



# DATA SHEET THICK FILM CHIP RESISTORS AUTOMOTIVE GRADE

AC series  $\pm 5\%, \pm 1\%, \pm 0.5\%$ Sizes 0201/0402/0603/0805/1206/ 1210/1218/2010/2512

**RoHS compliant & Halogen free** 



YAGEO

## SCOPE

This specification describes AC0201 to AC2512 chip resistors with leadfree terminations made by thick film process.

## **APPLICATIONS**

- All general purpose applications
- Car electronics, industrial application

#### FEATURES

- AEC-Q200 gualified
- Moisture sensitivity level: MSL I
- AC series soldering is compliant with J-STD-020D
- Halogen free epoxy
- RoHS compliant
  - Products with lead-free terminations meet RoHS requirements
  - Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reduce environmentally hazardous waste
- High component and equipment reliability
- The resistors are 100% performed by automatic optical inspection prior to taping.

## ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

## **GLOBAL PART NUMBER**

## AC XXXX X X X XX XXXX L

| (1) | (2) | (3) | (4) | (5) | (6) | (7) |
|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     |     |     |     |

#### (I) SIZE

0201/0402/0603/0805/1206/1210/1218/2010/2512

## (2) TOLERANCE

| $D = \pm 0.5\%$ | $J = \pm 5\%$ (for Jumper ordering, use code of J) |
|-----------------|----------------------------------------------------|
| $F = \pm 1\%$   |                                                    |

(3) PACKAGING TYPE R = Paper taping reel

K = Embossed taping reel

#### (4) TEMPERATURE COEFFICIENT OF RESISTANCE

– = Base on spec

#### (5) TAPING REEL

| 07 = 7 inch dia. Reel  | 10 = 10 inch dia. Reel                      |
|------------------------|---------------------------------------------|
| 13 = 13 inch dia. Reel | 7W = 7 inch dia. Reel & 2 × standard power  |
|                        | 3W = 13 inch dia. Reel & 2 × standard power |

#### (6) RESISTANCE VALUE

#### I $\Omega$ to 22 M $\Omega$

There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

## (7) DEFAULT CODE

Letter L is the system default code for ordering only. <sup>(Note)</sup>

## Posistance rule of debal part

| Resistance rule<br>number<br>Resistance coding<br>rule | Example                              |
|--------------------------------------------------------|--------------------------------------|
| XRXX<br>(I to 9.76Ω)                                   | R =  Ω<br> R5 =  .5Ω<br>9R76 = 9.76Ω |
| XXRX                                                   | IOR = IOΩ                            |
| (10 to 97.6Ω)                                          | 97R6 = 97.6Ω                         |
| XXXR                                                   | $100R = 100\Omega$                   |
| (100 to 976Ω)                                          | 976R = 976 $\Omega$                  |
| XKXX                                                   | K = 1,000Ω                           |
| (Ι to 9.76 K <b>Ω)</b>                                 | 9K76 = 9760Ω                         |
| XMXX                                                   | $IM = I,000,000\Omega$               |
| (1 to 9.76 MΩ <b>)</b>                                 | 9M76= 9,760,000 $\Omega$             |
| XXMX<br>(10 MΩ <b>)</b>                                | $10M = 10,000,000\Omega$             |

#### **ORDERING EXAMPLE**

The ordering code for an AC0402 chip resistor, value 100 K $\Omega$  with ±1% tolerance, supplied in 7-inch tape reel is: AC0402FR-07100KL.

#### NOTE

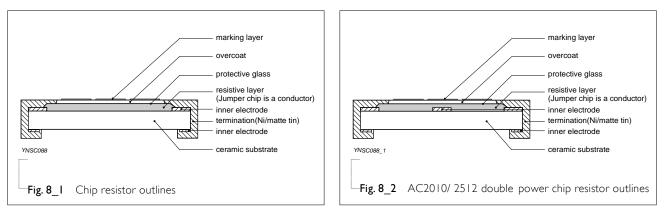
- I. All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process"
- 2. On customized label, "LFP" or specific symbol can be printed.
- 3. AC series with ±0.5% tolerance is also available. For further information, please contact sales.

## MARKING

| AC0201 | / AC0402                          |                                                                                                                                          |
|--------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Fig. 1 |                                   | No marking                                                                                                                               |
| AC0603 | / AC0805 / AC1206 / A             | C1210 / AC2010 / AC2512                                                                                                                  |
| Fig. 2 | <br>Value=10 KΩ                   | E-24 series: 3 digits, ±5%<br>First two digits for significant figure and 3rd digit for number of zeros                                  |
| AC0603 |                                   |                                                                                                                                          |
| Fig. 3 | <b>2<u>μ</u>Ω</b><br>Value = 24 Ω | E-24 series: 3 digits, ±1% & ±0.5%<br>One short bar under marking letter                                                                 |
| Fig. 4 | <b>ΠΓ</b><br>Value = 12.4 KΩ      | E-96 series: 3 digits, $\pm 1\%$ & $\pm 0.5\%$<br>First two digits for E-96 marking rule and 3rd letter for number of zeros              |
| AC0805 | / AC1206 / AC1210 / A             | C2010 / AC2512                                                                                                                           |
| Fig. 5 | <b>1002</b><br>Value = 10 KΩ      | Both E-24 and E-96 series: 4 digits, $\pm 1\%$ & $\pm 0.5\%$ First three digits for significant figure and 4th digit for number of zeros |
| AC1218 |                                   |                                                                                                                                          |
| Fig. 6 | <b>103</b><br>Value = 10 KΩ       | E-24 series: 3 digits, ±5%<br>First two digits for significant figure and 3rd digit for number of zeros                                  |
| Fig. 7 | 11112<br>Value = 10 KΩ            | Both E-24 and E-96 series: 4 digits, $\pm 1\% \& \pm 0.5\%$ First three digits for significant figure and 4th digit for number of zeros  |

## NOTE

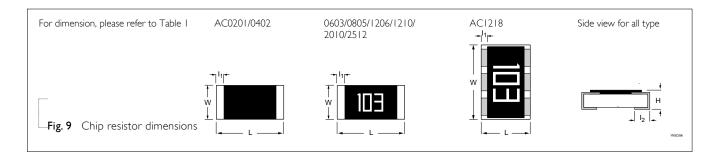
For further marking information, please refer to data sheet "Chip resistors marking". Marking of AC series is the same as RC series.






