BM28720MUV

General Description

BM28720MUV is a Full Digital Speaker Amplifier with built-in DSP (Digital Sound Processor) designed for Flat-panel TVs in particular for space-saving and low-power consumption, delivers an output power of $20 \mathrm{~W}+20 \mathrm{~W}$. This IC employs Bipolar, CMOS, and DMOS (BCD) process technology that eliminates turn-on resistance in the output power stage and internal loss due to line resistances up to an ultimate level. With this technology, the IC can achieve high efficiency. In addition, the IC is packaged in a compact reverse heat radiation type power package to achieve low power consumption and low heat generation and eliminates necessity of external heat-sink up to a total output power of 40W. This product satisfies both needs for drastic downsizing, low-profile structures and many function, high quality playback of sound system.

Key Specifications

- Supply voltage (VCC)

10 V to 24 V

- Speaker output power 20W+20W (Typ.)
(VCC=18.5V, $R_{L}=8 \Omega$)
- THD +N
0.07 [\%] (Typ.)

Applications

- Flat Panel TVs (LCD, OEL)
- Home Audio
- Desktop PC
- Amusement equipments
- Electronic Music equipments, etc.

Package
VQFN032V5050
W(Typ) $\times \mathrm{D}($ Typ $) \times \mathrm{H}($ Max $)$ $5.00 \mathrm{~mm} \times 5.00 \mathrm{~mm} \times 1.00 \mathrm{~mm}$

Features

- This IC includes the DSP (digital sound processor) for Audio signal processing for Flat TVs. 12 Band/ch BQ, 3 Band DRC, Pre-Scaler, Channel Mixer, Fine Master Volume, Hard Clipper, Level Meter etc.
- This IC has one input systems of digital audio interface. (No needs of Master Clock)
- I²S / LJ / RJ format
- LRCLK: 32k/44.1k/48KHz
- BCLK: 32fs / 48fs / 64fs
- SDATA: 16 / 20 / 24bit
- This IC has one output systems of digital audio interface.
- ${ }^{2}$ S format
- SDATA: 16 / 20 / 24bit
- With wide range of power supply voltage.
- The monaural output that can reduce the number of external parts can be used.
- With high efficiency and low heat dissipation contributing to miniaturization, slim design, and also power saving of the system.
- Eliminates pop-noise generated during the power supply on/off. High quality muting performance is realized by using the soft-muting technology.
- This IC is built-in with various protection functions for highly reliability design.
- High temperature protection
- Under voltage protection
- Output short protection
- DC voltage protection
- Clock stop protection
- Small package

Typical Application Circuit

Figure 1. Typical application circuits

Pin configuration and Block diagram

Figure 2. Pin configurations and Block diagram (Top View)

Pin Description

No.	Name	I/O									
1	ADDR	I	9	TEST2	I	17	VCCP2	-	25	OUT1P	O
2	BCLK	I	10	DVDD	-	18	GNDP2	-	26	BSP1P	I
3	LRCK	I	11	TEST3	I	19	BSP2P	I	27	REG_G	O
4	SDATA	I	12	SDATAO	O	20	OUT2P	O	28	NC	-
5	TEST1	I	13	ERROR	O	21	OUT1N	O	29	RSTX	I
6	PLL	-	14	NC	-	22	BSP1N	I	30	MUTEX	I
7	REG15	O	15	BSP2N	I	23	GNDP1	-	31	SCL	I
8	DGND	-	16	OUT2N	O	24	VCCP1	-	32	SDA	I/O

Absolute Maximum Ratings $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Limit	Unit	Conditions	
Supply voltage	VCC	-0.3 to 34	V	Pin 17, 24	(Note 1) (Note 2)
	DVDD	-0.3 to 4.5	V	Pin 10	(Note 1)
Power dissipation	Pd	3.26	W		Note 3)
		4.56	W		(Note 4)
Input voltage 1	VIN1	$\begin{gathered} -0.3 \text { to } \\ \text { DVDD }+0.3 \end{gathered}$	V	Pin 1-5, 9, 11, 12, 13, $29-32$	(Note 1)
Terminal voltage 1	VPIN1	-0.3 to 7.0	V	Pin 27	(Note 1)
Terminal voltage 2	VPIN2	-0.3 to 29	V	Pin 16, 20, 21, 25	(Note 1)(Note 5)
Terminal voltage 3	VPIN3	OUTxx+6.0	V	Pin 15, 19, 22, 26	(Note 1)
Operating temperature range	Topr	-25 to +85	${ }^{\circ} \mathrm{C}$		
Storage temperature range	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$		
Maximum junction temperature	Tjmax	+150	${ }^{\circ} \mathrm{C}$		

(Note 1) The voltage that can be applied reference to GND (Pin 8, 18, 23).
(Note 2) Do not exceed Pd and Tjmax $=150^{\circ} \mathrm{C}$.
(Note 3) $74.2 \mathrm{~mm} \times 74.2 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, FR4, 4-layer glass epoxy board
(Top and bottom layer back copper foil size: $20.2 \mathrm{~mm}^{2}$, 2nd and 3rd layer back copper foil size: $5505 \mathrm{~mm}^{2}$)
Derating in done at $26.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operating above $\mathrm{Ta}=25^{\circ} \mathrm{C}$. There are thermal via on the board.
(Note 4) $74.2 \mathrm{~mm} \times 74.2 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, FR4, 4-layer glass epoxy board (Copper area $5505 \mathrm{~mm}^{2}$)
Derating in done at $36.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operating above $\mathrm{Ta}=25^{\circ} \mathrm{C}$. There are thermal via on the board.
(Note 5) It should use it below this ratings limit including the AC peak waveform (overshoot) for all conditions
At only undershoot, it is admitted using at $\leqq 10 \mathrm{~ns}$ and $\leqq 29 \mathrm{~V}$ by the VCC reference. (Please refer following figure.)

Figure 3.

Recommended Operating Ratings ($\mathrm{Ta}=\mathbf{2 5 ^ { \circ }}{ }^{\circ} \mathrm{C}$)

Item	Symbol	Limit	Unit		
Supply voltage	VCC	10 to 24	V	Pin 17, 24	(Note 1) (Note 2)
	DVDD	3 to 3.6	V	Pin 10	(Note 1)
Minimum load impedance	RL	5.4	Ω	$\begin{aligned} & \text { Pin } 16,20,21,25 \\ & V C C=18 V \text { to } 24 V \end{aligned}$	(Note 6)
		3.6	Ω	$\begin{aligned} & \text { Pin 16, 20, 21, } 25 \\ & \operatorname{VCC}<18 \mathrm{~V} \end{aligned}$	(Note 6)

[^0]
Electrical Characteristics

(Unless otherwise specified $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=18 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{RSTX}=3.3 \mathrm{~V}, \mathrm{MUTEX}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$, DSP : Through, fs=48kHz, Snubber circuit for output terminal : $\mathrm{R}_{\text {snb }}=5.6 \Omega, \mathrm{C}_{\text {snb }}=680 \mathrm{pF}$)

Item	Symbol	Limit			Unit	Conditions
		Min	Typ	Max		
Total circuit						
Circuit current 1 (Normal mode)	$\mathrm{I}_{\mathrm{CC} 1}$	-	45	90	mA	Pin 17, 24, No load
	$\mathrm{I}_{\text {D } 1}$	-	9	19	mA	Pin 10, -infinity dBFS input, No load
Circuit current 2 (Reset mode)	$\mathrm{I}_{\mathrm{cc} 2}$	-	10	40	$\mu \mathrm{A}$	Pin 17, 24, No load RSTX=0V, MUTEX=0V
	$\mathrm{I}_{\mathrm{D} 2}$	-	2.5	7.0	mA	Pin 10, -infinity dBFS input, No load RSTX=OV, MUTEX=OV
Open-drain terminal Low level voltage	$V_{\text {ERR }}$	-	-	0.8	V	Pin $13, \mathrm{l}_{0}=0.5 \mathrm{~mA}$
Regulator output voltage 1	$V_{\text {REG_G }}$	4.9	5.7	6.5	V	Pin 27
Regulator output voltage 2	$\mathrm{V}_{\text {REG15 }}$	1.3	1.5	1.7	V	Pin 7
High level input voltage	V_{IH}	2.5	-	3.3	V	Pin 1-5, 9, 11, 29-32
Low level input voltage	$\mathrm{V}_{\text {IL }}$	0	-	0.8	V	Pin 1-5, 9, 11, 29-32
Input current (Input pull-up terminal)	lup	-150	-100	-50	$\mu \mathrm{A}$	Pin $2-4 \mathrm{VIN}=0 \mathrm{~V}$
Input current (Input pull-down terminal)	IDN	35	70	105	$\mu \mathrm{A}$	Pin 1, 29, 30, VIN = 3.3V
Input current (SCL, SDA terminal)		-1	0	-	$\mu \mathrm{A}$	Pin 31, 32, VIN = 0V
Input current (SCL, SDA terminal)	$\mathrm{IIH}^{\text {H }}$	-	0	1	$\mu \mathrm{A}$	Pin 31, 32, VIN = 3.3V
Speaker amplifier output						
Maximum output power 1	Po1	-	10	-	W	$\begin{aligned} & \text { VCC }=13 \mathrm{~V}, \mathrm{THD}+\mathrm{N}=10 \% \\ & \text { (Note 7) } \end{aligned}$
Maximum output power 2	Po2	-	20	-	W	$\begin{aligned} & \text { VCC=18.5V,THD+N=10\% } \\ & \text { (Note } 7 \text {) } \end{aligned}$
Total harmonic distortion 1	THD1	-	0.07	-	\%	$\begin{aligned} & \text { Po=1W, AES17 } \\ & \text { (Note 7) } \end{aligned}$
Crosstalk 1	CT1	60	80	-	dB	$\mathrm{VCC}=13 \mathrm{~V}, \mathrm{P}_{\mathrm{o}}=1 \mathrm{~W}, \mathrm{~A}$-weighted (Note 7)
Output noise voltage 1	$\mathrm{V}_{\mathrm{NO} 1}$	-	80	-	$\mu \mathrm{Vrms}$	-infinity dBFS input, A-weighted (Note 7)
PWM sampling frequency	$\mathrm{f}_{\text {PWM1 }}$	-	256	-	kHz	$\mathrm{fs}=32 \mathrm{kHz}$
	$f_{\text {PWM2 }}$	-	352.8	-	kHz	$\mathrm{fs}=44.1 \mathrm{kHz}$
	$\mathrm{f}_{\text {PWm }}$	-	384	-	kHz	$\mathrm{fs}=48 \mathrm{kHz}$

(Note 7) These items show the typical performance of device and depend on board layout, parts, and power supply.
The standard value is in mounting device and parts on surface of ROHM's board directly.

Typical Performance Curves
Speaker output(Ta $=25^{\circ} \mathrm{C}, \mathrm{VCC}=18 \mathrm{~V}$, $\mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{RSTX}=0 \mathrm{~V} / 3.3 \mathrm{~V}, \mathrm{MUTEX}=0 \mathrm{~V} / 3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$,
DSP : Through, $\mathrm{fs}=48 \mathrm{kHz}$, Snubber circuit for output terminal : $\mathrm{R}_{\text {snb }}=5.6 \Omega, \mathrm{C}_{\text {snb }}=680 \mathrm{pF}$)
Measured by ROHM designed 4 layer board.

Figure 4.
Power supply voltage- Current consumption

Figure 5.
Power supply voltage- Current consumption

Figure 6.
Output power - Efficiency

Figure 7.
Output power - Current consumption

Typical Performance Curves

Speaker output(Ta=25 ${ }^{\circ} \mathrm{C}, \mathrm{VCC}=18 \mathrm{~V}$, $\mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{RSTX}=3.3 \mathrm{~V}, \mathrm{MUTEX}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$,
DSP : Through, $\mathrm{fs}=48 \mathrm{kHz}$, Snubber circuit for output terminal : $\mathrm{R}_{\mathrm{snb}}=5.6 \Omega, \mathrm{C}_{\mathrm{snb}}=680 \mathrm{pF}$)
Measured by ROHM designed 4 layer board.

Figure 8.
Waveform at soft start

Figure 10.
Output voltage - Power voltage ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

Figure 9.
Waveform at soft mute

Figure 11.
Output power - Current consumption ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)
※Dotted line means internal dissipation is over package power.

Typical Performance Curves

Speaker output(Ta=25 ${ }^{\circ}$, $\mathrm{VCC}=18 \mathrm{~V}$, $\mathrm{DVDD}=3.3 \mathrm{~V}$, RSTX $=3.3 \mathrm{~V}$, MUTEX $=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$,
DSP : Through, $\mathrm{fs}=48 \mathrm{kHz}$, Snubber circuit for output terminal : $\mathrm{R}_{\text {snb }}=5.6 \Omega, \mathrm{C}_{\text {snb }}=680 \mathrm{pF}$)
Measured by ROHM designed 4 layer board.

Figure 12.
Output voltage - Power voltage ($\mathrm{R}_{\mathrm{L}}=6 \Omega$)

Figure 14
Output Voltage - Power Voltage ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

Figure 13.
Output power - Current consumption ($\mathrm{R}_{\mathrm{L}}=6 \Omega$)

Figure 15.
Output power - Current consumption ($R_{L}=4 \Omega$)
※Dotted line means internal dissipation is over package power.

Typical Performance Curves

Speaker output($\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=18 \mathrm{~V}$, $\mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{RSTX}=3.3 \mathrm{~V}$, MUTEX $=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$,
DSP : Through, fs=48kHz, Snubber circuit for output terminal : $R_{s n b}=5.6 \Omega, C_{s n b}=680 \mathrm{pF}$)
Measured by ROHM designed 4 layer board.

Figure 16.
FFT of output noise voltage

Figure 18.
Output Power - THD+N

Figure 17.
Frequency - Output power

Figure 19.
Frequency - THD +N

Typical Performance Curves

Speaker output($R_{L}=8 \Omega, T a=25^{\circ} \mathrm{C}, \mathrm{VCC}=18 \mathrm{~V}$, $\mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{RSTX}=3.3 \mathrm{~V}, \mathrm{MUTEX}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$, DSP : Through, fs=48kHz, Snubber circuit for output terminal : $\mathrm{R}_{\mathrm{snb}}=5.6 \Omega, \mathrm{C}_{\mathrm{snb}}=680 \mathrm{pF}$) Measured by ROHM designed 4 layer board.

Figure 20.
Frequency - Crosstalk

Typical Performance Curves

Speaker output($R_{L}=6 \Omega, T a=25^{\circ} \mathrm{C}, \mathrm{VCC}=18 \mathrm{~V}$, $\mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{RSTX}=3.3 \mathrm{~V}, \mathrm{MUTEX}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$,
DSP : Through, fs=48kHz, Snubber circuit for output terminal : $\mathrm{R}_{\mathrm{snb}}=5.6 \Omega, \mathrm{C}_{\text {snb }}=680 \mathrm{pF}$)
Measured by ROHM designed 4 layer board.

