Parameter, Table 2 ..... 4
Change to I ${ }_{\text {DD }}$ Parameter, Table 3 ..... 5
Changes to Figure 16 ..... 14
Absolute Maximum Ratings .....  8
Thermal Resistance .....  8
ESD Caution .....  8
Pin Configurations and Function Descriptions .....  9
Typical Performance Characteristics. ..... 13
Terminology ..... 17
Test Circuits ..... 18
Outline Dimensions ..... 20
Ordering Guide ..... 20

## SPECIFICATIONS

$\pm 15$ V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. ${ }^{1}$
Table 2.


| Parameter | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$ |  |  |  |  | $\mathrm{f}=1 \mathrm{MHz}$ |
| ADG1406 | 115 |  |  | pF typ |  |
| ADG1407 | 70 |  |  | pF typ |  |
| POWER REQUIREMENTS |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-16.5 \mathrm{~V}$ |
| IDD | 0.002 |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$ |
|  |  |  | 1 | $\mu \mathrm{A}$ max |  |
| IDD | 280 |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=5 \mathrm{~V}$ |
|  |  |  | 475 | $\mu \mathrm{A}$ max |  |
| Iss | 0.002 |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=0 \mathrm{~V}, 5 \mathrm{~V}$ or $\mathrm{V}_{\text {DD }}$ |
|  |  |  |  | $\mu \mathrm{A}$ max |  |
| $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$ |  |  | $\pm 4.5 / \pm 16.5$ | $\checkmark$ min/max |  |

${ }^{1}$ Temperature range for B version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

## 12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.


| Parameter | $+25^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}^{1}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ton (EN) | 145 | 250175 | 285 | ns typ | $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
| toff (EN) | 205 |  |  | ns max | $\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 31 |
|  | 112 |  |  | nstyp | $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 150 |  | 200 | ns max | $\mathrm{V}_{5}=8 \mathrm{~V}$; see Figure 31 |
| Charge Injection | 10 | 175 |  | pC typ | $\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 33 |
| Off Isolation | -73 |  |  | dB typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 34 |
| Channel-to-Channel Crosstalk | -70 |  |  | dB typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ $\text { see Figure } 35$ |
| -3 dB Bandwidth |  |  |  |  | $\mathrm{RL}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 36 |
| ADG1406 | 35 |  |  | MHz typ |  |
| ADG1407 | 70 |  |  | MHz typ |  |
| Insertion Loss | 0.6 |  |  | dB typ | $R \mathrm{~L}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 36 |
| $\mathrm{C}_{s}$ (Off) | 12 |  |  | pF typ | $\mathrm{f}=1 \mathrm{MHz}$ |
| $C_{\text {d }}$ (Off) |  |  |  |  | $\mathrm{f}=1 \mathrm{MHz}$ |
| ADG1406 | 145 |  |  | pF typ |  |
| ADG1407 | 72 |  |  | pF typ |  |
| $C_{\text {d, }}, C_{S}(\mathrm{On})$ |  |  |  |  | $\mathrm{f}=1 \mathrm{MHz}$ |
| ADG1406 | 166 |  |  | pF typ |  |
| ADG1407 | 93 |  |  | pF typ |  |
| POWER REQUIREMENTS |  |  |  |  | $\mathrm{V}_{\text {DD }}=13.2 \mathrm{~V}$ |
| ldo | 0.002 |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$ |
|  |  |  | 1 | $\mu \mathrm{A}$ max |  |
| IDD | 150 |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=5 \mathrm{~V}$ |
|  |  |  | 475 | $\mu \mathrm{A}$ max |  |
| $V_{D D}$ |  |  | 5/16.5 | $\checkmark$ min/max | $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$ |

[^0]${ }^{2}$ Guaranteed by design, not subject to production test.