#### **CONSTRUCTION**

The resistors are constructed on top of an automotive grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a protective glass. The composition of the glaze is adjusted to give the approximately required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations (Ni / matte tin) are added, as shown in Fig.8.


#### OUTLINES



## **DIMENSIONS**

Table I For outlines, please refer to Fig. 9

| ТҮРЕ   | L (mm)     | W (mm)     | H (mm)     | lı (mm)    | l <sub>2</sub> (mm) |
|--------|------------|------------|------------|------------|---------------------|
| AC0201 | 0.60 ±0.03 | 0.30 ±0.03 | 0.23 ±0.03 | 0.12 ±0.05 | 0.15 ±0.05          |
| AC0402 | 1.00 ±0.05 | 0.50 ±0.05 | 0.32 ±0.05 | 0.20 ±0.10 | 0.25 ±0.10          |
| AC0603 | 1.60 ±0.10 | 0.80 ±0.10 | 0.45 ±0.10 | 0.25 ±0.15 | 0.25 ±0.15          |
| AC0805 | 2.00 ±0.10 | 1.25 ±0.10 | 0.50 ±0.10 | 0.35 ±0.20 | 0.35 ±0.20          |
| AC1206 | 3.10 ±0.10 | 1.60 ±0.10 | 0.55 ±0.10 | 0.45 ±0.20 | 0.45 ±0.20          |
| AC1210 | 3.10 ±0.10 | 2.60 ±0.15 | 0.55 ±0.10 | 0.45 ±0.15 | 0.50 ±0.20          |
| AC1218 | 3.10 ±0.10 | 4.60 ±0.10 | 0.55 ±0.10 | 0.45 ±0.20 | 0.40 ±0.20          |
| AC2010 | 5.00 ±0.10 | 2.50 ±0.15 | 0.55 ±0.10 | 0.55 ±0.15 | 0.55 ±0.20          |
| AC2512 | 6.35 ±0.10 | 3.10 ±0.15 | 0.55 ±0.10 | 0.60 ±0.20 | 0.60 ±0.20          |





## ELECTRICAL CHARACTERISTICS

Table 2 CHARACTERISTICS Resistance Temperature Operating Max. Max. Dielectric Jumper TYPE POWER Range Coefficient Criteria Temperature Working Overload Withstanding Range Voltage Voltage Voltage Rated Current  $|\Omega \leq R \leq |0\Omega|$ 5% (E24) 0.5A  $|\Omega \leq R \leq |0M\Omega|$ -100/+350ppm°C Maximum  $10\Omega < R \le 10M$ 1% (E24/E96) -55 °C to AC0201 1/20 W 25V 50V 50V Current  $|\Omega \leq R \leq |0M\Omega|$ ±200ppm°C 155 °C 1.0A 0.5% (E24/E96)  $10\Omega \le R \le IM\Omega$ Jumper<50mΩ Rated Current 5% (E24)  $|\Omega \leq R \leq |0\Omega|$  $|\Omega \le R \le 22M\Omega$ ΙA ±200ppm°C -55 °C to Maximum 0.5%, 1% (E24/E96)  $10\Omega < R \le 10M\Omega$ 100V 1/16 W 50V 100V 155 °C Current  $|\Omega \leq R \leq |0M\Omega|$ ±100ppm°C 2A Jumper<50m $\Omega$  $10M\Omega < R \le 22M\Omega$ AC0402 ±200ppm°C 5% (E24)  $|\Omega \leq R \leq |0\Omega|$ -55 °C to  $|\Omega \le R \le |0M\Omega|$ ±200 ppm°C 100V 1/8W 75V 100V 155 °C  $10\Omega < R \le 10M\Omega$ 0.5%, 1% (E24/E96) ±100 ppm°C  $|\Omega \leq R \leq |0M\Omega|$ Rated Current  $|\Omega \leq R \leq |0\Omega|$ 5% (E24) ΙA ±200ppm°C  $|\Omega \leq R \leq 22M\Omega$  $10\Omega < R \le 10M\Omega$ Maximum 0.5%, 1% (E24/E96) -55 °C to 150V 1/10 W 75V 150V Current 155 °C  $|\Omega \leq R \leq |0M\Omega|$ ±100ppm°C 2A  $10M\Omega < R \le 22M\Omega$ Jumper<50mΩ AC0603 ±200ppm°C  $|\Omega \leq R \leq |0\Omega|$ 5% (E24) -55 °C to  $|\Omega \le R \le |0M\Omega|$ ±200 ppm°C 1/5 W 75V 150V 150V 155 °C  $10\Omega < R \le 10M\Omega$ 0.5%, 1% (E24/E96)  $|\Omega \leq R \leq |0M\Omega|$ ±100 ppm°C