Figure 21.
FFT of output noise voltage

Figure 23.
Output Power - THD +N

Figure 22.
Frequency - Output power

Figure 24.
Frequency - THD+N

Typical Performance Curves

Speaker output $R \mathrm{~L}=6 \Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=18 \mathrm{~V}$, DVDD $=3.3 \mathrm{~V}, \mathrm{RSTX}=3.3 \mathrm{~V}, \mathrm{MUTEX}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$, DSP : Through, fs=48kHz, Snubber circuit for output terminal : $\mathrm{R}_{\mathrm{snb}}=5.6 \Omega, \mathrm{C}_{\mathrm{snb}}=680 \mathrm{pF}$) Measured by ROHM designed 4 layer board.

Figure 25.
Frequency - Crosstalk

Typical Performance Curves

Speaker output($\mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=18 \mathrm{~V}$, $\mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{RSTX}=3.3 \mathrm{~V}$, MUTEX $=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$,
DSP : Through, fs=48kHz, Snubber circuit for output terminal : $R_{s n b}=5.6 \Omega, C_{s n b}=680 \mathrm{pF}$)
Measured by ROHM designed 4 layer board.

Figure 26.
FFT of output noise voltage

Figure 28.
Output Power - THD+N

Figure 27.
Frequency - Output power

Figure 29.
Frequency - THD +N

Typical Performance Curves

Speaker output($R_{L}=4 \Omega, T a=25^{\circ} \mathrm{C}, \mathrm{VCC}=18 \mathrm{~V}$, $\mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{RSTX}=3.3 \mathrm{~V}, \mathrm{MUTEX}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$, DSP : Through, fs=48kHz, Snubber circuit for output terminal : $\mathrm{R}_{\mathrm{snb}}=5.6 \Omega, \mathrm{C}_{\text {snb }}=680 \mathrm{pF}$) Measured by ROHM designed 4 layer board.

Figure 30.
Frequency - Crosstalk

Digital Block Functional Overview

No.	Function	Specification
1	Pre-Scaler	- Lch / Rch become same set point. $\cdot+48 \mathrm{~dB}$ to $-79 \mathrm{~dB}(0.5 \mathrm{~dB}$ step),- $-\infty \mathrm{dB}$
2	Channel Mixer	- Lch <= Mute, Lch(default), Rch, (L+R)/2, L-R - Rch <= Mute, Lch, Rch(default), (L+R)/2, L-R - Lch/Rch are independent phase reversal control available
3	12 Band BQ	- 12 Band biquad type filter - Only 5 coefficient is required.(b0,b1,b2,a1,a2) - The Filter types which can be realized is Peaking/Low-shelf/High-shelf/Low-pass/High-pass/All-pass/Notch. - Lch/Rch become same set point or independent set. There is soft transition function.
4	Fine Master Volume	- Lch / Rch become same set point or independent set. $\cdot+24 \mathrm{~dB}$ to -103 dB (0.125 dB step),- ${ }^{\infty} \mathrm{dB}$ - There is soft transition function
5	3 Band DRC	- Non clip output is achieved - Available three band operation - Threshold level : +12dB to -32 dB (0.5 dB step)
6	Post-Scaler	- Lch / Rch become same set point $\cdot+48 \mathrm{~dB}$ to $-79 \mathrm{~dB}(0.5 \mathrm{~dB}$ step), $-\infty \mathrm{dB}$
7	Fine Post-Scaler	- Lch / Rch become independent set point $\cdot+0.7 \mathrm{~dB}$ to $-0.8 \mathrm{~dB}(0.1 \mathrm{~dB}$ step)
8	DC Cut HPF	- Fc: 1 Hz
9	Clipper	- Lch / Rch become same set point - Clip level : +3 dB to -22.5 dB (-0.1 dB step)

Figure 31. DSP Block diagram

RSTX pin, MUTEX pin function

RSTX (29pin)	MUTEX (30pin)	DSP block condition	Speaker output condition		
Low	Low	Reset ON	HiZ_low (Low consumption)		
High	Low	Normal operation (Mute ON)	HiZ_loww (Mote 4)		
High ON)	High	Normal operation (Mute OFF)	Normal operation (Mute OFF)		
Low	High	Don't use.			

(Note 1) RSTX is set to low, internal registers are initialized.
(Note 2) VCCP1, VCCP2 < 2.5V, IC latched by protection circuit and ERROR terminal condition are initialized.
(Note 3) If DVDD is under $3 V$, RSTX is set to low once for $10 \mathrm{~ms}(\mathrm{~min})$, and set high again. Then DSP is needed to set parameter again.
(Note 4) Speaker output becomes HiZ-low after elapse of PWM stop time after setting MUTEX low. Please refer to PWM sampling frequency

PWM sampling frequency

PWM sampling frequency of Speaker output and Soft-mute transition time depends on sampling frequency (fs) of the digital sound input. These transition times are changed by sending select address $0 \times 15[1: 0]$.

Sampling frequency (fs)	PWM frequency	0x15[1:0] value	Soft mute transition time		PWM stop time
			Mute ON	Mute OFF	
48 kHz	384 kHz	0×0	10.7 ms	10.7 ms	86 ms
		0x1	21.4 ms	10.7 ms	106 ms
		0x2	42.7 ms	10.7 ms	125 ms
		0×3	85.4 ms	10.7 ms	162 ms
44.1 kHz	352.8 kHz	0x0	11.7 ms	11.7 ms	93 ms
		0x1	23.3 ms	11.7 ms	113 ms
		0x2	46.5 ms	11.7 ms	135 ms
		0x3	92.9 ms	11.7 ms	177 ms
32 kHz	256 kHz	0x0	16.1 ms	16.1 ms	116 ms
		0×1	32.1 ms	16.1 ms	148 ms
		0x2	64.1 ms	16.1 ms	178 ms
		0x3	128.1 ms	16.1 ms	241 ms

Wait time(Twait) rules from releasing RSTX to releasing MUTEX.
When the time from releasing RSTX to releasing MUTEX prescribes Twait, please secure Twait by all means more than 450 ms .

2 wire Bus control signal specification

1）Electrical characteristics and Timing of Bus line and I／O stage

Figure 32.
SDA and SCL bus line characteristics（Unless otherwise specified $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=3.3 \mathrm{~V}$ ）

Parameter		Symbol	High speed mode		Unit
			Max．		
1	SCL clock frequency	fSCL	0	400	kHz
2	Bus free time between「Stop」 condition and「Start」 condition	tBUF	1.3	-	$\mu \mathrm{s}$
3	Hold－time of（sending again）「Start」condition．After this period the first clock pulse is generated．	tHD；STA	0.6	-	$\mu \mathrm{s}$
4	SCL clock＇s LOW state Hold－time	tLOW	1.3	-	$\mu \mathrm{s}$
5	SCL clock＇s HIGH state Hold－time	tHIGH	0.6	-	$\mu \mathrm{s}$
6	Set－up time of sending again「Start」condition	tSU；STA	0.6	-	$\mu \mathrm{s}$
7	Data hold time	tHD；DAT	$\left.0{ }^{(N o t e} 1\right)$	-	$\mu \mathrm{s}$
8	Data set－up time	tSU；DAT	250	-	ns
9	Rise－time of SDA and SCL signal	tR	$20+0.1 \mathrm{Cb}$	300	ns
10	Fall－time of SDA and SCL signal	tF	$20+0.1 \mathrm{Cb}$	300	ns
11	Set－up time of 「Stop」condition	tSU；STO	0.6	-	$\mu \mathrm{s}$
12	Capacitive load of each bus line	Cb	-	400	pF

The above－mentioned numerical values are all the values corresponding to VIH min and the VIL max level．
（Note 1）To exceed an undefined area on the fall－edge of SCL（VIH min of the SCL signal），the transmitting set should internally offer the holding time of 300 ns or more for the SDA signal．
（Note 2）SCL and SDA pin is not corresponding to threshold tolerance of 5 V ．
Please use it within 4.5 V of the absolute maximum rating．

2）Command interface

2 wire Bus control is used for command interface．It not only writes but also it is possible to read it excluding a part of register．In addition to＂Slave Address＂，set and write 1 byte of＂Select Address＂to read out the data． 2 wire Bus Slave mode format is illustrated below．

MSB		MSB		LSB		MSB	
S	Slave Address	A	Select Address	A	Data	A	P

Figure 33.
S ：Start Condition
Slave Address ：The data of eight bits in total is sent putting up bit of Read mode（high）or Write mode（low）after slave address（7bit）set with the terminal ADDR．（MSB first）
A ：The acknowledge bit adds to data that the acknowledge is sent and received in each byte．
When data is correctly sent and received，＂low＂is sent and received．
There was no acknowledgement for＂high＂．
Select Address ：The select address in one byte is used．（MSB first）
Data ：Data byte is sent and received data（MSB first）
P ：Stop Condition

3)Slave Address

- While ADDR pin is "low"
MSB

A6	A5	A4	A3	A2	A1	A0	R/W
1	0	0	0	0	0	0	$1 / 0$

- While ADDR pin is "high"
MSB

A6	A5	A4	A3	A2	A1	A0	R/W
1	0	0	0	0	0	1	$1 / 0$

4) Writing of data

Figure 35.

- Basic format

S	Slave Address	A	Select Address	A	Data	A	P

\square : Master to Slave, \square : Slave to Master

- Auto-increment format

S	Slave Address	A	Select Address	A	Data 1	A	Data 2	A	Data 3...................	A	P

```
\square: Master to Slave,
\(\square\) Slave to Master
```


5)Reading of data

Figure 36.
First of all, the destination address (0×20 in the example) for reading is written in the register of the $0 \times \mathrm{D} 0$ address at the time of reading. In the following stream, data is read after the slave address. Please do not return acknowledge when you end the reception.

S	Slave Address	A	Req_Addr	A	Select Address	A	P
(ex.)	0×80	0×20					

S	Slave Address	A	Data 1	A	Data 2	A	A	Data N	$\overline{\text { A }}$	P	
(ex.)	0x81		$0 x^{* *}$		$0 x^{* *}$			$0 x^{* *}$			

\square : Master to Slave, \square : Slave to Master, A : With Acknowledge, $\bar{A}:$ Without Acknowledge
Figure 37.

Format of digital audio input

- LRCLK: It is L/R clock input signal.

It corresponds to $32 \mathrm{kHz} / 44.1 \mathrm{kHz} / 48 \mathrm{kHz}$ and that is same as the sampling frequency (fs).
This signal shows left or right of audio data.

- BCLK: It is Bit Clock input signal.

It is used for the latch of data in rising edge. Frequency of BCLK is 64 times of sampling frequency (64 fs) or 48 times (48fs) or 32 times (32fs). If BCLK frequency is 32 fs , only 16 bit data width is available.

- SDATA: It is data input signal.

It is amplitude data. The data length is different according to the resolution of the input digital data.
Data width is selectable as 16 bit, 20 bit or 24 bit.
The digital input has I2S, Left-justified and Right-justified formats.
The figure below shows the timing chart of each transmission mode.

- SDATAO: Audio data after DSP processing.

Data is audio data after DSP processing.
This output is synchronous to LRCK and BCLK.
Output supports only I2S format.

BCLK clock 64fs
I^{2} S 64fs Format

Right-Justified 64fs Format

Figure 38.

BCLK clock 48fs
$I^{2} S$ 48fs Format

		Right Channel	
		1234567891011121314151617181920212223242526272829303132333435363738394041424344454647481	
MSB LSB MSB LSB			
SDATA			
16bitMode			
	16bin	16bi	
20bit Mode		20bit Mode	
	24bit Mode	24bit Mode	

Left-Justified 48fs Format

Right-Justified 48fs Format

Figure 39.

BCLK clock 32fs
$I^{2} S$ 32fs Format

Left-Justified 32fs Format

Right-Justified 32fs Format

Figure 40.

Format setting for Digital Audio Interface

Please set BCLK clock fs, Data length and Format by transmitting command according to inputted Digital Serial Audio signal.
SDATAO output data bit width is able to be set independently.
Output supports only I^{2} S format.

BCLK clock

Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value	Explanation of operation
$0 \times 03[5: 4]$	0×0	64 fs
	0×1	48 fs
	0×2	$32 f \mathrm{~s}$
	0×3	Don't use

Data format

Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value	Explanation of operation
$0 \times 03[3: 2]$	0×0	I^{2} S format
	0×1	Left-justified format
	0×2	Right-justified format
	0×3	Don't use

Data width

Default $=0 \times 2$ *Blue square means initial value.

Select Address	Value	Explanation of operation
$0 \times 03[1: 0]$	0×0	16 bit
	0×1	20 bit
	0×2	24 bit
	0×3	Don't use

SDATAO output data width

Default $=0 \times 2$ *Blue square means initial value.

Select Address	Value	
$0 \times 78[1: 0]$	0×0	16 bit
	0×1	20 bit
	0×2	24 bit
	0×3	Don't use

Audio Interface format and timing

Recommended timing and operating conditions (BCLK, LRCLK, SDATA)

Figure 41. Clock timing

Figure 42. Audio Interface timing

No.	Parameter	Symbol	Limit		Unit
			Min.	Max.	
1	LRCLK frequency	fLRCLK	32	48	kHz
2	BCLK frequency	fBCLK	2.048	3.072	MHz
3	Setup time, LRCLK ${ }^{\text {(Note 1) }}$	tSU;LR	20	-	ns
4	Hold time, LRCLK ${ }^{\text {(Note 1) }}$	tHD;LR	20	-	ns
5	Setup time, SDATA	tSU;SD	20	-	ns
6	Hold time, SDATA	tHD;SD	20	-	ns
7	LRCLK, DUTY	dLRCLK	40	60	\%
8	BCLK, DUTY	dBCLK	40	60	\%

Power supply start-up sequence

*Please make sure to input low to RSTX terminal from external at the time power up DVDD.
*Please refer to [7. The wake-up Procedure of power-up].
Figure 43.

Power supply shut-down sequence

※Please make sure to input low to RSTX terminal when DVDD is powered down.
Figure 44.