## ADG1406/ADG1407

## 土5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

| Parameter | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C}^{1} \end{aligned}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH <br> Analog Signal Range On Resistance (Ros) <br> On-Resistance Match Between Channels ( $\Delta$ Ron) <br> On-Resistance Flatness (Rflaton) | $\begin{aligned} & 21 \\ & 25 \\ & 0.6 \\ & 1.3 \\ & 5.2 \\ & 6.4 \end{aligned}$ | 29 1.7 7.3 | $\mathrm{V}_{\mathrm{SS}}$ to $\mathrm{V}_{\mathrm{DD}}$ <br> 32 <br> 1.9 <br> 7.6 | $\begin{aligned} & \mathrm{V} \\ & \Omega \operatorname{typ} \\ & \Omega \max \\ & \Omega \operatorname{typ} \\ & \Omega \max \\ & \Omega \operatorname{typ} \\ & \Omega \max \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 27 \end{aligned}$ $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$ $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$ |
| LEAKAGE CURRENTS <br> Source Off Leakage, Is (Off) <br> Drain Off Leakage, $l_{D}$ (Off) <br> Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{On})$ | $\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \end{aligned}$ | $\pm 1$ $\pm 3$ $\pm 3$ | $\pm 4$ <br> $\pm 20$ <br> $\pm 20$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 28 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 28 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \text {; see Figure } 29 \end{aligned}$ |
| DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, VINL Input Current <br> Digital Input Capacitance, $\mathrm{C}_{\mathrm{IN}}$ | $\pm 0.002$3.5 |  | $\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$ | $V$ min <br> V max <br> $\mu \mathrm{A}$ typ <br> $\mu \mathrm{A}$ max <br> pF typ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\mathrm{DD}}$ |
| DYNAMIC CHARACTERISTICS ${ }^{2}$ |  |  |  |  |  |
|  |  |  |  |  |  |
| Transition Time, ttransition | 260 | 510 | 565 | ns typ ns max | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{s}}=5 \mathrm{~V} \text {; see Figure } 30 \end{aligned}$ |
|  | 435 |  |  |  |  |
| Break-Before-Make Time Delay, t $_{\text {BBM }}$ | 90 |  |  | ns typ | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \text {; see Figure } 30 \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$ |
|  |  |  | 30 |  | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=5 \mathrm{~V} \text {; see Figure } 31 \end{aligned}$ |
| ton (EN) | 230 | 400 |  | ns typ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{CL}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \text {; see Figure } 32 \end{aligned}$ |
|  | 335 |  | 445 | ns max |  |
| toff (EN) | 205 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 290 | 340 | 370 | ns max | $\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$; see Figure 32 |
| Charge Injection | 10 |  |  | pC typ | $\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 33 |
| Off Isolation | -73 |  |  | dB typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 34 |
| Channel-to-Channel Crosstalk | -70 |  |  | dB typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 35 |
| Total Harmonic Distortion, THD + N | 0.18 |  |  | \% typ | $\mathrm{R}_{\mathrm{L}}=110 \Omega, 5 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \text {; see }$ Figure 37 |
| -3 dB Bandwidth |  |  |  |  | $\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 36 |
| ADG1406 | 40 |  |  | MHz typ <br> MHz typ <br> dB typ <br> pF typ |  |
| ADG1407 | 80 |  |  |  |  |
| Insertion Loss | 1.15 |  |  |  | $\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 36 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ |
| $\mathrm{C}_{5}$ (Off) | 10 |  |  |  |  |
| $C_{\text {d }}$ (Off) |  |  |  |  | $\mathrm{f}=1 \mathrm{MHz}$ |
| ADG1406 | 123 |  |  | pF typ <br> pF typ |  |
| ADG1407 | 62 |  |  |  |  |
| $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\text {S }}(\mathrm{On})$ |  |  |  |  | $\mathrm{f}=1 \mathrm{MHz}$ |
| ADG1406 | 148 |  |  | pF typ |  |
| ADG1407 | 88 |  |  | pF typ |  |


| Parameter | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ}{ }^{1} \end{aligned}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| POWER REQUIREMENTS |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5.5 \mathrm{~V}$ |
| Ido | 0.002 |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$ |
|  |  |  | 1 | $\mu \mathrm{A}$ max |  |
| Iss | 0.002 |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=0 \mathrm{~V}, 5 \mathrm{~V}$, or $\mathrm{V}_{\mathrm{DD}}$ |
|  |  |  | 1 | $\mu \mathrm{A}$ max |  |
| $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$ |  |  | $\pm 4.5 / \pm 16.5$ | $V$ min/max |  |