| $ AC0805 = \begin{bmatrix} 1/8 & W & -55 & ^{\circ}C & 150V & 300V & 300V & 300V & 300V & 10 & SR & S22.MQ & 1200ppm^{\circ}C & 2A \\ 0.5% & (K (E24P96) & 100 & < R & S10MQ & Maximum \\ 100 & < R & S10MQ & 100pm^{\circ}C & Current \\ 100 & < R & S10MQ & 1000 & < R & S10MQ & 5A \\ + 200ppm^{\circ}C & & 150V & 300V & 300V & 300V & 102 & SR & 100Q \\ 1/4 & W & -55 & ^{\circ}C & 150V & 300V & 300V & 300V & 0.5% & (K (E24P96) & 100Q < R & S10MQ & 2A \\ 1/4 & W & -55 & ^{\circ}C & 150V & 300V & 300V & 0.5\% & (K (E24P96) & 100Q < R & S10MQ & 2A \\ 1/4 & W & -55 & ^{\circ}C & 200V & 400V & 500V & 0.5\% & (K (E24P96) & 10Q < R & S10MQ & 4X00ppm^{\circ}C & 2A \\ 1/4 & W & -55 & ^{\circ}C & 200V & 400V & 500V & 0.5\% & (K (E24P96) & 10Q < R & S10MQ & 4X00ppm^{\circ}C & 2A \\ 1/4 & W & -55 & ^{\circ}C & 200V & 400V & 500V & 0.5\% & (K (E24P96) & 10Q < R & S10MQ & 4X00ppm^{\circ}C & 2A \\ 1/2 & W & -55 & ^{\circ}C & 200V & 400V & 500V & 0.5\% & (K (E24P96) & 10Q < R & S10MQ & 100ppm^{\circ}C & 2A \\ 1/2 & W & -55 & ^{\circ}C & 200V & 400V & 500V & 0.5\% & (K (E24P96) & 10Q < R & S10MQ & 100ppm^{\circ}C & 2A \\ 1/2 & W & -55 & ^{\circ}C & 200V & 400V & 500V & 0.5\% & (K (E24P96) & 10Q < R & S10MQ & 100ppm^{\circ}C & 2A \\ 1/2 & W & -55 & ^{\circ}C & 200V & 400V & 500V & 0.5\% & (K (E24P96) & 10Q < R & S10MQ & 100ppm^{\circ}C & 2A \\ 1/2 & W & -55 & ^{\circ}C & 200V & 500V & 500V & 0.5\% & (K (E24P96) & 10Q < R & S10MQ & 2A & 300V & 10Q < R & S10MQ & 100ppm^{\circ}C & 2A & 300V & 10Q < R & S10MQ & 100ppm^{\circ}C & 2A & 300V & 10Q < R & S10MQ & 100ppm^{\circ}C & 2A & 30V $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |        | CHARACTERISTICS   |         |          |              |                                  |                               |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------------|---------|----------|--------------|----------------------------------|-------------------------------|---------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TYPE   | POWER  | Temperature       | Working | Overload | Withstanding |                                  |                               |               |
| $ AC0805 = \begin{bmatrix} 1/8 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/8 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/8 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/8 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/8 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/4 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{155 \ ^{\circ}C \ 10} \\ 1/2 \ W & \frac{1}{100 \ W \ 10} \ U/2 \ W & \frac{1}{100 \ W \ 10} \\ 1/2 \ W & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |        |                   |         |          |              | 5% (E24)                         | $ \Omega \le R \le  0\Omega $ | Rated Current |
| $ AC0805 = \begin{bmatrix} 1/8 \text{ W} & 150 \text{ C.10} & 150 \text{ V} & 300 \text{ V} & 300 \text{ V} & 300 \text{ V} & 100 \text{ SN}(1210) \text{ Q} & 1100 \text{ pm}^{\circ}\text{C} & \text{Current} \\ 1/8 \text{ W} & 155 \text{ °C} & 150 \text{ V} & 300 \text{ V} & 100 \text{ SN}(1210) \text{ Q} & 100 \text{ Q} \text{ C} \text{ S} 22M0 & 5A \\ & \pm 200 \text{ pm}^{\circ}\text{C} & \\ & \pm 200 \text{ pm}^{\circ}\text{C} & \\ & 1/4 \text{ W} & 155 \text{ °C} & 150 \text{ V} & 300 \text{ V} & 300 \text{ V} & 100 \text{ SN}(12400) & \pm 200 \text{ pm}^{\circ}\text{C} & \\ & 100 \text{ SN}(12400) & \pm 100 \text{ pm}^{\circ}\text{C} & \\ & 100 \text{ SN}(12400) & \pm 100 \text{ pm}^{\circ}\text{C} & \\ & 100 \text{ SN}(12400) & \pm 100 \text{ pm}^{\circ}\text{C} & \\ & 100 \text{ SN}(12400) & \pm 100 \text{ pm}^{\circ}\text{C} & \\ & 100 \text{ SN}(12400) & \pm 100 \text{ pm}^{\circ}\text{C} & \\ & 100 \text{ SN}(12400) & \pm 100 \text{ pm}^{\circ}\text{C} & \\ & & 100 \text{ SN}(12400) & \pm 100 \text{ pm}^{\circ}\text{C} & \\ & & 100 \text{ SN}(12400) & \pm 100 \text{ pm}^{\circ}\text{C} & \\ & & & 100 \text{ SN}(12400) & \\ & & & 100 \text{ SN}(12400) & \\ & & & & 100 \text{ Pm}^{\circ}\text{C} & \\ & & & & & & & & \\ & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |                   |         |          |              | $ \Omega \le R \le 22 M\Omega$   | ±200ppm°C                     | 2A            |
| $ AC0805 = \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        | -55 °C to         |         | 2001     | 2001/        | 0.5%, 1% (E24/E96)               | $10\Omega < R \le 10M\Omega$  | Maximum       |
| $ \begin{array}{c} \textbf{AC0805} \\ \hline \textbf{AC0805} \\ \hline \begin{array}{c} 1/4 \ \ensuremath{\mathbb{W}} & \frac{-55}{10} \ \ensuremath{\mathbb{C}} & 150 \ensuremath{\mathbb{W}} & 300 \ensuremath{\mathbb{W}} & 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1/8 VV | 155 °C            | 1500    | 3000     | 3000         | $ \Omega \le R \le  0M\Omega $   | ±100ppm°C                     | Current       |
| $ \begin{array}{c c c c c c } & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |                   |         |          |              | Jumper < 50m $\Omega$            | $10M\Omega < R \le 22M\Omega$ | 5A            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AC0805 |        |                   |         |          |              |                                  | ±200ppm°C                     |               |
| $  A = V   155 °C   150V   300V   300V   300V   05\%  1\% (E24/E96)   10\Omega < R \le 10M\Omega   100 ppm°C   100 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |        |                   |         |          |              | 5% (E24)                         | $ \Omega \le R \le  0\Omega $ |               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 1/4\\/ | <b>-</b> 55 °C to | 1501/   | 3001/    | 3001/        | $ \Omega \le R \le  0M\Omega $   | ±200 ppm°C                    |               |
| $ \begin{tabular}{ c c c c c } & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 1/4 1  | 155 °C            | 1300    | 2004     | 2004         | 0.5%, 1% (E24/E96)               | $10\Omega < R \le 10M\Omega$  |               |