About the protection function

Protection function	Detecting \& Releasing condition		Speaker PWM output	$\begin{aligned} & \text { ERROR }^{(\text {Note 1) }} \\ & \text { output } \end{aligned}$
Output short protection	Detecting condition	Detecting current $=7.2 \mathrm{~A}$ (TYP.)	$\begin{gathered} \text { HiZ_Iow } \\ \text { (latch) }^{(\text {(Note 2) }} \end{gathered}$	Low (latch)
DC voltage protection	Detecting condition	PWM output Duty=0\% or 100% for $12 \mu \mathrm{~s}($ TYP $)$ and over	$\begin{gathered} \text { HiZ_low } \\ \text { (latch) }^{(\text {Note 2) }} \end{gathered}$	Low (latch)
High temperature protection	Detecting condition	Chip temperature to be above $150^{\circ} \mathrm{C}$ (TYP.)	HiZ_low	Low
	Releasing condition	Chip temperature to be below $120^{\circ} \mathrm{C}$ (TYP.)	Normal operation	
Under voltage protection	Detecting condition	Power supply voltage to be below 7.0 V (TYP.)	HiZ_low	High
	Releasing condition	Power supply voltage to be above 7.5 V (TYP.)	Normal operation	
Clock stop protection	Detecting condition	BCLK signal have stopped among constant period. LRCLK signal have stopped among constant period. BCLK frequency is under constant value. BCLK frequency is over constant value. Please refer to P.55-58 about constant value.	HiZ_low	High
	Releasing condition	LRCLK signal haven't stopped among constant period and BCLK continues maximum 60 ms or more of continuous appropriate frequency. Please refer to P.55-58 about constant value.	Normal operation	

(Note 1) The ERROR pin is Nch open-drain output.
(Note 2) Once an IC is latched, the circuit is not released automatically even after an abnormal status is removed.
The following procedures (1) or (2) is available for recovery.
(1)After MUTEX pin is made low once over PWM stop time, MUTEX pin is returned to high again.
(2) Turning on the power supply again (VCCP1, VCCP $2<2.5 \mathrm{~V}, 10 \mathrm{~ms}(\mathrm{~min})$).

1) Output short protection (Short to the power supply)

This IC has the output short protection circuit that stops the PWM output when the PWM output is short-circuited to the power supply due to abnormality.

Detecting condition - It will detect when MUTEX pin is set high and the current that flows in the PWM output pin becomes 7.2A(TYP.) or more. The PWM output instantaneously enters the state of HiZ-low if detected, and IC does the latch.
Releasing method - (1)After MUTEX pin is set low once over the PWM stop time(see page 15), MUTEX
pin is returned to high again.
(2)Turning on the power supply again (VCCP1, VCCP2<2.5V, $10 \mathrm{~ms}(\mathrm{~min})$).

Figure 45.
2) Output short protection (Short to GND)

This IC has the output short protection circuit that stops the PWM output when the PWM output is short-circuited to GND due to abnormality.

Detecting condition - It will detect when MUTEX pin is set high and the current that flows in the PWM output terminal becomes 7.2A(TYP.) or more. The PWM output instantaneously enters the state of HiZ-low if detected, and IC does the latch.
Releasing method - (1)After MUTEX pin is set low once over the PWM stop time(see page 15), MUTEX pin is returned to high again.
(2)Turning on the power supply again (VCCP1, VCCP2<2.5V, $10 \mathrm{~ms}(\mathrm{~min})$).

Figure 46
3) DC voltage protection in the speaker

When the DC voltage in the speaker is impressed due to abnormality, this IC has the protection circuit where the speaker is defended from destruction.
Detecting condition - It will detect when MUTEX pin is set high and PWM output Duty=0\% or 100% over $12 \mu \mathrm{~s} .(\mathrm{fs}=48 \mathrm{kHz}$) Once detected, The PWM output instantaneously enters the state of HiZ-low, and IC does the latch.
Releasing method - (1)After MUTEX pin is set low once over the PWM stop time(see page 15), MUTEX pin is returned to high again.
(2)Turning on the power supply again (VCCP1, VCCP2<2.5V, $10 \mathrm{~ms}(\mathrm{~min})$).

Figure 47.
4) High temperature protection

This IC has the high temperature protection circuit that prevents thermal reckless driving under an abnormal state for the temperature of the chip to exceed Tjmax $=150^{\circ} \mathrm{C}$.

Detecting condition - It will detect when MUTEX pin is set high and the temperature of the chip becomes $150^{\circ} \mathrm{C}$ (TYP.) or more. The speaker output is muted when detected.
Releasing condition - It will release when MUTEX pin is set high and the temperature of the chip becomes $120^{\circ} \mathrm{C}$ (TYP.) or less. The speaker output is outputted when released.

Figure 48.
5) Under voltage protection

This IC has the under voltage protection circuit that make speaker output mute once detecting extreme drop of the power supply voltage.

Detecting condition - It will detect when MUTEX pin is set high and the power supply voltage becomes lower than 7.0V. The speaker output is muted when detected.
Releasing condition - It will release when MUTEX pin is set high and the power supply voltage becomes more than 7.5 V . The speaker output is outputted when released.

Figure 49.
6) Clock stop protection

This IC has the clock stop protection circuits that make the speaker output mute when the BCLK and LRCLK frequency of the digital sound input are decreased or low frequency.

Detecting condition - BCLK frequency is low or stop, LRCLK frequency is stop. Speaker output is muted.
Releasing condition - Mute is released when it passes more than 60 ms after an internal error state was removed. (max).

Figure 50.

Functional descriptions of DSP Block

1. Digital Sound Processing(DSP)

The digital sound processing (DSP) part of BM28720 is composed of the special hardware which is the optimal for FPD-TV, the Mini/Micro Compo. BM28720MUV does the following processing using this special DSP.

Pre-Scaler, Channel Mixer, 12 Band BQ, Fine Master Volume, 3 Band DRC, Fine Post-Scaler, DC Cut HPF, Hard Clipper

The outline and signal flow of the DSP part

Data width:	$32 \mathrm{bit} \quad$ (DATA RAM)
Machine cycle:	$20.3 \mathrm{~ns} \quad(1024 \mathrm{fs}, \mathrm{fs}=48 \mathrm{kHz})$
Multiplier:	$32 \times 24 \rightarrow 56$ bit
Adder:	$56+56 \rightarrow 56$ bit
Data RAM:	512×32 bit
Coefficient RAM:	$512 \times 24 \mathrm{bit}$
Sampling frequency :	$\mathrm{fs}=32 \mathrm{k}, 44.1 \mathrm{k}, 48 \mathrm{kHz}$

Figure 51.
The digital signal from 16 bits to 24 bits is inputted to the DSP but extends 8 bit(+48dB) as the overflow margin to the upper side. When doing the processing which exceeds this range, it processes a clip in the DSP. Incidentally, in case of the 2nd IIR-type (BQ) filter which is often used generally as the digital filter, because it consumes a lot of overflow margins, the output of the multiplier and the adder inside needs note.

Figure 52.

The management of audio data is as follows by each block.

Figure 53.

1-1. Bypass

It enable pass the some function of the DSP. By using it, it left the set value of the each function and can be passed that function. it is possible to make ON/OFF of the sound effect easily. 1) 12 Band BQ, 2) 3 Band DRC and the 3) whole DSP can be passed.

Figure 54.

Default $=0 \times 00$ *Blue square means initial value.

Select Address	bit	Explanation of operation		
$0 \times 02[2: 0]$	2	Bypass of 12 Band BQ (SW1)	$0:$ Normal 1:Bypass	
	1	Bypass of 3 Band DRC (SW2)	$0:$ Normal 1:Bypass	
	0	Bypass of DSP (SW3)	$0:$ Normal 1:Bypass	

1-2. Pre-Scaler

Pre-Scaler adjusts gain of input audio data. The adjustable-range can be set from +48 dB to -79 dB with the $0.5-\mathrm{dB}$ step. (Lch/Rch use same value)
Pre-Scaler doesn't have a soft transfer feature.

Default $=0 \times 60$ *Blue square means initial value.

Select Address	Explanation of operation	
$0 \times 16[7: 0]$		Command Value Gain 0×00 +48 dB 0×01 +47.5 dB \vdots 0×60 0×61 -0.5 dB 0×62 \vdots -1 dB \vdots $0 \times F E$ -79 dB $-\infty$

1-3. Channel setup with a phase inversion function (Channel Mixer 1)

It sets a mixing in the sound on the left channel and the right channel of the digital signal which was inputted to the DSP. It makes a stereo signal a monaural here. Also, the phase-inversion, the mute on each channel can be set.

Figure 55.

DSP input: The data inputted into Lch of DSP is inverted.

Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value		Explanation of operation
$0 \times 17[7]$	0×0	Normal	
	0×1	Invert	

DSP input: The data inputted into Lch of DSP is mixed.

Default $=0 \times 1$ *Blue square means initial value.

Select Address	Value	
$0 \times 17[6: 4]$	0×0	Mute
	0×1	Lch data input
	0×2	Rch data input
	0×3	(Lch + Rch $) / 2$
	0×4	Lch-Rch

DSP input: The data inputted into Rch of DSP is inverted.

Default $=0 \times 0$ *Blue square means initial value .

Select Address	Value	
$0 \times 17[3]$	0×0	Normal
	0×1	Invert

DSP input: The data inputted into Rch of DSP is mixed.

Default $=0 \times 2$ *Blue square means initial value.

Select Address	Value	Explanation of operation
$0 \times 17[2: 0]$	0×0	Mute
	0×1	Lch data input
	0×2	Rch data input
	0×3	(Lch + Rch $/ 2$
	0×4	Lch-Rch

1-4. Biquad filter

In this IC, the following block has the biquad type filter(BQ).
There are 12 Band BQ, Crossover filter of 3 Band DRC block and BQ of the smooth transition.
The shape is used as peaking filter, low shelf filter, high shelf filter, low-pass filter, high-pass filter, notch filter and all path filters.

Setting the coefficient of the digital filter in the IC by transmit to the coefficient RAM via command. 12 Band BQ have the soft transfer feature. About the detailed order of the parameter setting, please refers to the following BQ setting method.

Select of BQ independence or synchronous setting

Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value	Explanation of operation
$0 \times 60[4]^{*}$	0×0	L/R common setting
	0×1	L/R independence setting

*0x60[4] setting note.
Please re-set all BQ when you change the setting of $0 \times 60[4]$.
Total 18 BQ needs to be set again. (BQ1-12, DRC1, DRC2 and DRC3).
BQ soft transition destination band

Default $=0 \times 0$ *Blue square means initial value.

Select Address	Explanation of operation			
0x51 [4:0]	Value	Destination	Value	Destination
	0x00	12BAND(1)	0x0A	12BAND(11)
	0x01	12BAND(2)	0x0B	12BAND(12)
	0x02	12BAND(3)		
	0x03	12BAND(4)		
	0x04	12BAND(5)		
	0x05	12BAND(6)		
	0x06	12BAND(7)		
	0x07	12BAND(8)		
	0x08	12BAND(9)		
	0x09	12BAND(10)		

Select of smooth transition

Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value	Explanation of operation
$0 \times 53[6]$	0×0	Use smooth transition
	0×1	Not use smooth transition

Select the destination channel of smooth transition

Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value	Explanation of operation
$0 \times 53[5: 4]$	0×0	Lch と Rch
	0×1	Lch
	0×2	Rch
	0×3	Don't use

Setting of smooth transition time

Default = 0x3 *Blue square means initial value.

Select Address	Value	Explanation of operation
$0 \times 53[3: 2]$	0×0	2.7 ms
	0×1	5.3 ms
	0×2	10.7 ms
	0×3	21.3 ms

Setting of smooth transition wait time

Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value	Explanation of operation	
$0 \times 53[1: 0]$	0×0	2.7 ms	
	0×1	5.3 ms	
	0×2	10.7 ms	
	0×3	21.3 ms	

Setting of smooth transition start

Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value	Explanation of operation
$0 \times 58[0]$	0×0	Stop the smooth transition operation
	0×1	Start the smooth transition operation (After the transition is completed, it becomes 0 automatically)

This register is write only.
Read-out smooth transition status

Read only

Select Address	Explanation of operation
$0 \times 59[0]$	$1:$ Executing soft transition
	$0:$ Not during soft transition

1-5. Volume

Volume is from +24 dB to -103 dB , and can be selected by the step of 0.125 dB . And it is possible to be setting of $-\infty \mathrm{dB}$, too. At the time of switching of Volume, smooth transition is performed. Soft transition duration is optional with the command.
L/R synchronous or L/R independent can be selected by 0x10[7].
It becomes the following formula at the transition from AdB to BdB . C is smooth transition duration selected by $0 \times 15[7: 6]$ command.

Transition time $=\left|\left(10^{\frac{A}{20}}-10^{\frac{B}{20}}\right) * C \mathrm{~ms}\right|$

Setting of soft transition time

Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value	
$0 \times 15[7: 6]$	0×0	21.3 ms
	0×1	42.7 ms
	0×2	85.3 ms
	0×3	Don't use

Lch/common volume setting

Default $=0 x F F$ *Blue square means initial value.

Select Address	Explanation of operation	
0x11 [7:0]	Value	Gain
	0×00	+24dB
	0×01	+23.5dB
	!	:
	0×30	OdB
	0×31	$-0.5 \mathrm{~dB}$
	0×32	-1dB
	\vdots	!
	(${ }_{\text {OxFE }}^{\text {0xFF }}$	$\underset{\substack{-103 d B \\-\infty}}{ }$

Setting of fine volume
This command becomes effective by sending the following command after setting．
When using this command，it is possible to set a volume in 0.125 dB carving．
When L / R synchronous volume setting， $0 \times 11[7: 0]$ is enable．
When L／R independent volume setting， $0 \times 11[7: 0]$ is the volume setting of Lch．

Lch／common fine volume setting
Default $=0 \times 0$＊Blue square means initial value．

Select Address	Value	Explanation of operation
$0 \times 10[1: 0]$	0×0	0 dB
	0×1	-0.125 dB
	0×2	-0.25 dB

【Note1】

It is possible to use with the $0.5-\mathrm{dB}$ step in changing only $0 \times 11[7: 0]$ when $0 \times 10[1: 0]=0 \times 0$ ．
The Lch／Rch independent volume setting and the synchronous volume setting can be selected by $0 \times 10[7]$ command． When Lch／Rch independent volume set，the volume setting of Lch is the setting of $0 \times 10[1: 0]$ and 0×11 ，and the volume setting of Rch is the settings of $0 \times 10[5: 4]$ and 0×12 ．

Setting of Lch／Rch independent volume
Default $=0 \times 0$＊Blue square means initial value．

Select Address	Value	Explanation of operation
$0 \times 10[7]$	0×0	Lch／Rch common volume setting
	0×1	Lch／Rch independent volume setting

Setting of volume（Setting of Rch volume，It is enable only to set an independent volume．）
Default $=0 x F F$＊Blue square means initial value．

Setting of fine volume
This command becomes effective by sending the following command after setting．
When using this command，it is possible to set a volume in 0.125 dB carving．
Setting of fine volume（Setting of Rch fine volume，It is enable only to set an independent volume．）
Default $=0 \times 0$＊Blue square means initial value．

Select Address	Value	
$0 \times 10[5: 4]$	0×0	0 dB
	0×1	-0.125 dB
	0×2	-0.25 dB

【Note2】
It is possible to use with the $0.5-\mathrm{dB}$ step in changing only $0 \times 12[7: 0$ ］when $0 \times 10[5: 4]=0$ ．

【Note3】
It is possible to use with the $0.125-\mathrm{dB}$ step in setting both $0 \times 10[1: 0]$ and $0 \times 11[7: 0]$.
In case of $0 \times 10[1: 0]=0 \times 0$, it becomes the set value of 0×11 [7:0].
In case of $0 \times 10[1: 0]=0 \times 1$, it becomes the -0.125 dB set value of $0 \times 11[7: 0]$.
In case of $0 \times 10[1: 0]=0 \times 2$, it becomes the -0.25 dB set value of $0 \times 11[7: 0]$.
In case of $0 \times 10[1: 0]=0 \times 3$, it becomes the -0.375 dB set value of $0 \times 11[7: 0]$.
Because it is fixed by the transfer of 0×11 in any case, the soft transfer can be beforehand begun in the set value for the direct following of the purpose in setting 0×11 after setting in 0×10.
$0 \times 10[5: 4]$ is the same function as $0 \times 10[1: 0], 0 \times 12$ is the same function as 0×11 when Lch/Rch independently set for Rch.