${ }^{1}$ Temperature range for B version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

## CONTINUOUS CURRENT PER CHANNEL

Table 5. Continuous Current per Channel (ADG1406)

| Parameter | $25^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CONTINUOUS CURRENT PER CHANNEL ${ }^{1}$ |  |  |  |  |  |
| 15 V Dual Supply |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V}$ |
| 28-Lead TSSOP | 180 | 100 | 50 | mA max |  |
| 32-Lead LFCSP | 300 | 150 | 60 | mA max |  |
| 12 V Single Supply |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ |
| 28-Lead TSSOP | 150 | 90 | 50 | mA max |  |
| 32-Lead LFCSP | 260 | 130 | 55 | mA max |  |
| 5 V Dual Supply |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{S S}=-4.5 \mathrm{~V}$ |
| 28-Lead TSSOP | 140 | 85 | 45 | mA max |  |
| 32-Lead LFCSP | 245 | 130 | 55 | mA max |  |

${ }^{1}$ Guaranteed by design, not subject to production test.

Table 6. Continuous Current per Channel (ADG1407)

| Parameter | $25^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CONTINUOUS CURRENT PER CHANNEL¹ |  |  |  |  |  |
| 15 V Dual Supply |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V}$ |
| 28-Lead TSSOP | 135 | 85 | 45 | mA max |  |
| 32-Lead LFCSP | 235 | 125 | 55 | mA max |  |
| 12 V Single Supply |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ |
| 28-Lead TSSOP | 110 | 70 | 40 | mA max |  |
| 32-Lead LFCSP | 190 | 110 | 50 | mA max |  |
| 5 V Dual Supply |  |  |  |  | $V_{D D}=+4.5 \mathrm{~V}, \mathrm{~V}_{S S}=-4.5 \mathrm{~V}$ |
| 28-Lead TSSOP | 105 | 65 | 40 | mA max |  |
| 32-Lead LFCSP | 180 | 100 | 50 | mA max |  |

[^1]
## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 7.

| Parameter | Rating |
| :---: | :---: |
| $\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{\text {SS }}$ | 35 V |
| VDD to GND | -0.3 V to +25 V |
| Vss to GND | +0.3 V to -25 V |
| Analog Inputs ${ }^{1}$ | $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first |
| Digital Inputs ${ }^{1}$ | GND - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first |
| Continuous Current, Sx or Dx Pins | Table 5 and Table 6 specifications + $15 \%$ |
| Peak Current, Sx or Dx Pins (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle Maximum) |  |
| 28-Lead TSSOP | 300 mA |
| 32-Lead LFCSP | 550 mA |
| Operating Temperature Range Industrial (B Version) | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Junction Temperature | $150^{\circ} \mathrm{C}$ |
| Reflow Soldering, Pb-Free |  |
| Peak Temperature | $260(+0 /-5)^{\circ} \mathrm{C}$ |
| Time at Peak Temperature | 10 sec to 40 sec |

${ }^{1}$ Overvoltages at the $\mathrm{Ax}, \mathrm{EN}, \mathrm{Sx}$, or Dx pins are clamped by internal diodes. Limit current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating may be applied at any one time.

## THERMAL RESISTANCE

$\theta_{\text {JA }}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 8. Thermal Resistance

| Package Type | $\boldsymbol{\theta}_{\text {JA }}$ | $\boldsymbol{\theta}_{\text {Jc }}$ | Unit |
| :--- | :--- | :--- | :--- |
| 28-Lead TSSOP | 97.9 | 14 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 32-Lead LFCSP | 27.27 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



Figure 3. ADG1406 TSSOP Pin Configuration


1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.
2. THE EXPOSED PAD MUST BE TIED TO THE SUBSTRATE, $\mathrm{V}_{\text {SS }}$.

