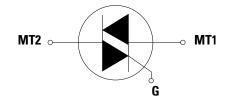

Littelfuse Power

Thyristors 16 Amp Alternistor (High Commutation) Commutation Triac for LED Dimmer Application

Q6016xH1LED Series



Agency Recognitions		
Agency	Agency File Number	
91	E71639	

Main Features

Symbol	Value	Unit
I _{T(RMS)}	16	А
V _{DRM} /V _{RRM}	600	V
Ι _{gt}	5	mA

Schematic Symbol

Description

Q6016LH1LED series is designed to meet low load current characteristics typical in LED lighting applications.

By keeping holding current at 5mA maximum, this Triac series is characterized and specified to perform best with LED loads. The Q6016LH1LED series is best suited for LED dimming controls to obtain the lowest levels of light output with a minimum probability of flickering.

Q6016LH1LED series is offered in the industry standard TO-220AB package with an isolated mounting tab that makes it best suited for adding an external heat sink.

Features & Benifits

- As low as 5 mA max holding current
- L-Package is UL Recognized for 2500Vrms
- di/dt performance of 100A/µs
- •UL Recognized to UL 1557
- Provides full control of light out put at the extreme low end of load conditions.
- 2500V _{AC} min isolation between mounting tab and active terminals

RoHS

- Improves margin of safe operation with less heat sinking required
- Enable survivability of typically LED load operating characteristics
- Simplicity of circuit design & layout

Applications

Excellent for AC switching and phase control applications such as heating, lighting, and motor speed controls.

Typical applications are AC solid-state switches, lighting controls with LED lamp loads, small low current motor in power tools, lower current motor in home/brown goods appliances.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Littelfuse[®] Power

Thyristors 16 Amp Alternistor (High Commutation) Commutation Triac for LED Dimmer Application

Absolute Maximum Ratings

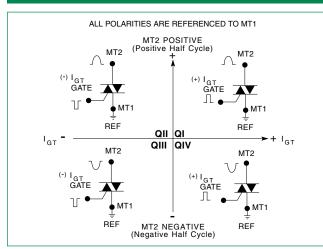
Symbol	Paramete		Value	Unit	
I _{T(RMS)}	RMS on-state current (full sine wave)	-	$T_c = 90^{\circ}C$	16	А
	Non repetitive surge peak on-state current	f = 50 Hz	t = 20 ms	167	
I _{TSM}	(full cycle, T_j initial = 25°C)	f = 60 Hz	t = 16.7 ms	200	A
l²t	I ² t Value for fusing	-	t _p = 8.3 ms	166	A ² s
di/dt	Critical rate of rise of on-state current	f = 60 Hz	T _J = 125°C	100	A/µs
I _{gtm}	Peak gate trigger current	t _p ≤ 10 μs; I _{GT} ≤ I _{GTM}	T _J = 125°C	2.0	А
P _{G(AV)}	Average gate power dissipation	-GI - 'GTM	T _J = 125°C	0.5	W
T _{stg}	Storage temperature range	-		-40 to 150	°C
Τ.	Operating junction temperature range	-		-40 to 125	°C

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Test Conditions Quadra		rant	Qxx16LH1	Unit
I _{gt}	V 12V D 60.0	– –	MAX.	5	mA
V _{GT}	$V_{D} = 12V R_{L} = 60 \Omega$	- -	MAX.	1.3	V
V _{gd}	$V_{_D} = V_{_{DRM}} R_{_L} = 3.3 \text{ k}\Omega T_{_J} = 125^{\circ}\text{C}$	1 – 11 – 111	MIN.	0.2	V
I _H	I _T = 20mA		MAX.	5	mA
dv/dt	$V_{\rm D} = V_{\rm DRM}$ Gate Open $T_{\rm J} = 125^{\circ}{\rm C}$		MIN.	45	V/µs
(dv/dt)c	$(di/dt)c = 8.6 \text{ A/ms } \text{T}_{J} = 125^{\circ}\text{C}$		MIN.	2	V/µs
t _{gt}	$I_{g} = 2 \times I_{gT}$ PW = 15µs $I_{T} = 22.6$	A(pk)	TYP.	3	μs

Static Characteristics

Symbol	Test Conditi	ions		Value	Unit
V _{TM}	$I_{TM} = 22.6A \ t_p = 380 \ \mu s$		MAX.	1.60	V
I		T_ = 25°C	MAX.	10	μA
RRM	$V_{d} = V_{drm} / V_{rrm}$	T_ = 125°C	IVIAA.	2	mA


Thermal Resistances				
Symbol	Parameter	Value	Unit	
R _{e(JC)}	Junction to case (AC)	2.1	°C/W	
R _{e(J-A)}	Junction to ambient	50	°C/W	

Note: xx = voltage

Littelfuse[®] Power

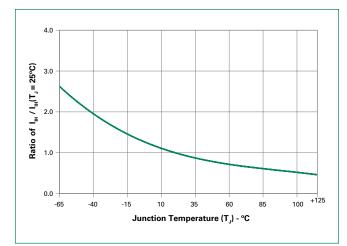

Thyristors 16 Amp Alternistor (High Commutation) Commutation Triac for LED Dimmer Application