Figure 56.
1-6. 3 band DRC
This DRC is used in order to prevent clip output of a large audio signal.
There are three kinds of DRC (DRC1, DRC2, and DRC3), and non clip output can be achieved at each band. DRC1, DRC2 and DRC3 can set up two threshold value levels. Moreover, it is possible to also change slope.

3 Band DRC block diagram

Figure 57.

DRC transition figure

In here A_TIME is the time for detecting time before starting gain down operation. And A_RATE decides the slope of gain compression.
On the other hand R_TIME is the time for detecting before starting to release gain operation. And R_RATE decides slope of release gain.

Figure 58.

DRC1, DRC2, DRC3 can be set AGC_TH1 and AGC_TH2 as shown in below. If output is in between AGC_TH1 and AGC_TH2, a slant for output gain can be made. If input become bigger and output over AGC_TH2, output gain don't have slant and become constant level. Value for slant setting (α) is calculated by AGC_TH1, AGC_TH2 and the value of input gain for reaching AGC_TH2 (xdB).
The operation between AGC_TH1 and AGC_TH2 is decided as DRC1 $1_{\text {slope }}$ and DRC2 $2_{\text {slope }}$ and DRC3 $3_{\text {slope }}$.
And the operation over AGC_TH2 is decided as DRC1 ${ }_{\text {comp }}$ and DRC2 ${ }_{\text {comp }}$ and DRC3 ${ }_{\text {comp }}$.
Each operation can be set ON/OFF, A_TIME, A_RATE, R_TIME, R_RATE respectively.
DRC input-and-output gain characteristics

Figure 59.

The formula which asks for Slope alpha is described below. Alpha changes into 8bit Hex data of the complement of 2 the value calculated by calculation.
$\alpha=\frac{10^{\frac{y}{20}}-10^{\frac{x}{20}}}{10^{\frac{1 H}{20}}-10^{\frac{x}{20}}} \times 128$
TH is AGC_TH1. x is input level. y is output level.

Ex) It asks for alpha at the time of AGC_TH1 $=-12 \mathrm{~dB}, \mathrm{x}=0 \mathrm{~dB} y=-6 \mathrm{~dB}$
$\alpha=\frac{10^{\frac{-6}{20}}-10^{\frac{0}{20}}}{10^{\frac{-12}{20}}-10^{\frac{0}{20}}} \times 128$
$\alpha=85.266 \rightarrow 0 \times 55$
0×55 calculated is set as $0 \times 29,0 \times 31$ or 0×39.

Volume Curve

Figure 60.
DRC1 ${ }_{\text {slope }}$ ON/OFF setting
OFF is through output.

Default $=0 \times 1$ *Blue square means initial value.

Select Address	Value	
$0 \times 20[7]$	0×0	Not use
	0×1	Use

DRC1 ${ }_{\text {comp }}$ ON/OFF setting
OFF is through output.

Default $=0 \times 1$ *Blue square means initial value.

Select Address	Value		Explanation of operation
$0 \times 20[6]$	0×0	Not use	
	0×1	Use	

$\mathrm{DRC}_{\text {slope }}$ ON/OFF setting
OFF is through output.

Default $=0 \times 1$ *Blue square means initial value.

Select Address	Value		Explanation of operation
$0 \times 20[5]$	0×0	Not use	
	0×1	Use	

$\mathrm{DRC2}_{\text {comp }}$ ON/OFF setting
OFF is through output.

Default $=0 \times 1$ *Blue square means initial value.

Select Address	Value		Explanation of operation
$0 \times 20[4]$	0×0	Not use	
	0×1	Use	

$\mathrm{DRC}_{\text {slope }}$ ON/OFF setting
OFF is through output.

Default $=0 \times 1$ *Blue square means initial value.

Select Address	Value		Explanation of operation
$0 \times 20[3]$	0×0	Not use	
	0×1	Use	

DRC3 ${ }_{\text {comp }}$ ON/OFF setting of compressor
OFF is through output.

Default $=0 \times 1$ *Blue square means initial value.

Select Address	Value		Explanation of operation
$0 \times 20[2]$	0×0	Not use	
	0×1	Use	

DRC4 ON/OFF setting

DRC4 have only compression function. DRC4 don't have slope function.
OFF is through output.

Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value		Explanation of operation
$0 \times 3 \mathrm{~F}[4]$	0×0	Not use	
	0×1	Use	

The volume curve at the time of an attack (A_RATE) is selected.

Default $=0 \times 1$ *Blue square means initial value.

| Select Address | Value | Explanation of operation |
| :---: | :---: | :--- | :--- |
| $0 \times 21[7]$ | 0×0 | Linear curve |
| | 0×1 | Exponential curve |

The volume curve at the time of a release (R_RATE) is selected.

Default $=0 \times 1$ *Blue square means initial value.

| Select Address | Value | Explanation of operation |
| :---: | :---: | :--- | :--- |
| $0 \times 21[6]$ | 0×0 | Linear curve |
| | 0×1 | Exponential curve |

DRC is 1 Band setting at initial state.

To set the crossover filter (HPF, LPF and APF) which divides the frequency band of 3 Band DRC, therefore, it is referred to the 1-4.

Slope (α) setting of DRC1 $1_{\text {slope }}$, DRC2 $_{\text {slope }}$, and $D R C 3_{\text {slope }}$
$D R C 1_{\text {slope }}, D R C 2_{\text {slope }}$ and $D R C 3_{\text {slope }}$ can be set individually.

Default $=0 \times 80$ *Blue square means initial value.

Select Address	Explanation of operation
DRC1 $_{\text {slope }}$ $0 \times 29[7: 0]$ DRC2 $_{\text {slope }}$ $0 \times 31[7: 0]$ DRC3 $_{\text {slope }}$ $0 \times 39[7: 0]$	 The formula which asks for Slope alpha is described below. Alpha changes into 8bit Hex data of the complement of 2 the value calculated by calculation. $\alpha=\frac{10^{\frac{y}{20}}-10^{\frac{x}{20}}}{10^{\frac{T H}{20}}-10^{\frac{x}{20}}} \times 128$ TH is AGC_TH1. x is input level. y is output level. Ex) It asks for alpha at the time of AGC_TH1 $=-12 \mathrm{~dB}, \mathrm{x}=0 \mathrm{~dB} \mathrm{y}=-6 \mathrm{~dB}$ $\alpha=\frac{10^{\frac{-6}{20}}-10^{\frac{2}{20}}}{10^{\frac{-12}{20}}-10^{\frac{0}{20}}} \times 128$ $\alpha=85.266 \rightarrow 0 \times 55$ 0×55 calculated is set as $0 \times 29,0 \times 31$ or 0×39.

AGC_TH1 setting of DRC1 slope, DRC2 slope , and DRC3 $3_{\text {slope }}$
DRC1 slope, $\mathrm{DRC}_{\text {slope }}$ and $\mathrm{DRC}_{\text {slope }}$ can be set individually.
Please set this value is smaller than the value of AGC_TH2.

Default $=0 \times 40$ *Blue square means initial value.

Select Address	Explanation of operation	
DRC1 slope 0×28 [6:0]	Value	Threshold
DRC2 slope $0 \times 30[6: 0]$	0x00	-32dB
DRC3 slope $0 \times 38[6: 0]$!	!
	0x3F	-0.5dB
	0x40	0dB
	0x41	$+0.5 \mathrm{~dB}$
	!	!
	0x58	+12dB

AGC_TH2 setting of DRC1 $1_{\text {comp }}$, DRC2 $_{\text {comp }}$, DRC3 $_{\text {comp }}$, and DRC4
DRC1 ${ }_{\text {comp }}$, DRC2 $_{\text {comp }}$, DRC3 $_{\text {comp }}$ and DRC4 can be set individually.

Default $=0 \times 40$ *Blue square means initial value.

Select Address	Explanation of operation	
DRC1 ${ }_{\text {comp }} 0 \times 2 \mathrm{C}$ [6:0]	Value	Threshold
DRC2 comp $^{0 \times 34}$ [6:0]	0×00	-32dB
DRC3 ${ }_{\text {comp }} 0 \times 3 \mathrm{C}$ [6:0]	:	!
DRC4 0x40[6:0]	0x3F	-0.5dB
	0x40	0dB
	0×41	$+0.5 \mathrm{~dB}$
	!	!
	0x58	+12dB

A_RATE setting of DRC1 slope, DRC2 $_{\text {slope }}, D R C 3_{\text {slope }}, D R C 1_{\text {comp }}, D R C 2_{\text {comp }}, D R C 3_{\text {comp }}, D R C 4$
$D R C 1_{\text {slope }}, D R C 2_{\text {slope }}, D R C 3_{\text {slope }}, D R C 1_{\text {comp }}, D R C 2_{\text {comp }}, D R C 3_{\text {comp }}$, DRC4 can be set individually.

Default $=0 \times 3$ *Blue square means initial value.

Select Address	Explanation of operation			
DRC1 slope $0 \times 2 \mathrm{~A}$ [6:4]				
DRC2 $2_{\text {slope }} 0 \times 32[6: 4]$	Value	A_RATE	Value	A_RATE
DRC2slope $0 \times 32[6.4]$	0x0	1 ms	0x4	5 ms
DRC3 $_{\text {slope }} 0 \times 3 A[6: 4]$	0x1	2 ms	0x5	10 ms
DRC1 ${ }_{\text {comp }} 0 \times 2 \mathrm{E}$ [6:4]	0x2	3 ms	0x6	20 ms
DRC2 comp $^{\text {ax }}$ 0x 6 [6:4]	0x3	4 ms	0x7	40 ms
$\begin{array}{cc} \text { DRC3 }_{\text {comp }} & 0 \times 3 \mathrm{D}[6: 4] \\ \text { DRC4 } & 0 \times 41[6: 4] \end{array}$				

R_RATE setting of DRC1 $1_{\text {slope }}$, DRC2 $_{\text {slope }}$, DRC3 $_{\text {slope }}$, DRC1 $_{\text {comp }}$, DRC2 $_{\text {comp }}$, DRC3 $_{\text {comp }}$, DRC4 $\mathrm{DRC}_{\text {slope }}, \mathrm{DRC}_{\text {slope }}, \mathrm{DRC}_{\text {slope }}, \mathrm{DRC1}_{\text {comp }}, \mathrm{DRC2}_{\text {comp }}, \mathrm{DRC}_{\text {comp }}, \mathrm{DRC} 4$ can be set individually.

Default $=0 \times B$ *Blue square means initial value.

Select Address	Explanation of operation			
DRC1 $1_{\text {slope }} 0 \times 2 \mathrm{~A}$ [3:0]	Value	R_RATE	Value	R_RATE
DRC2slope $0 \times 32[3: 0]$	0x0	0.125 s	0x8	2s
DRC3slope $0 \times 3 \mathrm{~A}[3: 0]$	0x1	0.1825 s	0x9	2.5 s
DRC1 comp $^{\text {ax2 }}$ [$3: 0$]	0×2	0.25 s	0xA	3 s
	0×3	0.5 s	0xB	4 s
DRC3 ${ }_{\text {comp }}$ 0x3D [3:0]	0x4	0.75 s	0xC	5 s
DRC4 0x41[3:0]	0x5	1s	0xD	6 s
	0x6	1.25 s	0xE	7s
	0x7	1.5 s	0xF	8s

A_TIME setting of DRC1 $1_{\text {slope }}$, DRC2 $_{\text {slope }}$, DRC3 $_{\text {slope }}, D R C 1_{\text {comp }}$, DRC2 $_{\text {comp }}$, DRC3 $_{\text {comp }}$, DRC4
$\mathrm{DRC1}_{\text {slope }}, \mathrm{DRC}_{\text {slope }}, \mathrm{DRC}_{\text {slope }}, \mathrm{DRC} 1_{\text {comp }}, \mathrm{DRC}_{\text {comp }}$, DRC3 $_{\text {comp }}, \mathrm{DRC} 4$ can be set individually.

Default $=0 \times 1$ *Blue square means initial value.

Select Address	Explanation of operation			
DRC1 slope $0 \times 2 \mathrm{E}$ [7:4]	Value	A_TIME	Value	A_TIME
DRC2slope $0 \times 33[7: 4]$	0x0	Oms	0x8	6 ms
DRC3slope $0 \times 3 \mathrm{~B}[7: 4]$	0x1	0.5 ms	0x9	7 ms
DRC1 comp $^{\text {0x }}$ 0x 2 F 74]	0x2	1 ms	0xA	8 ms
DRC2 comp $^{\text {cox }}$ [[7:4]	0×3	1.5 ms	$0 \times B$	9 ms
DRC3 ${ }_{\text {comp }}$ 0x3E [7:4]	0x4	2 ms	$0 \times C$	10 ms
DRC4 0x42[7:4]	0x5	3 ms	0xD	20 ms
	0x6	4 ms	0xE	30 ms
	0x7	5 ms	0xF	40 ms

R_TIME setting of DRC1, DRC2, DRC3, and DRC4
DRC1, DRC2, DRC3 and DRC4 are individually setting.

Default $=0 \times 3$ *Blue square means initial value.

Select Address	Explanation of operation			
DRC1 $1_{\text {slope }} 0 \times 2 \mathrm{~B}$ [$2: 0$]				
DRC2slope 0×33 [2:0]	Value	R_TIME	Value	R_TIME
DRC3slope $0 \times 3 \mathrm{~B}$ [2:0]	0x0	5 ms	0x4	100 ms
DRC1 ${ }_{\text {comp }} 0 \times 2 F[2: 0]$	0×1	10 ms	0x5	200 ms
$\mathrm{DRC}_{\text {como }} 0 \times 37[2: 0]$	0×2	25 ms	0x6	300ms
$\mathrm{DRC}_{\text {comp }} \quad 0 \times 3 \mathrm{E}[2: 0]$	0×3	50 ms	0x7	400 ms
DRC4 0x42[2:0]				

1-7. Post-Scaler

Post-Scaler adjusts gain of output audio data. The adjustable-range can be set from +48 dB to -79 dB with the $0.5-\mathrm{dB}$ step. (Lch/Rch use same value)
Pre-Scaler doesn't have a soft transfer feature.

Default $=0 \times 60$ *Blue square means initial value.