Figure 4. ADG1406 LFCSP Pin Configuration

Table 9. ADG1406 Pin Function Descriptions

| Pin No. |  | Mnemonic | Description |
| :---: | :---: | :---: | :---: |
| TSSOP | LFCSP |  |  |
| 1 | 31 | VD | Most Positive Power Supply Potential. |
| 2,3,13 | $\begin{aligned} & 12,13,26,27, \\ & 28,30,32 \end{aligned}$ | NC | No Connect. |
| 4 | 1 | S16 | Source Terminal 16. This pin can be an input or an output. |
| 5 | 2 | S15 | Source Terminal 15. This pin can be an input or an output. |
| 6 | 3 | S14 | Source Terminal 14. This pin can be an input or an output. |
| 7 | 4 | S13 | Source Terminal 13. This pin can be an input or an output. |
| 8 | 5 | S12 | Source Terminal 12. This pin can be an input or an output. |
| 9 | 6 | S11 | Source Terminal 11. This pin can be an input or an output. |
| 10 | 7 | S10 | Source Terminal 10. This pin can be an input or an output. |
| 11 | 8 | S9 | Source Terminal 9. This pin can be an input or an output. |
| 12 | 9 | GND | Ground (0V) Reference. |
| 14 | 10 | A3 | Logic Control Input. |
| 15 | 11 | A2 | Logic Control Input. |
| 16 | 14 | A1 | Logic Control Input. |
| 17 | 15 | A0 | Logic Control Input. |
| 18 | 16 | EN | Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the Ax logic inputs determine which switch is turned on. |
| 19 | 17 | S1 | Source Terminal 1. This pin can be an input or an output. |
| 20 | 18 | S2 | Source Terminal 2. This pin can be an input or an output. |
| 21 | 19 | S3 | Source Terminal 3. This pin can be an input or an output. |
| 22 | 20 | S4 | Source Terminal 4. This pin can be an input or an output. |
| 23 | 21 | S5 | Source Terminal 5. This pin can be an input or an output. |
| 24 | 22 | S6 | Source Terminal 6. This pin can be an input or an output. |
| 25 | 23 | S7 | Source Terminal 7. This pin can be an input or an output. |
| 26 | 24 | S8 | Source Terminal 8. This pin can be an input or an output. |
| 27 | 25 | Vss | Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground. |
| 28 | 29 | D | Drain Terminal. This pin can be an input or an output. |
| Not applicable | 0 | EPAD | Exposed Pad. The exposed pad must be tied to the substrate, $\mathrm{V}_{\text {ss }}$. |

Table 10. ADG1406 Truth Table

| A3 | A2 | A1 | A0 | EN | On Switch |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $X$ | $X$ | $X$ | $X$ | 0 | None |
| 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 2 | 3 |  |
| 0 | 0 | 1 | 1 | 4 |  |
| 0 | 1 | 0 | 1 | 5 |  |
| 0 | 1 | 0 | 1 | 6 |  |
| 0 | 1 | 1 | 1 | 7 |  |
| 0 | 0 | 0 | 1 | 8 |  |
| 0 | 0 | 1 | 1 | 9 |  |
| 1 | 0 | 1 | 1 | 10 |  |
| 1 | 1 | 0 | 1 | 11 |  |
| 1 | 1 | 0 | 1 | 12 |  |
| 1 | 1 | 1 | 1 | 13 |  |
| 1 | 1 | 1 | 1 | 14 |  |
| 1 | 1 | 1 | 15 |  |  |
| 1 | 1 | 1 | 1 |  |  |



Figure 5. ADG1407 TSSOP Pin Configuration


1. $\mathrm{NC}=$ NO CONNECT. DO NOT CONNECT TO THIS PIN.
2. THE EXPOSED PAD MUST be tied to THE SUBSTRATE, $\mathrm{V}_{\mathrm{SS}}$.