| $ AC1206 = \begin{bmatrix} 1/4 \text{ W} & \frac{-55 ^{\circ}\text{C to}}{155 ^{\circ}\text{C}} & 200  400  500  000 \end{bmatrix} \\ \hline IQ \leq R \leq 10M\Omega & \pm 100 \text{pm}^{\circ}\text{C} & 2A  05\%, 1\% (E24/E96) & 10\Omega < R \leq 10M\Omega & Maximum \\ IQ \leq R \leq 10M\Omega & \pm 100 \text{pm}^{\circ}\text{C} & 10A  100    100 \text{pm}^{\circ}\text{C} & 200  10\Omega \\ \hline IQ \leq R \leq 10M\Omega & \pm 100 \text{pm}^{\circ}\text{C} & 10A  100     100    100    100    100    100    100     100     100     100     100     100     100     100     100     100     100     100     100     100    100    100    100    100    100    100    100    100    100    100    100    100   100   100    100   100    100   100   100   100   100   100   100   100   100   100   100   100  100  100  100  100  100  100  100  100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100\text$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |                   |         |          |              | $ \Omega \le R \le  0M\Omega $   | ±100 ppm°C                    |               |
| $AC1206 = \begin{bmatrix} 1/4 \text{ W} & \frac{-55 ^{\circ}\text{C to}}{155 ^{\circ}\text{C}} & 200  400  500  400  500  05\%, 1\% (E24/E96) & 10Q < R \le 10MQ & Maximum \\ IQ \le R \le 10MQ & \pm 100ppm^{\circ}\text{C} & \text{Current} \\ Jumper<50mQ & 10MQ < R \le 22MQ & 10A \\ \pm 2200ppm^{\circ}\text{C} & \pm 2200pm^{\circ}\text{C} & 10Q \\ 1/2 \text{ W} & \frac{-55 ^{\circ}\text{C to}}{155 ^{\circ}\text{C}} & 200  400  500  & 500  05\%, 1\% (E24/E96) & 10Q < R \le 10MQ \\ 1Q \le R \le 10MQ & \pm 200 ppm^{\circ}\text{C} & 10Q < R \le 10MQ \\ 1Q \le R \le 10MQ & \pm 100 ppm^{\circ}\text{C} & 10Q < R \le 10MQ \\ 1Q \le R \le 10MQ & \pm 100 ppm^{\circ}\text{C} & 2A \\ 1/2 \text{ W} & \frac{-55 ^{\circ}\text{C to}}{155 ^{\circ}\text{C}} & 200  500  500  500  5\% (E24) & 1Q \le R \le 10Q & Maximum \\ 1Q \le R \le 10MQ & \pm 100 ppm^{\circ}\text{C} & 2A \\ 0.5\%, 1\% (E24/E96) & 10Q < R \le 10MQ & Maximum \\ 1Q \le R \le 22MQ & \pm 200ppm^{\circ}\text{C} & 2A \\ 0.5\%, 1\% (E24/E96) & 10Q < R \le 10MQ & Maximum \\ 1Q \le R \le 10MQ & \pm 100ppm^{\circ}\text{C} & Current \\ Jumper<50mQ & 10MQ < R \le 22MQ & 10A \\ & \pm 200ppm^{\circ}\text{C} & 200  500  500  500  5\% (E24) & 1Q \le R \le 10MQ & Maximum \\ 1Q \le R \le 10MQ & \pm 100ppm^{\circ}\text{C} & Current \\ Jumper<50mQ & 10MQ < R \le 22MQ & 10A \\ & \pm 200ppm^{\circ}\text{C} & Current \\ Jumper<50mQ & 10MQ < R \le 22MQ & 10A \\ & \pm 200ppm^{\circ}\text{C} & Current \\ 1Q \le R \le 10MQ & \pm 100ppm^{\circ}\text{C} & Current \\ Jumper<50mQ & 10MQ < R \le 22MQ & 10A \\ & \pm 200ppm^{\circ}\text{C} & Current \\ Jumper<50mQ & 10MQ < R \le 10MQ & 10Q \\ & \pm 200ppm^{\circ}\text{C} & Current \\ & 10Q \le R \le 10MQ & 10Q \\ & \pm 200ppm^{\circ}\text{C} & Current \\ & 10Q \le R \le 10MQ & 10Q \\ & \pm 200ppm^{\circ}\text{C} & Current \\ & 10Q \le R \le 10MQ & 10Q \\ & \pm 200ppm^{\circ}\text{C} & Current \\ & 10Q \le R \le 10MQ & 10Q \\ & \pm 200ppm^{\circ}\text{C} & Current \\ & 10Q \le R \le 10MQ & 10Q \\ & \pm 200ppm^{\circ}\text{C} & Current \\ & 10Q \le R \le 10MQ & 10Q \\ & \pm 100ppm^{\circ}\text{C} & Current \\ & 10Q \le R \le 10MQ & 10Q \\ & \pm 100ppm^{\circ}\text{C} & Current \\ & 10Q \le R \le 10MQ & 10Q \\ & \pm 100ppm^{\circ}\text{C} & Current \\ & 10Q \le R \le 10MQ & 10Q \\ & \pm 100ppm^{\circ}\text{C} & Current \\ & 10Q \le R \le 10MQ & 10Q \\ & \pm 100ppm^{\circ}\text{C} & Current \\ & 10Q \le R \le 10MQ & 10Q \\ & \pm 100ppm^{\circ}\text{C} & Current \\ & \pm 100ppm^{\circ}\text$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 1/4 W  | 1/4 W             |         | 400V     |              | 5% (E24)                         | $ \Omega \le R \le  0\Omega $ | Rated Current |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |                   | 200V    |          | 5001/        | $ \Omega \le R \le 22M\Omega$    | ±200ppm°C                     | 2A            |
| $AC1206 \qquad \qquad IDS \ \ \ Current \\ Jumper<50mQ \ IDMQ < R \le 22MQ \ IDMQ < R \le 2000 \ MOV \ Starting Star$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |        |                   |         |          |              | 0.5%, 1% (E24/E96)               | $10\Omega < R \le 10M\Omega$  | Maximum       |
| $AC1206 = \frac{1}{200pm^{\circ}C} = \frac{1}{200pm^{\circ}C} = \frac{1}{200pm^{\circ}C} = \frac{1}{102} + \frac{1}{102} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |        |                   |         |          | 5004         | $ \Omega \le R \le  0M\Omega $   | ±100ppm°C                     | Current       |
| $AC1210 = \frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |        |                   |         |          |              | Jumper<50m $\Omega$              | $10M\Omega < R \le 22M\Omega$ | 10A           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AC1206 |        |                   |         |          |              |                                  | ±200ppm°C                     |               |
| $AC1210 \xrightarrow{1/2 \text{ W}} \frac{100 \text{ C} \text{ C} \text{ C}}{155 \text{ °C}} 200 + 400 \text{ V}} \xrightarrow{500 \text{ V}} \frac{0.5\%, 1\% (E24/E96)}{0.5\%, 1\% (E24/E96)} \frac{10\Omega < \text{R} \le 10\text{M}\Omega}{100 \text{ ppm}^{\circ}\text{C}} \xrightarrow{100 \text{ ppm}^{\circ}\text{C}} \frac{10\Omega < \text{R} \le 10\text{M}\Omega}{100 \text{ ppm}^{\circ}\text{C}} \xrightarrow{100 \text{ ppm}^{\circ}\text{C}} \frac{10\Omega < \text{R} \le 10\text{M}\Omega}{100 \text{ ppm}^{\circ}\text{C}} \xrightarrow{100 \text{ ppm}^{\circ}\text{C}} \frac{10\Omega < \text{R} \le 10\text{M}\Omega}{100 \text{ c} \text{ R} \le 10\text{M}\Omega} \xrightarrow{100 \text{ ppm}^{\circ}\text{C}} \frac{10\Omega < \text{R} \le 10\text{M}\Omega}{100 \text{ c} \text{ R} \le 10\text{M}\Omega} \xrightarrow{100 \text{ ppm}^{\circ}\text{C}} \frac{1000 \text{ c}}{1000 \text{ c} \text{ R} \le 10\text{M}\Omega} \xrightarrow{100 \text{ ppm}^{\circ}\text{C}} \frac{1000 \text{ c}}{1000 \text{ c} \text{ R} \le 10\text{M}\Omega} \xrightarrow{100 \text{ ppm}^{\circ}\text{C}} \frac{1000 \text{ c}}{1000 \text{ c} \text{ R} \le 1000 \text{ c}} \xrightarrow{1000 \text{ c}} \frac{1000 \text{ c}}{1000 \text{ c} \text{ R} \le 1000 \text{ c}} \xrightarrow{1000 \text{ ppm}^{\circ}\text{C}} \frac{1000 \text{ c}}{1000 \text{ c} \text{ R} \le 1000 \text{ c}} \xrightarrow{1000 \text{ c}} $ |        |        |                   |         |          |              | 5% (E24)                         | $ \Omega \le R \le  0\Omega $ |               |