Select Address	Explanation of operation	
0x13 [7:0]	Value	Gain
	0x00	+48dB
	0x01	+47.5dB
	!	!
	0x60	0dB
	0x61	-0.5dB
	0x62	-1dB
	\vdots	:
	0xFE	-79dB
	0xFF	$-\infty$

1-8. Fine Post-Scaler

An adjustable range can be set up at a 0.1 dB step from +0.7 dB to -0.8 dB . Fine Post-Scaler does not have a smooth transition function.
(Lch and Rch can be set different value.)

Default= 0×8 *Blue square means initial value.

Select Address	Explanation of operation			
Lch 0x14[7:4]	Command	Gain	Command	Gain
Rch 0x14[3:0]	0×0	-0.8dB	0x8	0dB
	0x1	-0.7dB	0x9	+0.1dB
	0×2	-0.6dB	0xA	+0.2dB
	0×3	-0.5dB	0xB	$+0.3 \mathrm{~dB}$
	0×4	-0.4dB	0xC	+0.4dB
	0x5	-0.3dB	0xD	$+0.5 \mathrm{~dB}$
	0×6	-0.2dB	0xE	$+0.6 \mathrm{~dB}$
	0x7	-0.1dB	0xF	$+0.7 \mathrm{~dB}$

1-9. Hard Clipper

Measuring output of the television, output power is measured in 10% THD $+N$ condition. It can be made to clip with any output amplitude by using a clipper function. For example, the output of 10 W or 5 W can be gained using the amplifier of 15 W output.

Hard clip

Figure 61.
Clipper setting
Default $=0 \times 1$ *Blue square means initial value.

Select Address	Value	Explanation of operation
$0 \times 1 \mathrm{~A}[0]$	0×0	Clipper function is not used.
	0×1	Hard clipper function is used.

Clip level selection

Default $=0 \times E 1$ *Blue square means initial value.

Select Address	Expla	operation
0x1B [7:0]	Value	Gain
	0x00	-22.5dB
	0×01	-22.4dB
	!	!
	0xE0	-0.1dB
	0xE1	OdB
	0xE2	$+0.1 \mathrm{~dB}$
	引	!
	0xFE	+2.9dB
	0xFF	+3dB

1-10. DC Cut HPF
DC offset element of the digital signal outputted from audio DSP is cut by this HPF.
The cutoff frequency fc of HPF uses the 1 Hz filter, and the degree uses the first-order filter.

Default = 0×1 *Blue square means initial value.

Select Address	Value	
$0 \times 18[0]$	0×0	Not use
	0×1	Use

1-11. RAM clear
The data RAM of DSP and coefficient RAM are cleared.
$40 \mu \mathrm{~s}$ or more is required until all the data is cleared.

Clear of the data RAM

Default $=0 \times 1$ *Blue square means initial value.

Select Address	Value	
$0 \times 01[7]$	0×0	Normal
	0×1	Clear

Clear of coefficient RAM

Default $=0 \times 1$ *Blue square means initial value.

Select Address	Value	
$0 \times 01[6]$	0×0	Normal
	0×1	Clear

1-12. Audio Output Level Meter
It is possible to output the peak level of the PCM data inputted into a PWM processor.
A peak value can be read using the 2 -wire command interface as 16 bit data of an absolute value.
The interval holding a peak value can be selected from six steps (50 ms step) from 50 ms to 300 ms .
A peak hold result can be selected from L channel, R channel, and a monophonic channel $\{($ Lch + Rch $) / 2\}$.

Audio Output Level Meter block diagram

Figure 62.

Setting of the peak level hold time interval of Audio Output Level Meter

Default = 0x0 *Blue square means initial value.

Select Address	Explanation of operation	
$0 \times 74[2: 0]$	Value Hold time 0×0 0×1 100 ms 0×2 0×3 150 ms 0×4 0×5 200 ms 	

The signal of Audio Level Meter read-back is selected.
A value will be taken into a read-only register if a setting value is written in.
In order to update this register value, it is necessary to write in a setting value again.
Write only

Select Address	Value	Explanation of operation
$0 \times 75[1: 0]$	0×0	The peak level of L channel
	0×1	The peak level of R channel
	0×2	The peak level of monophonic channel $\{($ Lch + Rch $) / 2\}$

Read-back of Audio Output Level
0×76 (upper 8 bits) and a 0×77 (lower 8 bits) commands are read for the maximum within the period appointed by the command 0×74 using the 2 -wire interface.
(Example)
When 0xFFFF is read, mean 1.0 (0 dBFs).
When 0×8000 is read, mean $0.5(-6 \mathrm{dBFs})$.

2. Setting and reading method of $B Q$

It explains a detailed sequence of the setting method and the reading method of the parametric equalizer separately for usage.

2-1 BQ coefficient setting

The parametric equalizer consists of biquad filter as follows. Each coefficient of biquad filter can be written directly. It is S2.21 format, and setting range is $-4 \leqq x<+4$.
Moreover, the coefficient address is shown in Table 1.

Figure 63.
2-1-1 Writing sequence (It sets up in number order)

1. Address setting (0×61) (*1)Table 1 is referred to.
2. 24bit coefficient upper [23:16] bit setting (0x62[7:0])
3. 24bit coefficient middle [15:8] bit setting ($0 \times 63[7: 0]$)
4. 24bit coefficient lower [7:0] bit setting ($0 \times 64[7: 0]$)
5. The writing of coefficients is performed. $(0 \times 65[0]=0 \times 1)$ *

* After completion of writing coefficients this register is cleared automatically. It is not necessary to transmit $0 \times 65[0]=0 \times 0$. Coefficient writing takes about $100 \mu \mathrm{~s}$. $100 \mu \mathrm{~s}$ should not change an address setup and several 24 -bit setup after coefficient write-in execution.
(ex) When 0x3DEDE7 is written, same L/Rch, 12band BQ1 b0

1. $0 \times 61=0 \times 00$ (12band BQ1 b0 is appointed)
2. $0 \times 62=0 \times 3 D$ (Upper [23:16] is setting)
3. $0 \times 63=0 \times E D$ (Middle [15:8] is setting)
4. $0 \times 64=0 \times E 7$ (Lower $[7: 0]$ is setting)
5. $0 \times 65=0 \times 01$ (Coefficient transfer) ${ }^{*}$
*After completion of writing coefficients this register is cleared automatically.
6. $100 \mu \mathrm{~s}$ or more wait

2-1-2 Read-back sequence (It sets up in number order)

1. Address setting (0x61). Please refer to Table 1.
2. Setting of a read-back register address (0xD0)
3. Read-back of the 24bit coefficient upper[23:16]bit (0x66[7:0])
4. Read-back of the 24bit coefficient middle[15:8]bit ($0 \times 67[7: 0]$)
5. Read-back of the 24bit coefficient lower[7:0]bit (0x68[7:0])

2-1-3 When the coefficient of PEQ is set up directly and a soft transition is performed

1. Set PEQ coefficient to soft transition address whose address is $0 \times 50-0 \times 54$. Please refer to Table1.

Since in the case of $0 \times 60[4]=0 \times 1$ (Enable L/R independent setting) and $0 \times 53[5: 4]=0 \times 0$ a soft transition is carried out and it is set to LR simultaneously, please write a coefficient in both LR address.
In the case of $0 \times 53[5: 4]=0 \times 1$, coefficient is set to only Lch address.
In the case of $0 \times 53[5: 4]=0 \times 2$, coefficient is set to only Rch address.
2. Select PEQ Band that is performed soft transition by setting 0×51 [4:0] address. (Refer to chapter 1-4)
3. $0 \times 58[0]=0 \times 1$: Start soft transition (After the completion of soft transition this register is automatically cleared.)
4. Wait soft transition completion (It depend on soft transition time setting), or read command 0×59 [0], and stand by until it is cleared.

Table1. Specified coefficient

0x61[6:0]	Destination	0x61[6:0]	Destination	0x61[6:0]	Destination
0×00	12BandBQ1 b0	0×23	12BandBQ8 b0	0×46	DRC2 1 b0
0×01	12BandBQ1 b1	0×24	12BandBQ8 b1	0×47	DRC2_1 b1
0×02	12BandBQ1 b2	0×25	12BandBQ8 b2	0×48	DRC2_1 b2
0×03	12BandBQ1 a1	0×26	12BandBQ8 a1	0×49	DRC2_1 a1
0×04	12BandBQ1 a2	0×27	12BandBQ8 a2	$0 \times 4 \mathrm{~A}$	DRC2 1 a2
0×05	12BandBQ2 b0	0×28	$12 \mathrm{BandBQ9}$ b0	0x4B	DRC2_2 b0
0×06	12BandBQ2 b1	0×29	12BandBQ9 b1	0x4C	DRC2_2 b1
0×07	12BandBQ2 b2	$0 \times 2 \mathrm{~A}$	$12 \mathrm{BandBQ9}$ b2	0x4D	DRC2_2 b2
0×08	12BandBQ2 a1	$0 \times 2 \mathrm{~B}$	12BandBQ9 a1	$0 \times 4 \mathrm{E}$	DRC2_2 1
0×09	12BandBQ2 a2	$0 \times 2 \mathrm{C}$	$12 \mathrm{BandBQ9}$ a2	0x4F	DRC2_2 a2
$0 \times 0 \mathrm{~A}$	12BandBQ3 b0	0x2D	12BandBQ10 b0	0×50	Smooth BQ b0
$0 \times 0 \mathrm{~B}$	12BandBQ3 b1	$0 \times 2 \mathrm{E}$	12BandBQ10 b1	0×51	Smooth BQ b1
$0 \times 0 \mathrm{C}$	12BandBQ3 b2	0x2F	12BandBQ10 b2	0×52	Smooth BQ b2
$0 \times 0 \mathrm{D}$	12BandBQ3 a1	0×30	12BandBQ10 a1	0×53	Smooth BQ a1
$0 \times 0 \mathrm{E}$	12BandBQ3 a2	0×31	12BandBQ10 a2	0×54	Smooth BQ a2
$0 \times 0 \mathrm{~F}$	12BandBQ4 b0	0×32	12BandBQ11 b0	0×55	DRC3_1 b0
0×10	12BandBQ4 b1	0×33	12BandBQ11 b1	0×56	DRC3_1 b1
0×11	12BandBQ4 b2	0×34	12BandBQ11 b2	0×57	DRC3_1 b2
0×12	12BandBQ4 11	0×35	12BandBQ11 a1	0×58	DRC3_1 a1
0×13	12BandBQ4 a2	0×36	12BandBQ11 a2	0×59	DRC3_1 a2
0×14	12BandBQ5 b0	0×37	12BandBQ12 b0	$0 \times 5 \mathrm{~A}$	DRC3_2 b0
0×15	12BandBQ5 b1	0×38	12BandBQ12 b1	$0 \times 5 \mathrm{~B}$	DRC3_2 b1
0×16	12BandBQ5 b2	0×39	12BandBQ12 b2	$0 \times 5 \mathrm{C}$	DRC3_2 b2
0×17	12BandBQ5 a1	0×3 A	12BandBQ12 a1	$0 \times 5 \mathrm{D}$	DRC3_2 a1
0×18	12BandBQ5 a2	$0 \times 3 \mathrm{~B}$	12BandBQ12 a2	$0 \times 5 \mathrm{E}$	DRC3_2 a2
0×19	12BandBQ6 b0	$0 \times 3 \mathrm{C}$	DRC1_1b0		
$0 \times 1 \mathrm{~A}$	12BandBQ6 b1	$0 \times 3 \mathrm{D}$	DRC1_1 b1		
$0 \times 1 \mathrm{~B}$	12BandBQ6 b2	$0 \times 3 \mathrm{E}$	DRC1_1 b2		
0x1C	12BandBQ6 11	$0 \times 3 \mathrm{~F}$	DRC1_1 a1		
$0 \times 1 \mathrm{D}$	12BandBQ6 a2	0x40	DRC1_1 a2		
$0 \times 1 \mathrm{E}$	12BandBQ7 b0	0×41	DRC1_2 b0		
0x1F	12BandBQ7 b1	0×42	DRC1_2 b1		
0x20	12BandBQ7 b2	0×43	DRC1_2 b2		
0×21	12BandBQ7 11	0x44	DRC1_2 a1		
0×22	12BandBQ7 a2	0x45	DRC1_2 a2		

When L/R independent, Lch:0x61[7]=0x0, Rch:0x61[7]=0x1.
When L / R is same, $0 \times 61[7]$ is not effective.

3. The mute function by a terminal

BM28720MUV has a mute function of audio DSP by a terminal.
It is possible to perform mute of the output from Audio DSP by setting a MUTEX terminal to low.
Transition time setting at the time of mute is as follows.
Smooth transition mute time setting
The transition time when changing to a mute state is selected.
The soft transition time at the time of mute release is 10.7 ms fixed.

Default $=0 \times 3$ *Blue square means initial value.

Select Address	Value		Explanation of operation
$0 \times 15[1: 0]$	0×0	10.7 ms	
	0×1	21.4 ms	
	0×2	42.7 ms	
	0×3	85.4 ms	

$0 \times 15[1: 0]$ Mute time setting
It is only operated by mute terminal.

Figure 64.
0x15[1:0] setting

Command	T_{A}	T_{B}
0×0	10.7 ms	10.7 ms
0×1	21.4 ms	10.7 ms
0×2	42.7 ms	10.7 ms
0×3	85.4 ms	10.7 ms

Smooth transition mute release time setting
Time after detecting mute release until it actually begins mute release operation is set up.

Default = 0x0 *Blue square means initial value

Select Address	Value	Explanation of operation
$0 \times 15[5: 4]$	0×0	0 ms
	0×1	100 ms
	0×2	200 ms
	0×3	300 ms

Operation of mute delay $0 \times 15[5: 4]$

Figure 65

4. Small signal input detection function

There is a function which detects the audio data input of a non-signal or a small signal. This function is used in order to reduce the standby power consumption of an audio set. Setting of a detection level and detection time can be performed. If the signal below a setting detection level continues in both low channel and R channel, a small signal detection flag will become "high". A detection result can be read from command 0x72 [0].
The point which acts as a monitor of the small signal becomes input data of audio DSP block.

Figure 66.
Detection level setting

Default $=0 \times 00$ *Blue square means initial value.

Select Address	Explanation of operation						
$0 \times 70[4: 0]$		Value	Level	Value	Level	Value	Level
	0×00	-103 dB	0×08	-77 dB	0×10	-69 dB	
		0×01	-93 dB	0×09	-76 dB	0×11	-68 dB
		0×02	-91 dB	$0 \times 0 \mathrm{~A}$	-75 dB	0×12	-67 DB
		0×03	-87 dB	$0 \times 0 \mathrm{~B}$	-74 dB	0×13	-66 dB
		0×04	-84 dB	$0 \times 0 \mathrm{C}$	-73 dB	0×14	-65 dB
	0×05	-80 dB	$0 \times 0 \mathrm{D}$	-72 dB	0×15	-64 dB	
	0×06	-79 dB	$0 \times 0 \mathrm{E}$	-71 dB	0×16	-62 dB	
	0×07	-78 dB	$0 \times 0 \mathrm{~F}$	-70 dB	0×17	-60 dB	

Detection time setting

Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value	Explanation of operation
$0 \times 71[1: 0]$	0×0	42.7 ms
	0×1	85.4 ms
	0×2	170.7 ms
	0×3	341.4 ms

*Sampling frequency is value of $\mathrm{Fs}=48 \mathrm{kHz}$. In the case of $\mathrm{Fs}=44.1 \mathrm{kHz}$, it will be about 1.09 times the setting value.