Figure 6. ADG1407 LFCSP Pin Configuration

Table 11. ADG1407 Pin Function Descriptions

| Pin No. |  | Mnemonic | Description |
| :---: | :---: | :---: | :---: |
| TSSOP | LFCSP |  |  |
| 1 | 29 | VD | Most Positive Power Supply Potential. |
| 2 | 31 | DB | Drain Terminal B. This pin can be an input or an output. |
| 3,13,14 | $\begin{aligned} & 11,12,13,26, \\ & 28,30,32 \end{aligned}$ | NC | No Connect. |
| 4 | 1 | S8B | Source Terminal 8B. This pin can be an input or an output. |
| 5 | 2 | S7B | Source Terminal 7B. This pin can be an input or an output. |
| 6 | 3 | S6B | Source Terminal 6B. This pin can be an input or an output. |
| 7 | 4 | S5B | Source Terminal 5B. This pin can be an input or an output. |
| 8 | 5 | S4B | Source Terminal 4B. This pin can be an input or an output. |
| 9 | 6 | S3B | Source Terminal 3B. This pin can be an input or an output. |
| 10 | 7 | S2B | Source Terminal 2B. This pin can be an input or an output. |
| 11 | 8 | S1B | Source Terminal 1B. This pin can be an input or an output. |
| 12 | 9 | GND | Ground (0V) Reference. |
| 15 | 10 | A2 | Logic Control Input. |
| 16 | 14 | A1 | Logic Control Input. |
| 17 | 15 | A0 | Logic Control Input. |
| 18 | 16 | EN | Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the Ax logic inputs determine which switch is turned on. |
| 19 | 17 | S1A | Source Terminal 1A. This pin can be an input or an output. |
| 20 | 18 | S2A | Source Terminal 2A. This pin can be an input or an output. |
| 21 | 19 | S3A | Source Terminal 3A. This pin can be an input or an output. |
| 22 | 20 | S4A | Source Terminal 4A. This pin can be an input or an output. |
| 23 | 21 | S5A | Source Terminal 5A. This pin can be an input or an output. |
| 24 | 22 | S6A | Source Terminal 6A. This pin can be an input or an output. |
| 25 | 23 | S7A | Source Terminal 7A. This pin can be an input or an output. |
| 26 | 24 | S8A | Source Terminal 8A. This pin can be an input or an output. |
| 27 | 25 | $\mathrm{V}_{\text {ss }}$ | Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground. |
| 28 | 27 | DA | Drain Terminal A. This pin can be an input or an output. |
| Not applicable | 0 | EPAD | Exposed Pad. The exposed pad must be tied to the substrate, $\mathrm{V}_{\text {ss }}$. |

## ADG1406/ADG1407

Table 12. ADG1407 Truth Table

| A2 | A1 | A0 | EN | On Switch Pair |
| :--- | :--- | :--- | :--- | :--- |
| $X$ | X | $X$ | 0 | None |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 2 |
| 0 | 1 | 0 | 1 | 3 |
| 0 | 1 | 1 | 1 | 4 |
| 1 | 0 | 0 | 1 | 5 |
| 1 | 0 | 1 | 1 | 7 |
| 1 | 1 | 0 | 1 | 8 |
| 1 | 1 | 1 | 1 |  |

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$, Dual Supply


Figure 8. On Resistance as a Function of $V_{D}(V s)$, Dual Supply


Figure 9. On Resistance as a Function of $V_{D}\left(V_{s}\right)$, Single Supply


Figure 10. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, 15 V Dual Supply


Figure 11. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, 5 V Dual Supply


Figure 12. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, 12 V Single Supply


Figure 13. Leakage Current as a Function of Temperature (up to $85^{\circ} \mathrm{C}$ ), 15 V Dual Supply