Figure 1: Definition of Quadrants

Note: Alternistors will not operate in QIV

Figure 3: Normalized DC Holding Current vs. Junction Temperature

Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

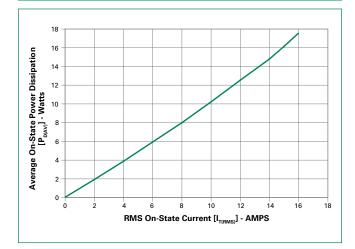
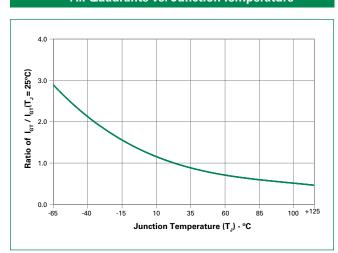
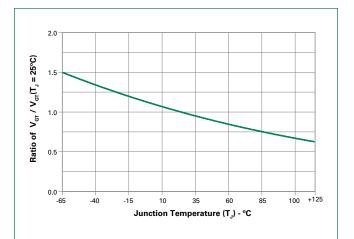
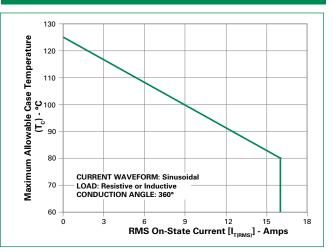
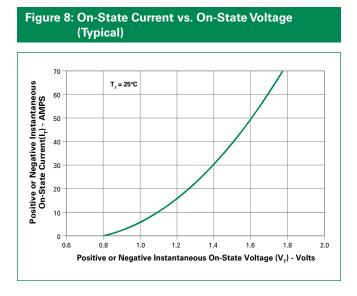
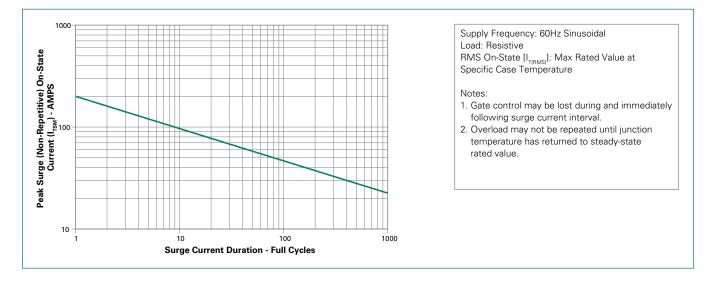



Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature

Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature

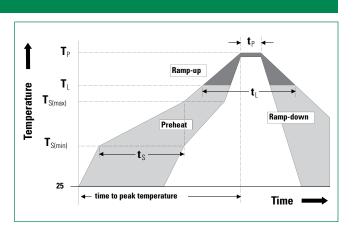

Figure 6: Maximum Allowable Case Temperature vs. On-State Current


©2019 Littelfuse, Inc Specifications are subject to change without notice. Revised: 10/15/19

Littelfuse[®] Power

Thyristors 16 Amp Alternistor (High Commutation) Commutation Triac for LED Dimmer Application

Figure 9: Surge Peak On-State Current vs. Number of Cycles



Littelfuse Power

Thyristors 16 Amp Alternistor (High Commutation) Commutation Triac for LED Dimmer Application

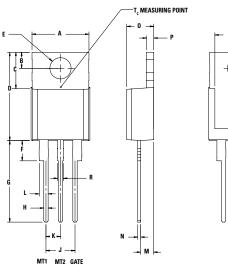
Soldering Parameters

Reflow Condition		Pb – Free assembly	
	- Temperature Min (T _{s(min)})	150°C	
Pre Heat	- Temperature Max (T _{s(max)})	200°C	
	- Time (min to max) (t _s)	60 - 180 secs	
Average ram	np up rate (Liquidus Temp) (T_L) to peak	5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
Reflow	- Temperature (T _L) (Liquidus)	217°C	
nellow	- Time (min to max) (t _s)	60 - 150 seconds	
Peak Temper	Peak Temperature (T _P) 260 ^{+0/-5} °C		
Time within	5°C of actual peak Temperature (t_p)	20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exce	ed	280°C	

Physical Specifications			
Terminal Finish	100% Matte Tin-plated		
Body Material UL Recognized compound meeting flammability rating V-0			
Terminal Material	Copper Alloy		

Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 110°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

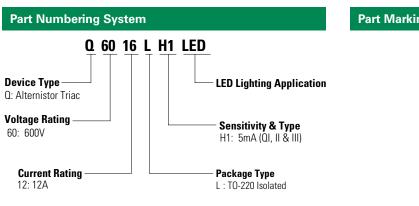

Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

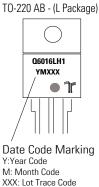
Littelfuse Power

Thyristors 16 Amp Alternistor (High Commutation) Commutation Triac for LED Dimmer Application

Dimensions – TO-220AB (L-Package) – Isolated Mounting Tab



RING POINT	AREA (REF.) 0.17 IN ²			
— P				


Dimension	Inc	hes	Millin	neters
Dimension	Min	Мах	Min	Мах
Α	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
E	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
Н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
К	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
М	0.085	0.095	2.16	2.41
N	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22

Product Selector					
Part Number	Gate Sensitivity Quadrants I – II – III	Туре	Package		
Q6016LH1LED	5 mA	Alternistor Triac	TO-220L		

Packing Options				
Part Number	Marking	Weight	Packing Mode	Base Quantity
Q6016LH1LEDTP	Q6016LH1	2.2 g	Tube Pack	500 (50 per tube)

Part Marking System

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Littelfuse: Q6016LH1LEDTP