Detection flag read-back
Read Only

Select Address	Value		Explanation of operation
$0 \times 72[0]$	0×0	Undetected	
	0×1	Detecting	

5. Clock stop detection and detection of BCLK frequency begin too low or too high or asynchronous state detection

$5-1$. Clock stops detection

BM28720MUV needs some clock source for generating proper clock to process Audio data.
By stopping these cock sources, these clocks to process Audio data also stop.
To prevent noise sounds, we need to detect BCLK or LRCLK stop condition.
As we detect stop flag that is to be valid, output is gone to mute state (mute instantly).

Figure 67.
Each detect condition is set by below command. We can check detected result by reading back flag register.
These flags are cleared only by sending specified commands.

LRCLK stop detection time
Default $=0 \times 2$ *Blue square means initial value.

Select Address	Value	
LRCLK $0 \times 07[2: 0]$	0×0	$10 \mu \mathrm{~s}$ to $20 \mu \mathrm{~s}$
	0×1	$20 \mu \mathrm{~s}$ to $40 \mu \mathrm{~s}$
	0×2	$50 \mu \mathrm{~s}$ to $100 \mu \mathrm{~s}$
	0×3	$100 \mu \mathrm{~s}$ to $200 \mu \mathrm{~s}$
	0×4	$200 \mu \mathrm{~s}$ to $400 \mu \mathrm{~s}$
	0×5	$300 \mu \mathrm{~s}$ to $600 \mu \mathrm{~s}$
	0×6	$400 \mu \mathrm{~s}$ to $800 \mu \mathrm{~s}$
	0×7	$500 \mu \mathrm{~s}$ to $1000 \mu \mathrm{~s}$

※Detection time has the above-mentioned variation within the limits.

BCLK stop detection time
Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value	
BCLK 0x08 [6:4]	0×0	$10 \mu \mathrm{~s}$ to $20 \mu \mathrm{~s}$
	0×1	$20 \mu \mathrm{~s}$ to $40 \mu \mathrm{~s}$
	0×2	$50 \mu \mathrm{~s}$ to $100 \mu \mathrm{~s}$
	0×3	$100 \mu \mathrm{~s}$ to $200 \mu \mathrm{~s}$
	0×4	$200 \mu \mathrm{~s}$ to $400 \mu \mathrm{~s}$
	0×5	$300 \mu \mathrm{~s}$ to $600 \mu \mathrm{~s}$
	0×6	$400 \mu \mathrm{~s}$ to $800 \mu \mathrm{~s}$
	0×7	$500 \mu \mathrm{~s}$ to $1000 \mu \mathrm{~s}$

※Detection time has the above-mentioned variation within the limits.

Stop detection flag read back register
Read Only

Select Address	Value	Operation
$0 \times 09[5]$	0×0	Normal
	0×1	Detection of LRCLK stop flag
$0 \times 09[4]$	0×0	Normal
	0×1	Detection of BCLK stop flag

Stop detection flag clear register
Write Only

Select Address	Operation
$0 \times 09[1]$	LRCLK stop detection flag is cleared by writing 1.
$0 \times 09[0]$	BCLK stop detection flag is cleared by writing 1.

※When using a clock error auto return function (P.59), this flag is cleared automatically.

LRCLK stop flag valid or invalid selection
Default $=0 \times 1$ *Blue square means initial value.

Select Address	Value		Operation
$0 \times 07[3]$	0×0	Valid	
	0×1	Invalid	

BCLK stop flag valid or invalid selection
Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value		Operation
$0 \times 08[7]$	0×0	Valid	
	0×1	Invalid	

5-2. Synchronous blank detection

As for synchronous blank detecting function, it detects as synchronous blank error when it counts between the rising edges of LRCK with internal clock (49.152 MHz), and it shifts more than the definite value, and whether PLL is normally locked is judged.

Input sampling frequency	$32 \mathrm{kHz}, 44.1 \mathrm{kHz}, 48 \mathrm{kHz}$
Count value (Start of counting from 0)	1023

As for the detection result, reading from the register is possible. Register value is not cleared until a clear command is transmitted even if the state of the clock returns normally. Moreover, the setting of the detection approval frequency is also possible, and if the error counts more than the predetermined number is detected, the flag (0x06[1]) becomes 1.

Synchronous blank flag reading register
Read Only

Select Address	Value	Explanation of operation
$0 \times 06[1]$	0×0	Normal
	0×1	Detect synchronous error

Synchronous blank flag clear register
Write Only

Select Address	Explanation of operation
$0 \times 06[0]$	When 1 is written, the synchronous blank flag is cleared.

Synchronous blank count setting
Default = 0x2 *Blue square means initial value.

Select Address	
$0 \times 06[6: 4]$	Please set more than 1.

$5-3$. BCLK high or low speed detection

BCLK high or low speed detection function is to judge BCLK speed being too high or low by measuring by using internal clock (12 MHz to 25 MHz).
When using BCLK speed detection, speed failure detection can be more correctly performed by setting a command according to inputted sample rate.
When you use error detection function, please set up the sample rate by setting address $0 \times 0 C[1: 0]$. A high speed and the low-speed detection flag can be set up valid or invalid respectively, and if the error is detected, mute (mute instantly) will be carried out.

Valid or invalid frequency value setting up by $0 \times 0 C[1: 0]$ command.
Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value		Operation
$0 \times 0 \mathrm{~A}[3]$	0×0	Valid	
	0×1	Invalid	

Setting of sampling rate
Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value	Operation	
$0 \times 0 \mathrm{C}[1: 0]$	0×0	48 kHz	
	0×1	44.1 kHz	
	0×2	32 kHz	

The constraints of a high speed or a low-speed condition
Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value		Operation
$0 \times 0 \mathrm{~A}[2]$	0×0	$\pm 10 \%$	

We can check detection result by reading back.
The result judged that is once unusual is not cleared until it transmits a clear command, even if the condition of a clock returns to normal. We can set up
We can set up the constraints of the count of formation, and it does not set a flag until it detects it by count continuation.
BCLK high speed flag
Read Only

Select Address	Value	Operation	
$0 \times 0 \mathrm{~A}[1]$	0×0	Normal	
	0×1	High speed detection flag	

BCLK low speed flag
Read Only

Select Address	Value	Operation	
$0 \times 0 B[1]$	0×0	Normal	
	0×1	Low speed detection flag	

High speed detection clear register
Write Only

Select Address	Operation
$0 \times 0 \mathrm{~A}[0]$	If 1 is written in, a high speed detection flag will be cleared.

※When using a clock error auto return function (P.59), this flag is cleared automatically.
Low speed detection clear register
Write Only

Select Address	Operation
$0 \times 0 \mathrm{~B}[0]$	If 1 is written in, a high speed detection flag will be cleared.

※When using a clock error auto return function (P.59), this flag is cleared automatically.
A constraint of the count of judging with high speed flag detection
Default $=0 \times 2$ *Blue square means initial value.

Select Address		Operation
$0 \times 0 \mathrm{~A}[6: 4]$	Please set more than 1.	

A constraint of the count of judging with low speed flag detection
Default $=0 \times 2$ *Blue square means initial value.

Select Address		Operation
$0 \times 0 B[6: 4]$	Please set more than 1.	

High speed detection flag valid or invalid
Default $=0 \times 0$ *Blue square means initial value. $0 \times 0 \mathrm{~h}$

Select Address	Value		Operation
$0 \times 0 \mathrm{~A}[7]$	0×0	Valid	
	0×1	Invalid	

Low speed detection flag valid or invalid
Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value		Operation
$0 \times 0 B[7]$	0×0	Valid	
	0×1	Invalid	

The frequency range of BCLK by which high speed detection or low speed detection is carried out becomes below.

Setting1	Settin2	Low detection lowest frequency (MHz)	High detection highest frequency (MHz)
$\operatorname{BCLK}(0 \times 03[5: 4]=0 \times 0)$	$48 \mathrm{kHz}(0 \times 0 \mathrm{C}[1: 0]=0 \times 0)$	1.28	7.13
	$44.1 \mathrm{kHz}(0 \times 0 \mathrm{C}[1: 0]=0 \times 1)$	1.21	6.55
	$32 \mathrm{kHz}(0 \times 0 \mathrm{C}[1: 0]=0 \times 2)$	0.88	4.76
BCLK(0x03[5:4]=0x1)	48kHz(0x0C[1:0]=0x0)	0.96	5.35
	$44.1 \mathrm{kHz}(0 \times 0 \mathrm{C}[1: 0]=0 \times 1)$	0.91	4.92
	$32 \mathrm{kHz}(0 \times 0 \mathrm{C}[1: 0]=0 \times 2)$	0.66	3.57
BCLK(0x03[5:4]=0x2)	$48 \mathrm{kHz}(0 \times 0 \mathrm{C}[1: 0]=0 \times 0)$	0.64	3.56
	$44.1 \mathrm{kHz}(0 \times 0 \mathrm{C}[1: 0]=0 \times 1)$	0.60	3.28
	32kHz(0x0C[1:0]=0x2)	0.44	2.38

6. Auto recovery from clock error function

If clock error is detected, immediately output is muted
In that case, if the clock error auto return function is enabled, when it returns to a normal input, a mute condition will be canceled automatically.
If the clock error auto return function is OFF, it is necessary to clear these error flag manually.
Since it is invalid at initial state, we recommend to send $0 \times 0 \mathrm{D}[6]=0 \times 1$ and to enable auto recovery function.

Valid or invalid auto recover from clock error
Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value		Operation
$0 \times 0 D[6]$	0×0	Invalid	
	0×1	Valid	

Each error flag can be read from the following addresses. When 1 is read from a read address, the error flag stands. Error flag is not cleared automatically until this register is cleared manually.

Error flag read register

Select Address	
$0 \times 0 \mathrm{E}[6]$	Asynchronous flag
$0 \times 0 \mathrm{E}[4]$	LRCLK stop flag
$0 \times 0 \mathrm{E}[3]$	BCLK stop flag
$0 \times 0 \mathrm{E}[2]$	BCLK high speed detection flag
$0 \times 0 \mathrm{E}[1]$	BCLK low speed detection flag

7. The wake-up Procedure of power-up

It recommends starting power-up in the following Procedures.

1. Power up

Wait over 10 ms
2. Release reset(RSTX=H)

Wait over 1 ms
3. $0 x 0 C[1: 0]=0 x^{*} \quad$: Sampling rate(Please set up 0×0 in the case of 48 kHz , set up 0×1 in the case of 44.1 kHz and 0×02 in 32 kHz .)

Please input BCLK and LRCLK
4. $0 \times E 9=0 \times 10$: changing clock to normal state

Wait over 100 ms
5. $0 \times 01=0 \times 00$: Set RAM clear OFF
6. $0 \times 0 \mathrm{D}=0 \times 40$: Valid auto recover from clock error
7. $0 \times 0 \mathrm{E}=0 \times 00$: Clear error flag
8. $0 \times 92=0 \times 11$: PWM setting1
9. $0 \times 93=0 \times 1 \mathrm{C}:$ PWM setting2
$10.0 \times 94=0 \times 15$: PWM setting3
$11.0 \times 95=0 \times 04$: PWM setting4
12. Please set up DSP function such as volume, PEQ, DRC, and Scaler etc.
13.MUTEX=high : Release mute

* The wait time, Twait, is necessary between 2 and 13.(Please refer to P15 for Twait)

8. The operating procedure in a status with an unstable clock

In the period which $I^{2} S$ input may become unstable, please set to MUTEX=low and carry out mute.

1. Set MUTEX=low
2. Please wait over 20 ms after stabilizing $I^{2} S$ input.
3. Set MUTEX=high

(Note 1)When clock stop was detected, mute release procedure world follow clock stop error release condition.

Figure 68.

9. $I^{2} S$ Data output select

Output $I^{2} S$ data signal From SDATAO (pin12). That SDATAO synchronize to inputted LRCK and BCK signal.
And enable to select output SDATA signal as shown below.
Whatever output is selected, hard clip is processed.

SDATAO output select

Default $=0 \times 0$ *Blue square means initial value.

Select Address	Value	Explanation of operation
$0 \times 78[6: 4]$	0×0	DSP output (point1)
	0×1	DSP input (pont2)
	0×2	Pre Scaler output (point3)
	0×3	Mixer output (point4)
	0×4	12 Band PEQ output (point5)
	0×5	Fine Master Volume output (point6)
	0×6	No use
	0×7	Fine Post Scaler output (point7)

Figure 69.

