## MOS FET Relays

## G3VM-101HR

Low 100-m $\Omega$ ON Resistance. High-power, 1.4-A Switching with a 100-V Load Voltage, SOP Package.

- Continuous load current of 1.4 A (connection $\mathrm{C}=2.8 \mathrm{~A}$ ).
- Dielectric strength of $1,500 \mathrm{Vrms}$ between I/O.
- RoHS Compliant


## Application Examples

- Broadband systems

- Measurement devices
- Data loggers

Note: The actual product is marked differently from the image shown here.

- Industrial equipment


## List of Models

| Contact form | Terminals | Load voltage (peak value) (See note.) | Model | Number per stick | Number per tape |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SPST-NO | Surface-mounting terminals | 100 V | G3VM-101HR | 75 | --- |
|  |  |  | G3VM-101HR(TR) | --- | 2,500 |

Note: The AC peak and DC value is given for the load voltage.

## Dimensions

Note: All units are in millimeters unless otherwise indicated.
G3VM-101HR


Note: The actual product is marked differently from the image shown here.


Weight: 0.13 g

## - Terminal Arrangement/Internal Connections (Top View)

G3VM-101HR


## ■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

 G3VM-101HR

Absolute Maximum Ratings ( $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ )

| Item |  |  | Symbol | Rating | Unit | Measurement Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input | LED forward current |  | $\mathrm{I}_{\mathrm{F}}$ | 30 | mA |  |
|  | LED forward current reduction rate |  | $\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$ | -0.3 | $\mathrm{mA} /{ }^{\circ} \mathrm{C}$ | $\mathrm{T}_{\mathrm{a}} \geq 25^{\circ} \mathrm{C}$ |
|  | LED reverse voltage |  | $\mathrm{V}_{\mathrm{R}}$ | 5 | V |  |
|  | Connection temperature |  | $\mathrm{T}_{\mathrm{j}}$ | 125 | ${ }^{\circ} \mathrm{C}$ |  |
| Output | Load voltage (AC peak/DC) |  | $\mathrm{V}_{\text {OFF }}$ | 100 | V |  |
|  | Continuous load current | Connection A | Io | 1.4 | A | Connection A: AC peak/DC Connection B and C: DC |
|  |  | Connection B |  | 1.4 |  |  |
|  |  | Connection C |  | 2.8 |  |  |
|  | ON current reduction rate | Connection A | $\Delta \mathrm{I}_{10} /{ }^{\circ} \mathrm{C}$ | -18.7 | $\mathrm{mA} /{ }^{\circ} \mathrm{C}$ | $\mathrm{T}_{\mathrm{a}} \geq 50^{\circ} \mathrm{C}$ |
|  |  | Connection B |  | -18.7 |  |  |
|  |  | Connection C |  | -37.3 |  |  |
|  | Pulse on current |  | $\mathrm{I}_{\mathrm{OP}}$ | 4 | A | $\mathrm{t}=100 \mathrm{~ms}$ |
|  | Connection temperature |  | $\mathrm{T}_{\mathrm{j}}$ | 125 | ${ }^{\circ} \mathrm{C}$ |  |
| Dielectric strength between input and output (See note 1.) |  |  | $\mathrm{V}_{\text {I-O }}$ | 1,500 | $\mathrm{V}_{\text {rms }}$ | AC for 1 min |
| Operating temperature |  |  | $\mathrm{T}_{\mathrm{a}}$ | -40 to +85 | ${ }^{\circ} \mathrm{C}$ | With no icing or condensation |
| Storage temperature |  |  | $\mathrm{T}_{\text {stg }}$ | -55 to +125 | ${ }^{\circ} \mathrm{C}$ | With no icing or condensation |
| Soldering temperature (10 s) |  |  | --- | 260 | ${ }^{\circ} \mathrm{C}$ | 10 s |

Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Connection Diagram

| Connection A |  |
| :---: | :---: |
| $\begin{gathered} \text { Connection } \\ \text { B } \end{gathered}$ |  |
| $\begin{aligned} & \text { Connection } \\ & \text { C } \end{aligned}$ |  |