| $AC1210 \xrightarrow{155 \circ C} 200V \xrightarrow{500V} 500V \xrightarrow{500V} 500V \xrightarrow{500} 100 < R \le 10M\Omega \\ = 100 \text{ ppm}^{\circ}C \xrightarrow{1000} 100 < R \le 10\Omega \\ = 100 \text{ ppm}^{\circ}C \xrightarrow{1000} 200V \xrightarrow{1000} 100 < R \le 10M\Omega \\ = 100 \text{ ppm}^{\circ}C \xrightarrow{1000} 200V \xrightarrow{1000} 1000 < R \le 10M\Omega \\ = 100 \text{ ppm}^{\circ}C \xrightarrow{1000} 10000 < R \le 10M\Omega \\ = 100 \text{ ppm}^{\circ}C \xrightarrow{1000} 100000 < R \le 10M\Omega \\ = 1000 \text{ ppm}^{\circ}C \xrightarrow{1000} 100000 < R \le 10M\Omega \\ = 1000 \text{ ppm}^{\circ}C \xrightarrow{1000} 100000 < R \le 10M\Omega \\ = 1000 \text{ ppm}^{\circ}C \xrightarrow{1000} 1000000 < R \le 1000000000 \\ = 100000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        | <b>–</b> 55 °C to |         |          |              | $ \Omega \le R \le  0M\Omega $   | ±200 ppm°C                    |               |
| $AC1210 = IV = \frac{-55 \ ^{\circ}C \ to}{102 \ ^{\circ}C \ ^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 1/2 W  | 155 °C            | 200V    | 400V     | 500V         | 0.5%, 1% (E24/E96)               | $10\Omega < R \le 10M\Omega$  |               |
| AC1210 = 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |                   |         |          |              | $ \Omega \le R \le  0M\Omega $   | ±100 ppm°C                    |               |
| $AC1210 = \frac{1}{1000} = \frac{1}{10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |                   |         |          |              | 5% (E24)                         | $ \Omega \le R \le  0\Omega $ | Rated Current |
| $AC1210 \xrightarrow{1/2 \text{ W}} \frac{1000 \text{ Cut}}{155 \text{ °C}} 200 \xrightarrow{500 \text{ S00V}} \frac{500 \text{ Cut}}{500 \text{ Cut}} \frac{1000 \text{ Cut}}{10 \text{ Cut}} \frac{1000 \text{ Cut}}{1000 \text{ Cut}} \frac{10000 \text{ Cut}}{1000 \text{ Cut}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        |                   |         |          |              | $ \Omega \le R \le 22M\Omega$    | ±200ppm°C                     | 2A            |
| $AC1210 = \frac{155 \text{ °C}}{105 \text{ °C}} = 200 \text{ V} 500 \text{ V} 10  24/\text{E96} 10 \Omega < \text{R} \le 10  10 \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega < \text{R} \le 10  \Omega <  \Omega < \Omega < \Omega < \Omega < \Omega < \Omega < \Omega < \Omega < \Omega < \Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        | -55 °C to         | 2001/   | F 0 0) ( | F00)/        | 0.5%, 1% (E24/E96)               | $10\Omega < R \le 10M\Omega$  | Maximum       |
| AC1210<br>$ \frac{4200 \text{ppm}^{\circ}\text{C}}{1 \text{ W}} = \frac{-55 ^{\circ}\text{C to}}{155 ^{\circ}\text{C}} = 200  500  500  500  1\Omega \leq \text{R} \leq 10 \Omega \\ = 100  1\Omega \leq \text{R} \leq 10 \Omega \\ = 100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  1000  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  10000  1000  1000  1000  1000  1000  1000  1000  10000  10000  1000  10000  10000  10000  10000  10000  10000  100000  10000  100000  100000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 1/2 VV | 155 °C            | 2007    | 5000     | 5000         | $ \Omega \leq R \leq  0M\Omega $ | ±100ppm°C                     | Current       |
| $1 \text{ VV} \qquad \begin{array}{c} -55 \text{ °C to} \\ 1 \text{ VV} \end{array} \qquad \begin{array}{c} -55 \text{ °C to} \\ 155 \text{ °C} \end{array} \qquad \begin{array}{c} 1 \Omega \leq R \leq 10 \Omega \\ 500 \text{ V} \end{array} \qquad \begin{array}{c} 1 \Omega \leq R \leq 10 \text{ M} \Omega \\ 500 \text{ V} \end{array} \qquad \begin{array}{c} 1 \Omega \leq R \leq 10 \text{ M} \Omega \\ 0.5\%, 1\% \text{ (E24/E96)} \qquad 10 \Omega < R \leq 10 \text{ M} \Omega \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |                   |         |          |              | Jumper<50m $\Omega$              | $10M\Omega < R \le 22M\Omega$ | 10A           |
| $I \text{ VV} \qquad \begin{array}{c} -55 \text{ °C to} \\ 1 \text{ VV} \end{array} \qquad \begin{array}{c} -55 \text{ °C to} \\ 200 \text{ V} \end{array} \qquad \begin{array}{c} 500 \text{ V} \end{array} \qquad \begin{array}{c} 1 \Omega \leq \text{R} \leq 10 \text{ M} \Omega \end{array} \qquad \begin{array}{c} \pm 200 \text{ ppm °C} \\ 155 \text{ °C} \end{array} \qquad \begin{array}{c} 0.5\%, 1\% \text{ (E24/E96)} \qquad 10 \Omega < \text{R} \leq 10 \text{ M} \Omega \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AC1210 |        |                   |         |          |              |                                  | ±200ppm°C                     |               |
| $1 \text{ W}$ 200V 500V 500V 500V 155 °C $0.5\%$ , 1% (E24/E96) $10\Omega < R \le 10M\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |        |                   |         |          |              | 5% (E24)                         | $ \Omega \le R \le  0\Omega $ |               |
| $155 ^{\circ}\text{C}$ 0.5%, 1% (E24/E96) $10\Omega < R \le 10M\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 1\\\/  | -55 °C to         | 2001/   |          |              | $ \Omega \le R \le  0M\Omega $   | ±200 ppm°C                    |               |
| $I\Omega \le R \le 10M\Omega$ ±100 ppm°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | IVV    | 155 °C            | 2007    | 3000     | 2007         | 0.5%, 1% (E24/E96)               | $10\Omega < R \le 10M\Omega$  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |                   |         |          |              | $ \Omega \le R \le  0M\Omega $   | ±100 ppm°C                    |               |