Application Circuit Example1 (Stereo BTL output, $R_{L}=8 \Omega$, Vcc=10V to 18V)

- When using at Vcc>18V, fc of the LC filter should be lowered to about 60 kHz and decrease the influence of LCR resonance using application circuit. Please refer 5) Output LC Filter Circuit (Vcc>18V)

Figure 70.
BOM list1(Stereo BTL output, $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{Vcc}=10 \mathrm{~V}$ to 18V)

Parts	Qty	Parts No.	Description	Company	Product No.
Inductor	4	L16, L20, L21, L25	$10 \mu \mathrm{H} /(\pm 20 \%) / 7.6 \mathrm{~mm} \times 7.6 \mathrm{~mm}$	TOKO	B1047AS-100M
Resistor	4	$\begin{aligned} & \hline \text { R16, R20 } \\ & \text { R21, R25 } \\ & \hline \end{aligned}$	$5.6 \Omega / 1 / 10 \mathrm{~W} / \mathrm{J}(\pm 5 \%) / 1.6 \mathrm{~mm} \times 0.8 \mathrm{~mm}$	ROHM	MCR03EZPJ5R6
	1	R6	$1.5 \mathrm{k} \Omega / 1 / 16 \mathrm{~W} / \mathrm{F}(\pm 1 \%) / 1.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$		MCR01MZPF1501
	2	R31, R32	$10 \mathrm{k} \Omega / 1 / 16 \mathrm{~W} / \mathrm{J}(\pm 5 \%) / 1.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$		MCR01MZPJ103
	4	R2, R3, R4, R12	$0 \Omega / 1 / 10 \mathrm{~W} / \mathrm{J}(\pm 5 \%) / 1.6 \mathrm{~mm} \times 0.8 \mathrm{~mm}$		MCR03EZPJ000
	1	R13	$100 \mathrm{k} \Omega / 1 / 16 \mathrm{~W} / \mathrm{J}(\pm 5 \%) / 1.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$		MCR01MZPJ104
Capacitor	4	$\begin{aligned} & \hline \text { C16B, C20B } \\ & \text { C21B, C25B } \end{aligned}$	$680 \mathrm{pF} / 50 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 1.6 \mathrm{~mm} \times 0.8 \mathrm{~mm}$	MURATA	GRM188B11H681KA01
	1	C6A	$2700 \mathrm{pF} / 6.3 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 0.6 \mathrm{~mm} \times 0.3 \mathrm{~mm}$		GRM033B10J272KA01
	1	C6B	$0.027 \mu \mathrm{~F} / 6.3 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 0.6 \mathrm{~mm} \times 0.3 \mathrm{~mm}$		GRM033B10J273KE01
	4	$\begin{aligned} & \text { C16A, C20A, } \\ & \text { C21A, C25A, } \end{aligned}$	$0.33 \mu \mathrm{~F} / 50 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 2.0 \mathrm{~mm} \times 1.25 \mathrm{~mm}$		GRM219B31H334KA87
	2	C17A, C24A ${ }^{\text {(Note 1) }}$	$1 \mu \mathrm{~F} / 50 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 2.0 \mathrm{~mm} \times 1.25 \mathrm{~mm}$		GRM21BB31H105KA12
	4	$\begin{aligned} & \text { C15, C19, } \\ & \text { C22. C26 } \end{aligned}$	$3.3 \mu \mathrm{~F} / 16 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 1.6 \mathrm{~mm} \times 0.8 \mathrm{~mm}$		GRM188B31A335KE15
	2	C7, C10	$1 \mu \mathrm{~F} / 10 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 1.6 \mathrm{~mm} \times 0.8 \mathrm{~mm}$		GRM185B31A105KE25
	1	C27	$10 \mu \mathrm{~F} / 10 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 1.6 \mathrm{~mm} \times 0.8 \mathrm{~mm}$		GRM188B31A106KE69
	2	C17B, C24B	$100 \mu \mathrm{~F} / 35 \mathrm{~V} /(\pm 20 \%) / \varphi 6.3 \mathrm{~mm} \times 11.2 \mathrm{~mm}$	PANASONIC	ECA1VMH101

[^1]
Application Circuit Example2 (Monaural BTL output, $R_{L}=8 \Omega$, Vcc=10V to 18V)

- When using at $\mathrm{Vcc}>18 \mathrm{~V}$, fc of the LC filter should be lowered to about 60 kHz and decrease the influence of LCR resonance using application circuit. Please refer 5) Output LC Filter Circuit (Vcc>18V)

Figure 71.
BOM list2(Monaural BTL output, $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{Vcc}=10 \mathrm{~V}$ to 18 V)

Parts	Qty	Parts No.	Description	Company	Product No.
Inductor	2	L21, L25	$10 \mu \mathrm{H} /(\pm 20 \%) / 7.6 \mathrm{~mm} \times 7.6 \mathrm{~mm}$	TOKO	B1047AS-100M
Resister	2	R21, R25	5.6Ω / 1/10W / J($\pm 5 \%$) / 1.6mm $\times 0.8 \mathrm{~mm}$	ROHM	MCR03EZPJ5R6
	1	R6	$1.5 \mathrm{k} \Omega / 1 / 16 \mathrm{~W} / \mathrm{F}(\pm 1 \%) / 1.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$		MCR01MZPF1501
	2	R31, R32	$10 \mathrm{k} \Omega / 1 / 16 \mathrm{~W} / \mathrm{J}(\pm 5 \%) / 1.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$		MCR01MZPJ103
	4	R2, R3, R4, R12	$0 \Omega / 1 / 10 \mathrm{~W} / \mathrm{J}(\pm 5 \%) / 1.6 \mathrm{~mm} \times 0.8 \mathrm{~mm}$		MCR03EZPJ000
	1	R13	$100 \mathrm{k} \Omega / 1 / 16 \mathrm{~W} / \mathrm{J}(\pm 5 \%) / 1.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$		MCR01MZPJ104
Capacitor	2	C21B, C25B	$680 \mathrm{pF} / 50 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 1.6 \mathrm{~mm} \times 0.8 \mathrm{~mm}$	MURATA	GRM188B11H681KA01
	1	C6A	$2700 \mathrm{pF} / 6.3 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 0.6 \mathrm{~mm} \times 0.3 \mathrm{~mm}$		GRM033B10J272KA01
	1	C6B	$0.027 \mu \mathrm{~F} / 6.3 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 0.6 \mathrm{~mm} \times 0.3 \mathrm{~mm}$		GRM033B10J273KE01
	2	C21A, C25A	$0.33 \mu \mathrm{~F} / 50 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 2.0 \mathrm{~mm} \times 1.25 \mathrm{~mm}$		GRM219B31H334KA87
	1	C24A ${ }^{\text {(Note 1) }}$	$1 \mu \mathrm{~F} / 50 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 2.0 \mathrm{~mm} \times 1.25 \mathrm{~mm}$		GRM21BB31H105KA12
	2	C22, C26	$3.3 \mu \mathrm{~F} / 16 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 1.6 \mathrm{~mm} \times 0.8 \mathrm{~mm}$		GRM188B31A335KE15
	2	C7, C10	$1 \mu \mathrm{~F} / 10 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 1.6 \mathrm{~mm} \times 0.8 \mathrm{~mm}$		GRM185B31A105KE25
	1	C27	$10 \mu \mathrm{~F} / 10 \mathrm{~V} / \mathrm{B}(\pm 10 \%) / 1.6 \mathrm{~mm} \times 0.8 \mathrm{~mm}$		GRM188B31A106KE69
	1	C24B	$100 \mu \mathrm{~F} / 35 \mathrm{~V} / \pm 20 \% / \varphi 6.3 \mathrm{~mm} \times 11.2 \mathrm{~mm}$	PANASONIC	ECA1VMH101

[^2]
Selection of Components Externally Connected (Vcc=10V to 18V)

1) Output LC Filter Circuit

An output filter is required to eliminate radio-frequency components exceeding the audio-frequency region supplied to a load (speaker). Because this IC uses sampling clock frequency $384 \mathrm{kHz}(\mathrm{fs}=48 \mathrm{kHz}$) in the output PWM signals, the high-frequency components must be appropriately removed.
This section takes an example of an LC type LPF shown below, in which coil L and capacitor C compose a differential filter with an attenuation property of $-12 \mathrm{~dB} / \mathrm{oct}$. A large part of switching currents flow to capacitor C , and only a small part of the currents flow to speaker $R_{L 1}$. This filter reduces unwanted emission this way. In addition, coil L and capacitor Cg composes a filter against in-phase components, reducing unwanted emission further.

Figure 72.
Following presents output LC filter constants with typical load impedances.

R_{L}	L	C_{g}
4Ω	$10 \mu \mathrm{H}$	$1 \mu \mathrm{~F}$
6Ω	$10 \mu \mathrm{H}$	$0.47 \mu \mathrm{~F}$
8Ω	$10 \mu \mathrm{H}$	$0.33 \mu \mathrm{~F}$

Use coils with a low direct-current resistance and with a sufficient margin of allowable currents. A high direct-current resistance causes power losses. In addition, select a closed magnetic circuit type product in normal cases to prevent unwanted emission.
Use capacitors with a low equivalent series resistance, and good impedance characteristics at high frequency ranges (100 kHz or higher). Also, select an item with sufficient withstand voltage because flowing massive amount of high-frequency currents is expected.
2) The value of the LC filter circuit computed equation

The output LC filter circuit of BM28720MUV is as it is shown in Figure 73. The LC filter circuit of Figure 73 is thought to substitute it like Figure 74 on the occasion of the computation of the value of the LC filter circuit.

Figure 73. Output LC filter 1

The transfer function $\mathrm{H}(\mathrm{s})$ of the LC filter circuit of Figure 74 becomes the following.

$$
H(s)=\frac{\frac{1}{L C_{g}}}{s^{2}+\frac{1}{C_{g} R} s+\frac{1}{L C_{g}}}=\frac{\omega^{2}}{s^{2}+\frac{\omega}{\mathrm{Q}} s+\omega^{2}}
$$

The ω and Q become the followings here.

$$
\begin{gathered}
\omega^{2}=\frac{1}{L C_{g}} \quad \omega=2 \pi f_{C} \quad f_{C}=\frac{1}{2 \pi \sqrt{L C_{g}}} \\
Q=R \sqrt{\frac{C_{g}}{L}}=\frac{1}{2} R_{L} \sqrt{\frac{C_{g}}{L}}
\end{gathered}
$$

Therefore, L and C_{g} become the followings.

$$
L=\frac{1}{\omega^{2} C_{g}}=\frac{R_{L}}{4 \pi f_{C} Q} \quad C_{g}=\frac{Q}{\omega R}=\frac{Q}{\pi f_{C} R_{L}}
$$

The R_{L} and L should be made known, and f_{c} is set up, and C_{g} is decided.
3) The settlement of the L value of the coil

For selection of the L value of a coil, please consider side effect as shown below.
(1)When L value was made small.
(1) Circuit electric currents increase without a signal. And, efficiency in the low output gets bad.
(2) Direct current resistance value is restrained small when the coil of other L value and size are made the same. Therefore, maximum output is easy to take out. And, it can be used in the low power supply voltage because DC electric current (allowable electric current) value can be taken greatly.
(2) When L value was made large.
(1) Circuit electric current is restrained low without a signal. Efficiency in the low output improves.
(2) Direct current resistance value grows big when the coil of other L value and size are made the same. Therefore, maximum output is hard to take out. And, because it becomes small, use becomes difficult 【 the DC electric current (allowable electric current) value 】 in the low power supply voltage, too.
4) The settlement of the f_{c}

As for the settlement of the fixed number of the LC filter circuit, it is taken into consideration about two points of the following, and set up.
(1)The PWM sampling frequency fPWM ($=8 f_{s}$) of BM28720MUV is set up in 384 kHz ($@ f S=48 \mathrm{kHz}$). It is set up with $\mathrm{f}_{\mathrm{C}}<\mathrm{fPWM}$ to restrain career frequency omission after the LC filter circuit.
(2)When fc is lowered too much, the voltage profit of the voice obi stage (especially, the neighborhood of 20 kHz) declines in the speaker output frequency character of the difference movement mode.
And, the speaker output frequency character of the difference movement mode becomes the following.

$\mathrm{R}_{\mathrm{L}}=8 \Omega$				$\mathrm{R}_{\mathrm{L}}=6 \Omega$				$\mathrm{R}_{\mathrm{L}}=4 \Omega$			
$\mathrm{L}[\mu \mathrm{H}]$	$\mathrm{C}_{9}[\mu \mathrm{~F}]$	$\mathrm{f}_{\mathrm{c}}[\mathrm{kHz}]$	$\mathrm{L}[\mu \mathrm{H}]$	$\mathrm{C}_{\mathrm{g}}[\mu \mathrm{F}]$	$\mathrm{f}_{\mathrm{c}}[\mathrm{kHz}]$	$\mathrm{L}[\mu \mathrm{H}]$	$\mathrm{C}_{g}[\mu \mathrm{~F}]$	$\mathrm{f}_{\mathrm{c}}[\mathrm{kHz}]$	$\mathrm{L}[\mu \mathrm{H}]$	$\mathrm{C}_{9}[\mu \mathrm{~F}]$	$\mathrm{f}_{\mathrm{c}}[\mathrm{kHz}]$
10	0.1	75.32	0.40	10	0.1	51.01	0.30	10	0.1	32.19	0.20
	0.15	80.85	0.49		0.15	54.76	0.37		0.15	33.35	0.24
	0.22	86.79	0.59		0.22	56.73	0.44		0.22	34.55	0.30
	0.33	89.92	0.73		0.33	63.1	0.54		0.33	35.8	0.36
	0.47	86.79	0.87		0.47	66.68	0.65		0.47	38.37	0.43
	1.0	69.01	1.26		1.0	62.29	0.95		1.0	44.1	0.63
15	0.1	46.99	0.33	15	0.1	33.11	0.24	15	0.1	21.68	0.16
	0.15	49.66	0.40		0.15	34.36	0.30		0.15	22.08	0.20
	0.22	53.46	0.48		0.22	35.65	0.36		0.22	22.49	0.24
	0.33	57.54	0.59		0.33	38.37	0.44		0.33	22.91	0.30
	0.47	59.7	0.71		0.47	41.3	0.53		0.47	23.77	0.35
	1.0	52.75	1.03		1.0	44.67	0.77		1.0	27.47	0.52
22	0.1	30.76	0.27	22	0.1	22.49	0.20	22	0.1	14.72	0.13
	0.15	31.92	0.33		0.15	22.91	0.25		0.15	14.72	0.17
	0.22	33.73	0.40		0.22	23.77	0.30		0.22	15	0.20
	0.33	36.31	0.49		0.33	24.66	0.37		0.33	15.28	0.24
	0.47	39.08	0.58		0.47	26.06	0.44		0.47	15.56	0.29
	1.0	39.30	0.85		1.0	30.05	0.64		1.0	17.33	0.43

[^3]When using at $\mathrm{Vcc}>18 \mathrm{~V}$, fc of the LC filter should be lowered to about 60 kHz or less and decrease the influence of LCR resonance using application circuit.

$R_{L 1}$	L	C
4Ω	$10 \mu \mathrm{H}$	$1 \mu \mathrm{~F}$
6Ω	$15 \mu \mathrm{H}$	$0.47 \mu \mathrm{~F}$
8Ω	$15 \mu \mathrm{H}$	$0.33 \mu \mathrm{~F}$
	$22 \mu \mathrm{H}$	$0.47 \mu \mathrm{~F}$

Use coils with a low direct current resistance and with a sufficient margin of allowable currents. A high direct current resistance causes power losses. In addition, select a closed magnetic circuit type product in normal cases to prevent unwanted emission.
Use capacitors with a low equivalent series resistance and good impedance characteristics at high frequency ranges (100 kHz or higher). Also, select an item with sufficient voltage rating because massive amount of high frequency currents flow is expected.

In addition, please do not place the $\mathrm{C}_{\text {BtL }}$ shown in Figure 75.
When considering only common mode signals, OUTP and OUTN are equal to each other and this circuit is equivalent to the circuit shown in Figure 76.
Therefore, LC resonance may occur depending on the constant of a LC filter.

Figure 78.

Figure 79.
6) The settlement of the snubber

The snubber circuit must be optimized for application circuit to reduce the overshoot and undershoot of output PWM.
(1) Measure the ringing resonance frequency f1 of the PWM output wave shape (When it stands up.) by using FET probe in the OUT terminal. (Figure 77) The FET probe is to monitor very near pin and shorten ground lead at the time of that.
(2) Measure resonance frequency f2 of the ringing as a snubber circuit fixed number $\mathrm{R}=0 \Omega$. (Only with connecting the capacitor C to GND) At this time, the value of the capacitor C is adjusted until it becomes half of the frequency ($2 f 2=f 1$) of the resonance frequency $f 1$ of (1). The value of C which it could get here is three times of the parasitic capacity C_{p} that a ringing is formed. ($\mathrm{C}=3 \mathrm{C}_{\mathrm{p}}$)
(3) Parasitic inductance L_{p} is looked for at the next formula.

$$
\mathrm{L}_{\mathrm{p}}=\frac{1}{\left(2 \pi f_{1}\right)^{2} C_{p}}
$$

(4) The character impedance Z of resonance is looked for from the parasitic capacity C_{p} and the parasitism inductance L_{p} at the next formula.

$$
\mathrm{Z}=\sqrt{\frac{L_{p}}{C_{p}}}
$$

(5) A snubber circuit fixed number R is set up in the value which is the same as the character impedance Z. A snubber circuit fixed number C is set up in the value of $4-10$ times of the parasitic capacity C_{p}. ($C=4 C_{p}$ to $10 C_{p}$) Decide it with trade-off with the character because switching electric currents increase when the value of C is enlarged too much.