Figure 14. Leakage Current as a Function of Temperature, 15 V Dual Supply


Figure 15. Leakage Current as a Function of Temperature, 5 V Dual Supply


Figure 16. Leakage Current as a Function of Temperature, 12 V Single Supply


Figure 17. IDD vs. Logic Level


Figure 18. Charge Injection vs. Source Voltage


Figure 19. Transition Time vs. Temperature


Figure 20. Off Isolation vs. Frequency


Figure 21. ADG1406 Crosstalk vs. Frequency


Figure 22. ADG1407 Crosstalk vs. Frequency


Figure 23. ADG1406 On Response vs. Frequency


Figure 24. THD + N vs. Frequency, 15 V Dual Supply


Figure 25. THD + N vs. Frequency, 5 V Dual Supply


Figure 26. ACPSRR vs. Frequency

## TERMINOLOGY

## Ron

Ohmic resistance between the D and S terminals.
$\Delta$ Ron
Difference between the Ron of any two channels.
$\mathbf{R}_{\text {Flat(on) }}$
Flatness is defined as the difference between the maximum
and minimum value of on resistance as measured.
$I_{s}$ (Off)
Source leakage current when the switch is off.

## $\mathrm{I}_{\mathrm{D}}$ (Off)

Drain leakage current when the switch is off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
Channel leakage current when the switch is on.
$\mathbf{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{s}}$
Analog voltage on Terminal D and Terminal S.
Cs (Off)
Channel input capacitance for the off condition.
$C_{D}$ (Off)
Channel output capacitance for the off condition.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
On switch capacitance.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
ton (EN)
Delay time between the $50 \%$ and $90 \%$ points of the digital input and the switch on condition.

## $t_{\text {Off }}$ (EN)

Delay time between the $50 \%$ and $90 \%$ points of the digital input and the switch off condition.

## $\mathbf{t}_{\text {Transition }}$

Delay time between the $50 \%$ and $90 \%$ points of the digital inputs and the switch on condition when switching from one address state to another.
$t_{\text {Bbм }}$
Off time measured between the $80 \%$ points of the switches when switching from one address state to another.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}, \mathbf{I}_{\text {INH }}$
Input current of the digital input.
$I_{\text {DD }}$
Positive supply current.
Iss
Negative supply current.

## Off Isolation

A measure of unwanted signal coupling through an off channel.

## Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

## Bandwidth

The frequency at which the output is attenuated by 3 dB .
On Response
The frequency response of the on switch.
Total Harmonic Distortion Plus Noise (THD + N)
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.
AC Power Supply Rejection Ratio (ACPSRR)
Measures the ability of a device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

## TEST CIRCUITS



Figure 27. On Resistance


Figure 30. Address to Output Switching Times, $t_{\text {transition }}$


Figure 31. Break-Before-Make Delay, $t_{B B M}$


Figure 32. Enable Delay, toN (EN), toff (EN)


Figure 33. Charge Injection


Figure 34. Off Isolation


Figure 35. Bandwidth


CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$
Figure 36. Channel-to-Channel Crosstalk


Figure 37. $T H D+N$

## OUTLINE DIMENSIONS



Figure 38. 28-Lead Thin Shrink Small Outline Package [TSSOP] ( $R U-28$ )
Dimensions shown in millimeters


COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.
Figure 39. 32-Lead Lead Frame Chip Scale Package [LFCSP]
$5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-32-7)
Dimensions shown in millimeters

## ORDERING GUIDE

| Model $^{1}$ | Temperature Range | Description | Package Option |
| :--- | :--- | :--- | :--- |
| ADG1406BRUZ $_{\text {ADG1406BRUZ-REEL7 }}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 28 -Lead Thin Shrink Small Outline Package [TSSOP] |
| 2D-Lead Thin Shrink Small Outline Package [TSSOP] | RU-28 |  |  |
| ADG1406BCPZ-REEL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 32 -Lead Lead Frame Chip Scale Package [LFCSP] | CP-32-7 |
| ADG1407BRUZ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 28 -Lead Thin Shrink Small Outline Package [TSSOP] | RU-28 |
| ADG1407BRUZ-REEL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 28 -Lead Thin Shrink Small Outline Package [TSSOP] | RU-28 |
| ADG1407BCPZ-REEL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 32-Lead Lead Frame Chip Scale Package [LFCSP] | $\mathrm{CP}-32-7$ |

${ }^{1} Z=$ RoHS Compliant Part.


[^0]:    ${ }^{1}$ Temperature range for $B$ version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

[^1]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