|        |          | CHARACTERISTICS                   |                            |                             |                                       |                                 |                               |                    |
|--------|----------|-----------------------------------|----------------------------|-----------------------------|---------------------------------------|---------------------------------|-------------------------------|--------------------|
| TYPE   | POWER    | Operating<br>Temperature<br>Range | Max.<br>Working<br>Voltage | Max.<br>Overload<br>Voltage | Dielectric<br>Withstanding<br>Voltage | Resistance<br>Range             | Temperature<br>Coefficient    | Jumper<br>Criteria |
|        |          |                                   |                            |                             |                                       | 5% (E24)                        | $ \Omega \le R \le  0\Omega $ | Rated Current      |
|        |          | -55 °C to                         |                            |                             |                                       | $ \Omega \leq R \leq  M\Omega $ | ±200ppm°C                     | 6A                 |
|        | $\mid$ W | -55 °C                            | 200V                       | 500V                        | 500V                                  | 0.5%, 1% (E24/E96)              | $10\Omega < R \le 1M\Omega$   | Maximum            |
|        |          | 155 C                             |                            |                             |                                       | $ \Omega \leq R \leq  M\Omega $ | ±100ppm°C                     | Current            |
| AC1218 |          |                                   |                            |                             |                                       | Jumper<50m $\Omega$             |                               | 10A                |
|        |          |                                   |                            |                             |                                       | 5% (E24)                        | $ \Omega \le R \le  0\Omega $ |                    |
|        | 1.5W     | -55 °C to                         | 200V                       | 500V                        | 500V                                  | $ \Omega \leq R \leq  M\Omega $ | ±200 ppm°C                    |                    |
|        | 1.5 V V  | 155 °C                            | 200 v                      | 2004                        | 2004                                  | 0.5%, 1% (E24/E96)              | $10\Omega < R \le 1M\Omega$   |                    |
|        |          |                                   |                            |                             |                                       | $ \Omega \leq R \leq  M\Omega $ | ±100 ppm°C                    |                    |
|        |          |                                   |                            |                             |                                       | 5% (E24)                        | $ \Omega \le R \le  0\Omega $ | Rated Current      |
|        | 24244    | -55 °C to<br>3/4 W I55 °C         | 200V                       |                             |                                       | $ \Omega \le R \le 22M\Omega$   | ±200ppm°C                     | 2A                 |
|        |          |                                   |                            | 500V                        | 500) (                                | 0,5%, 1% (E24/E96)              | $10\Omega < R \le 10M\Omega$  | Maximum            |
|        | 3/4 VV   |                                   |                            |                             | 500V                                  | $ \Omega \le R \le  0M\Omega $  | ±100ppm°C                     | Current            |
|        |          |                                   |                            |                             |                                       | Jumper<50m $\Omega$             | $10M\Omega < R \le 22M\Omega$ | 10A                |
| AC2010 |          |                                   |                            |                             |                                       |                                 | ±200ppm°C                     |                    |
|        |          | -55 ℃ to<br>W 155 ℃               | 200V                       |                             | √ 500∨                                | 5% (E24)                        | $ \Omega \le R \le  0\Omega $ |                    |
|        |          |                                   |                            |                             |                                       | $ \Omega \le R \le  0M\Omega $  | ±200 ppm°C                    |                    |
|        | 1.25W    |                                   |                            | 500V                        |                                       | 0.5%, 1% (E24/E96)              | $10\Omega < R \le 10M\Omega$  |                    |
|        |          |                                   |                            |                             |                                       | $ \Omega \le R \le  0M\Omega $  | ±100 ppm°C                    |                    |
|        |          |                                   |                            |                             |                                       | 5% (E24)                        | $ \Omega \le R \le  0\Omega $ | Rated Current      |
|        |          |                                   |                            |                             |                                       | $I\Omega \leq R \leq 22M\Omega$ | ±200ppm°C                     | 2A                 |
|        |          | -55 °C to                         |                            |                             |                                       | 0.5%, 1% (E24/E96)              | $10\Omega < R \le 10M\Omega$  | Maximum            |
|        | IW       | 155 ℃                             | 200V                       | 500V                        | 500V                                  | $I\Omega \leq R \leq I0M\Omega$ | ±100ppm°C                     | Current            |
|        |          |                                   |                            |                             |                                       | Jumper<50m $\Omega$             | $10M\Omega < R \le 22M\Omega$ | 10A                |
| AC2512 |          |                                   |                            |                             |                                       |                                 | ±200ppm°C                     |                    |
|        |          |                                   |                            |                             |                                       | 5% (E24)                        | $ \Omega \le R \le  0\Omega $ |                    |
|        |          | -55 °C to                         |                            |                             |                                       | $ \Omega \leq R \leq 10M\Omega$ | ±200 ppm°C                    |                    |
|        | 2 W      | 155 °C                            | 200V                       | 500V                        | 500V                                  | 0.5%, 1% (E24/E96)              | $10\Omega < R \le 10M\Omega$  |                    |
|        |          |                                   |                            |                             |                                       | $ \Omega \le R \le  0M\Omega $  | ±100 ppm°C                    |                    |
|        |          |                                   |                            |                             |                                       |                                 |                               |                    |

## FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles of AC-series is the same as RC-series. Please refer to data sheet "Chip resistors mounting".

#### PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

| PACKING STYLE            | REEL<br>DIMENSION | AC0201 | AC0402 | AC0603 | AC0805 | AC1206 | AC1210 | AC1218 | AC2010 | AC2512 |
|--------------------------|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Paper taping reel (R)    | 7" (178 mm)       | 10,000 | 10,000 | 5,000  | 5,000  | 5,000  | 5,000  |        |        |        |
|                          | 10" (254 mm)      | 20,000 | 20,000 | 10,000 | 10,000 | 10,000 | 10,000 |        |        |        |
|                          | 13" (330 mm)      | 50,000 | 50,000 | 20,000 | 20,000 | 20,000 | 20,000 |        |        |        |
| Embossed taping reel (K) | 7" (178 mm)       |        |        |        |        |        |        | 4,000  | 4,000  | 4,000  |

#### NOTE

I. For paper/embossed tape and reel specifications/dimensions, please refer to data sheet "Chip resistors packing".

#### FUNCTIONAL DESCRIPTION

#### **OPERATING TEMPERATURE RANGE**

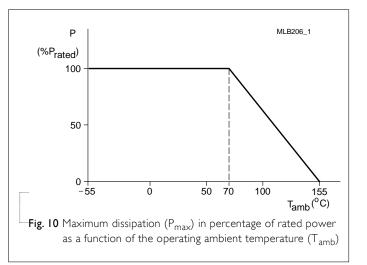
Range: -55 °C to +155 °C

## **POWER RATING**

Each type rated power at 70 °C: AC0201=1/20W (0.05W) AC0402=1/16W (0.0625W); 1/8W (0.125W) AC0603=1/10W (0.1W); 1/5W (0.2W) AC0805=1/8W (0.125W); 1/4 W(0.25 W) AC1206=1/4W (0.25W); 1/2 W (0.5 W) AC1210=1/2W (0.5W); 1/2 W (0.5 W) AC1218=1W; 1.5W AC2010=3/4W (0.75W); 1.25W AC2512=1 W; 2W

#### **RATED VOLTAGE**

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$

Or Maximum working voltage whichever is less

#### Where

V = Continuous rated DC or AC (rms) working voltage (V) P = Rated power (W)