Figure 77. PWM Output waveform (Measure of ringing resonance frequency

Figure 78. Snubber schematic

Following presents snubber filter constants with the recommendation value at ROHM 4 layer board.

R_{L}	$\mathrm{C}_{\text {snb }}$	$\mathrm{R}_{\text {snb }}$
4Ω	$680 \mathrm{pF} \sim 1200 \mathrm{pF}, 50 \mathrm{~V} \mathrm{~B}(\pm 10 \%)$	$5.6 \Omega, 1 / 10 \mathrm{~W} \mathrm{~J}(\pm 5 \%)$
6Ω	$680 \mathrm{pF} \sim 1200 \mathrm{pF}, 50 \mathrm{~V} \mathrm{~B}(\pm 10 \%)$	$5.6 \Omega, 1 / 10 \mathrm{WJ}(\pm 5 \%)$
8Ω	$680 \mathrm{pF} \sim 1200 \mathrm{pF}, 50 \mathrm{~V} \mathrm{~B}(\pm 10 \%)$	$5.6 \Omega, 1 / 10 \mathrm{WJ}(\pm 5 \%)$

7) Operating condition with the application component

Parameter	Parts No.	Limit			Unit Min	Conditions
		Min	Typ	Max		
Capacitor for BSP	$\begin{aligned} & \text { C15, C19, } \\ & \text { C22, C26 } \end{aligned}$	$2.0{ }^{\text {(Note 1) }}$	3.3	$\begin{aligned} & 4.5 \\ & \text { (Note 2) } \end{aligned}$	$\mu \mathrm{F}$	Recommend characteristics, 16V ceramic type capacitor
		$2.0{ }^{\text {(Note 1) }}$	4.7	$\underset{\substack{6.3 \\ \text { (Note 2) }}}{ }$	$\mu \mathrm{F}$	

(Note1) Capacitor value should not be less than a minimum in consideration of temperature characteristics and dc-bias characteristics.
(Note2) It is value in consideration of $+/-10 \%$ of capacity unevenness, capacity rate of change 22%. Please use the capacitor within this limit.

Level Diagram of Audio Signal

Level diagram of audio signal is shown the below figure. Speaker output level is depended on $I^{2} S$ digital audio input level, DSP gain, PWM gain, BTL gain and Loss of power stage and low pass filter.
I2S input level is full-scale signal, the supply voltage of the block is DVDD, and therefore, OdBFS is equal to DVDD voltage [Vpp]. DSP gain is set by 2 wire control variably, and -0.3 dB is set at PWM Modulator block usually. At the Power stage, the PWM Modulator output is shifted PWM signal level from DVDD to VCC, and added loss of the output transistor resistance $r_{D s}$ and DC resistance of coil $r_{D C}$.

Figure 79. Level Diagram of Audio Signal

Figure 80. Output LPF circuit
In Bridge-Tied-Load (BTL) connection, the following formula gives an approximate value of output power Po at non-clipping output waveform:

VIN : $I^{2} S$ Input level [dBFS]
$G D$: DSP gain [dB]
$V C C$: Power supply voltage of Power stage [V]
DVDD : Power supply voltage of DSP block [V]
$R L$: Load impedance [Ω]
$r_{D S}$: Turn-on resistance of output MOS Tr. [Ω]
(typ. $=160 \mathrm{~m} \Omega$)
$r_{D C}$: DC resistance of output LPF coil [Ω]

If the circuit is driven further until an output waveform is clipped, an output power higher than that without distortion is obtained. In general a clipped output is quantified where "THD $+\mathrm{N}=1 \%$ and 10%," and a maximum output power under that status is calculated by the following formula:

$$
\begin{aligned}
P_{O(1 \%)} & =\frac{\left(10^{(-0.3 / 20)} \times \frac{\mathrm{VCC}}{\sqrt{2}} \times \frac{R_{L}}{2\left(r_{D s}+r_{D c}\right)+R_{L}}\right)^{2}}{R_{L}}[\mathrm{~W}] \\
P_{O(10 \%)} & =P_{O(1 \%)} \times 1.25[\mathrm{~W}]
\end{aligned}
$$

Power Dissipation

Figure 81. Allowable Power Dissipation

Measuring instrument : TH-156(Shibukawa Kuwano Electrical Instruments Co, Ltd.)
Measuring conditions : Installation on ROHM' s board
Board size : $74.2 \mathrm{~mm} \times 74.2 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ (with thermal via on board)
Material : FR4

- The board on exposed heat sink on the back of package are connected by soldering.

PCB1: 4- layer board (Top and bottom layer back copper foil size: $20.2 \mathrm{~mm}^{2}$, 2nd and 3rd layer back copper foil size: $5505 \mathrm{~mm}^{2}$), $\quad \theta j a=38.3^{\circ} \mathrm{C} / \mathrm{W}$
PCB2 : 4-layer board(back copper foil size: $5505 \mathrm{~mm}^{2}$), $\quad \theta \mathrm{ja}=27.4^{\circ} \mathrm{C} / \mathrm{W}$
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions. This IC exposes its frame of the backside of package. Note that this part is assumed to use after providing heat dissipation treatment to improve heat dissipation efficiency. Try to occupy as wide as possible with heat dissipation pattern not only on the board surface but also the backside.
Class D speaker amplifier is high efficiency and low heat generation by comparison with conventional Analog power amplifier. However, In case it is operated continuously by maximum output power, Power dissipation (Pdiss) may exceed package dissipation. Please consider about heat design that Power dissipation (Pdiss) does not exceed Package dissipation (Pd) in average power (Poav). (Tjmax : Maximum junction temperature $=150^{\circ} \mathrm{C}, \mathrm{Ta}:$ Peripheral temperature $\left[{ }^{\circ} \mathrm{C}\right]$,
Oja : Thermal resistance of package[$\left.{ }^{\circ} \mathrm{C} / \mathrm{W}\right]$, Poav : Average power[W], η : Efficiency)
Package dissipation : $\operatorname{Pd}(\mathrm{W})=(\mathrm{Tjmax}-\mathrm{Ta}) / \theta j a$
Power dissipation : Pdiss(W)=Poav $\times(1 / \eta-1)$

I/O equivalence circuit (Provided pin voltages are typ. Values)

Pin No.	Pin name	Pin voltage	Pin explanation	Internal equivalence circuit
29 30	RSTX MUTEX	OV OV	Reset pin for digital circuit High : Reset OFF Low : Reset ON Speaker output mute control pin High : Mute OFF Low : Mute ON	
8	DGND	OV	GND pin for Digital I/O	-
31	SCL	-	2 wire Bus control transmit clock input pin - Please notice. Absolute Maximum Voltage is 4.5 V .	
32	SDA	-	2 wire Bus control data input/output pin - Please notice. Absolute Maximum Voltage is 4.5 V .	
1	ADDR	OV	2 wire Bus control Slave address select pin Select LSB data of slave address for 2 wire Bus control.	
2	BCLK	3.3 V	Digital sound bit clock input pin Input bit clock of digital audio signal.	
$\begin{aligned} & 4 \\ & 3 \end{aligned}$	SDATA LRCLK	3.3 V	Digital sound signal input pin Input LR clock of digital audio signal to LRCLK terminal. Input data of digital audio signal to SDATA terminal.	
12	SDATAO	3.3 V	Digital sound signal output pin Output data of digital audio signal.	

I/O equivalence circuit (Provided pin voltages are typ. Values)

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	Pin name	$\begin{gathered} \text { Pin } \\ \text { voltage } \end{gathered}$	Pin explanation	Internal equivalence circuit
6	PLL	1V	PLL's filter pin Connect filter circuit for PLL.	
10	DVDD	3.3 V	Power supply pin for Digital I/O.	-
$\begin{gathered} \hline 5 \\ 9 \\ 11 \end{gathered}$	$\begin{aligned} & \text { TEST1 } \\ & \text { TEST2 } \\ & \text { TEST3 } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	Test pin Connect VSS.	
7	REG15	1.5 V	Internal power supply pin for Digital circuit Connect capacitor.	
13	ERROR	3.3 V	Error flag pin H: Normal operation L: Error	
$\begin{aligned} & 14 \\ & 28 \end{aligned}$	NC	-	No connection Pin	-

I/O equivalence circuit (Provided pin voltages are typ. Values)

Pin No.	Pin name	Pin voltage	Pin explanation	Internal equivalence circuit
17	VCCP2	VCC	Power supply pin for ch2 PWM signal	
20	OUT2P	VCC to OV	Output pin of ch2 positive PWM Connect output LPF.	
19	BSP2P	-	Boot-strap pin of ch2 positive Connect capacitor.	
18	GNDP2	OV	GND pin for ch2 PWM signal	
16	OUT2N	VCC to OV	Output pin of ch2 negative PWM Please connect to Output LPF.	
15	BSP2N	-	Boot-strap pin of ch2 negative Connect capacitor.	
22	BSP1N	-	Boot-strap pin of ch1 negative Connect capacitor.	
21	OUT1N	VCC to OV	Output pin of ch1 negative PWM Connect output LPF.	
23	GNDP1	OV	GND pin for ch1 PWM signal	
26	BSP1P	-	Boot-strap pin of ch1 positive Connect capacitor.	
25	OUT1P	VCC to OV	Output pin of ch1 positive PWM Connect output LPF.	
24	VCCP1	VCC	Power supply pin for ch1 PWM signal	
27	REG_G	5.7V	Internal power supply pin for gate driver Connect capacitor.	

Operational Notes

1) Absolute maximum ratings
Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure such as a fuse should be implemented when use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated.
2) Power supply lines
As return of current regenerated by back EMF of output coil happens, take steps such as putting capacitor between power supply and GND as an electric pathway for the regenerated current. Be sure that there is no problem with each property such as emptied capacity at lower temperature regarding electrolytic capacitor to decide capacity value. If the connected power supply does not have sufficient current absorption capacity, regenerative current will cause the voltage on the power supply line to rise, which combined with the product and its peripheral circuitry may exceed the absolute maximum ratings. It is recommended to implement a physical safety measure such as the insertion of a voltage clamp diode between the power supply and GND pins.
3) GND potential (Pin 8, 18, 23)
Any state must become the lowest voltage about DGND, GNDP1 and GNDP2 terminal.
4) Input terminal
The parasitic elements are formed in the IC because of the voltage relation. The parasitic element operating causes the wrong operation and destruction. Therefore, please be careful so as not to operate the parasitic elements by impressing to input terminals lower voltage than DGND and VSS. Please do not apply the voltage to the input terminal when the power-supply voltage is not impressed.
5) Actions in strong magnetic field
Use caution when using the IC in the presence of a strong magnetic field as doing so may cause the IC to malfunction.
6) Thermal shutdown circuit
This product is provided with a built-in thermal shutdown circuit. When the thermal shutdown circuit operates, the output transistors are placed under open status. The thermal shutdown circuit is primarily intended to shut down the IC avoiding thermal runaway under abnormal conditions with a chip temperature exceeding $\mathrm{Tjmax}=150^{\circ} \mathrm{C}$.
7) Shorts between pins and miss-installation
When mounting the IC on a board, pay adequate attention to orientation and placement discrepancies of the IC. If it is miss-installed and the power is turned on, the IC may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the IC or between a pin and a power supply or a pin and a GND.
8) Power supply on/off (Pin 10, 17, 24)
In case power supply is started up, RSTX(Pin 29) and MUTEX(Pin 30) always should be set Low. And in case power supply is shut down, it should be set Low likewise. Then it is possible to eliminate pop noise when power supply is turned on/off. And also, all power supply terminals should start up and shut down together.
9) ERROR terminal (Pin 13)
An error flag is outputted when Output short protection or DC voltage protection. This flag is the function which the condition of this product is shown in.
10) N.C. terminal (Pin 14, 28)
N.C. terminal (Non Connection Pin) does not connect to the inside circuit. Therefore, possible to use open.

11) TEST terminal (Pin 5, 9, 11)
TEST terminal connects with ground to prevent the malfunction by external noise.
12) Precautions for Speaker-setting
If the impedance characteristics of the speakers at high-frequency range while increase rapidly, the IC might not have stable-operation in the resonance frequency range of the LC-filter. Therefore, consider adding damping-circuit, etc., depending on the impedance of the speaker.
13) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to
a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
14) About the rush current
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width of GND wiring, and routing of wiring.

Status of this document
The Japanese version of this document is formal specification. A customer may use this translation version only for a reference to help reading the formal version.
If there are any differences in translation version of this document formal version takes priority

Ordering Information

Package
MUV:
VQFN032V5050

Packaging and forming specification
E2: Embossed tape and reel

Physical Dimensions Tape and Reel Information

VQFN032V5050

Marking Diagram

Figure 82.

Revision History

Date	Revision	Changes
$21 . O c t .2013$	001	First version
10. Dec.2013	002	Corrected (P.2) Corrected performance curves (P.5-7) Modified recommend constant (P.63-64, 67, 68) Deleted application circuit (P.63-64)
10.Jun.2016	003	Modify electric characteristics, condition, explanation of command Correction of errors Modify power up sequence(P.22) Modify procedure for power up(P.59)

Notice

Precaution on using ROHM Products

1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment ${ }^{\text {(Note 1) }}$, transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.
(Note1) Medical Equipment Classification of the Specific Applications

JAPAN	USA	EU	CHINA
CLASSIII	CLASSIII	CLASS II b	CLASSIII
		CLASSIII	

2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl_{2}, $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO} 2$, and NO 2
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
[h] Use of the Products in places subject to dew condensation
4. The Products are not subject to radiation-proof design.
5. Please verify and confirm characteristics of the final or mounted products in using the Products.
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.
8. Confirm that operation temperature is within the specified range described in the product specification.
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including $\mathrm{Cl} 2, \mathrm{H} 2 \mathrm{~S}, \mathrm{NH} 3, \mathrm{SO} 2$, and NO 2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the la test information with a ROHM sale s representative.
3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ROHM Semiconductor:
BM28720MUV-E2

[^0]: (Note 6) Do not exceed Pd

[^1]: (Note 1) Please put the C17A and C24A near the VCCP1 and VCCP2 pins on the board.

[^2]: (Note 1) Please put the C24A near the VCCP1 pins on the board.

[^3]: 5) Output LC Filter Circuit (Vcc>18V)