Electrical Characteristics ( $\mathrm{Ta}=25^{\circ} \mathrm{C}$ )

| Item |  |  | Symbol | Minimum | Typical | Maximum | Unit | Measurement conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input | LED forward voltage |  | $\mathrm{V}_{\mathrm{F}}$ | 1.18 | 1.33 | 1.48 | V | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ |
|  | Reverse current |  | $\mathrm{I}_{\mathrm{R}}$ | --- | --- | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ |
|  | Capacity between terminals |  | $\mathrm{C}_{\text {T }}$ | --- | 70 | --- | pF | $\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$ |
|  | Trigger LED forward current |  | $\mathrm{I}_{\mathrm{FT}}$ | --- | 0.4 | 3 | mA | $\mathrm{I}_{0}=100 \mathrm{~mA}$ |
| Output | Maximum resistance with output ON | Connection A | $\mathrm{R}_{\mathrm{ON}}$ | --- | 0.01 | 0.2 | $\Omega$ | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.4 \mathrm{~A}, \mathrm{t}<1 \mathrm{~s}$ |
|  |  | Connection B |  | --- | 0.05 | 0.1 | $\Omega$ | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.4 \mathrm{~A}, \mathrm{t}<1 \mathrm{~s}$ |
|  |  | Connection C |  | --- | 0.025 | --- | $\Omega$ | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=2.8 \mathrm{~A}, \mathrm{t}<1 \mathrm{~s}$ |
|  | Current leakage when the relay is open |  | $\mathrm{I}_{\text {LEAK }}$ | --- | --- | 10 | nA | $\mathrm{V}_{\text {OFF }}=100 \mathrm{~V}$ |
| Capacity between I/O terminals |  |  | $\mathrm{C}_{\text {-0 }}$ | --- | 0.8 | --- | pF | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ |
| Insulation resistance |  |  | $\mathrm{R}_{1-\mathrm{O}}$ | 1,000 | --- | --- | $\mathrm{M} \Omega$ | $\begin{aligned} & V_{1-\mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{R}_{\mathrm{oH}} \leq 60 \% \end{aligned}$ |
| Turn-ON time |  |  | $\mathrm{t}_{\mathrm{ON}}$ | --- | 1.0 | 5.0 | ms | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \\ & \mathrm{~V}_{\mathrm{DD}}=20 \mathrm{~V} \text { (See note 2.) } \end{aligned}$ |
| Turn-OFF time |  |  | $\mathrm{t}_{\text {OFF }}$ | --- | 0.15 | 1.0 | ms |  |

Note:
2. Turn-ON and Turn-OFF Times


## Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

| Item | Symbol | Minimum | Typical | Maximum | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Load voltage (AC peak/DC) | $\mathrm{V}_{\mathrm{DD}}$ | --- | -- | 100 | V |
| Operating LED forward current | $\mathrm{I}_{\mathrm{F}}$ | 5 | 7.5 | 20 | mA |
| Continuous load current (AC peak/DC) | $\mathrm{I}_{\mathrm{O}}$ | --- | -- | 1.1 | A |
| Operating temperature | $\mathrm{T}_{\mathrm{a}}$ | -20 | --- | 65 | ${ }^{\circ} \mathrm{C}$ |



Continuous load current vs. On-state voltage


Turn ON, Turn OFF time vs. LED forward current


Output terminal capacitance COFF/COFF(ov) vs. Load voltage Coff - Voff


Continuous load current vs. Ambient temperature

Io - Ta


On-state resistance vs.
Ambient temperature Ron - Ta


Turn ON, Turn OFF time vs. Ambient temperature


LED forward current vs. LED forward voltage

If - VF


Trigger LED forward current vs. Ambient temperature

Ift - Ta


Current leakage vs.
Load voltage


All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

## OmROM

OMRON ELECTRONIC COMPONENTS LLC
55 E. Commerce Drive, Suite B
Schaumburg, IL 60173

## OMRON ON-LINE

Global - http://www.omron.com
USA - http://www.components.omron.com