 $R = Resistance value (\Omega)$ 



**YAGEO** 

## TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

| TEST                            | TEST METHOD                                | PROCEDURE                                                                                                                                                                 | REQUIREMENTS                                                                                                                        |
|---------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| High Temperature<br>Exposure    | AEC-Q200 Test 3<br>MIL-STD-202 Method 108  | 1,000 hours at $T_A = 155$ °C, unpowered                                                                                                                                  | $\pm$ (1.0%+0.05Ω) for D/F tol<br>$\pm$ (2.0%+0.05Ω) for J tol<br><50 mΩ for Jumper                                                 |
| Moisture<br>Resistance          | AEC-Q200 Test 6<br>MIL-STD-202 Method 106  | Each temperature / humidity cycle is defined at<br>8 hours (method 106F), 3 cycles / 24 hours for<br>10d. with 25 °C / 65 °C 95% R.H, without steps<br>7a & 7b, unpowered | $\pm (0.5\% \pm 0.05\Omega)$ for D/F tol<br>$\pm (2.0\% \pm 0.05\Omega)$ for J tol<br><100 m $\Omega$ for Jumper                    |
| Biased<br>Humidity              | AEC-Q200 Test 7<br>MIL-STD-202 Method 103  | 1,000 hours; 85 °C / 85% RH<br>10% of operating power<br>Measurement at 24±4 hours after test conclusion.                                                                 | ±(1.0%+0.05Ω) for D/F tol<br>±(3.0%+0.05Ω) for J tol<br><100 mΩ for Jumper                                                          |
| Operational Life                | AEC-Q200 Test 8<br>MIL-STD-202 Method 108  | 1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required                                                                         | $\pm$ (1.0%+0.05 $\Omega$ ) for D/F tol<br>$\pm$ (3.0%+0.05 $\Omega$ ) for J tol<br><100 m $\Omega$ for Jumper                      |
| Resistance to<br>Soldering Heat | AEC-Q200 Test 15<br>MIL-STD-202 Method 210 | Condition B, no pre-heat of samples<br>Lead-free solder, 260±5 °C, 10±1 seconds<br>immersion time<br>Procedure 2 for SMD: devices fluxed and<br>cleaned with isopropanol  | $\pm (0.5\% + 0.05\Omega)$ for D/F tol<br>$\pm (1.0\% + 0.05\Omega)$ for J tol<br>$<$ 50 m $\Omega$ for Jumper<br>No visible damage |
| Thermal Shock                   | AEC-Q200 Test 16<br>MIL-STD-202 Method 107 | -55/+125 °C<br>Number of cycles is 300. Devices mounted<br>Maximum transfer time is 20 seconds.<br>Dwell time is 15 minutes. Air – Air                                    | $\pm$ (0.5%+0.05Ω) for D/F tol<br>$\pm$ (1.0%+0.05Ω) for J tol<br><50 mΩ for Jumper                                                 |
| ESD                             | AEC-Q200 Test 17<br>AEC-Q200-002           | Human Body Model,<br>I <sub>pos.</sub> + I <sub>neg.</sub> discharges<br>0201: 500V<br>0402/0603: IKV<br>0805 and above: 2KV                                              | ±(3.0%+0.05Ω)<br><50 mΩ for Jumper                                                                                                  |



| TEST                                                 | TEST METHOD                      | PROCEDURE                                                                                 | REQUIREMENTS                                    |  |
|------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------|--|
| Solderability<br>- Wetting                           | AEC-Q200 Test 18<br>J-STD-002    | Electrical Test not required Magnification 50X SMD conditions:                            | Well tinned (≥95% covered)<br>No visible damage |  |
|                                                      |                                  | (a) Method B, aging 4 hours at 155 °C dry heat,<br>dipping at 235±3 °C for 5±0.5 seconds. |                                                 |  |
|                                                      |                                  | (b) Method B, steam aging 8 hours, dipping at 215±3 °C for 5±0.5 seconds.                 |                                                 |  |
|                                                      |                                  | (c) Method D, steam aging 8 hours, dipping at<br>260±3 ℃ for 30±0.5 seconds.              |                                                 |  |
| Board Flex                                           | AEC-Q200 Test 21<br>AEC-Q200-005 | Chips mounted on a 90mm glass epoxy resin<br>PCB (FR4)                                    | ±(1.0%+0.05Ω)<br><50 mΩ for Jumper              |  |
|                                                      |                                  | Bending for 0201/0402: 5 mm<br>0603/0805: 3 mm<br>1206 and above: 2 mm                    |                                                 |  |
|                                                      |                                  | Holding time: minimum 60 seconds                                                          |                                                 |  |
| Temperature<br>Coefficient of<br>Resistance (T.C.R.) | MIL-STD-202 Method 304           | At +25/–55 °C and +25/+125 °C                                                             | Refer to table 2                                |  |
|                                                      |                                  | Formula:                                                                                  |                                                 |  |
|                                                      |                                  | T.C.R= $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$                    |                                                 |  |
|                                                      |                                  | Where<br>t <sub>1</sub> =+25 °C or specified room temperature                             |                                                 |  |
|                                                      |                                  | t <sub>2</sub> =–55 °C or +125 °C test temperature                                        |                                                 |  |
|                                                      |                                  | $R_1$ =resistance at reference temperature in ohms                                        |                                                 |  |
|                                                      |                                  | $R_2$ =resistance at test temperature in ohms                                             |                                                 |  |
| Short Time                                           | IEC60115-14.13                   | 2.5 times of rated voltage or maximum                                                     | ±(1.0%+0.05Ω) for D/F tol                       |  |
| Overload                                             |                                  | overload voltage whichever is less for 5 sec                                              | $\pm$ (2.0%+0.05 $\Omega$ ) for J tol           |  |
|                                                      |                                  | at room temperature                                                                       | $<$ 50 m $\Omega$ for Jumper                    |  |
| FOS                                                  | ASTM-B-809-95                    | Sulfur (saturated vapor) 500 hours, 60±2°C, unpowered                                     | ±(1.0%+0.05Ω)                                   |  |

**YAGEO** 

 Chip Resistor Surface Mount
 AC
 SERIES
 0201 to 2512

## <u>REVISION HISTORY</u>

| REVISION  | DATE          | CHANGE NOTIFICATION | DESCRIPTION                                                                                                       |
|-----------|---------------|---------------------|-------------------------------------------------------------------------------------------------------------------|
| Version 9 | Aug. 03, 2022 | -                   | - 12 dimension updated, for size 1206, size 2010, size 2512.                                                      |
| Version 8 | Mar. 19, 2021 | -                   | - Upgrade the working voltage of 0402 double power to 75V                                                         |
| Version 7 | July 10, 2017 | -                   | - Add "3W" part number coding for 13" Reel & double power                                                         |
| Version 6 | May 31, 2017  | -                   | - Add 10" packing                                                                                                 |
| Version 5 | Dec. 07, 2015 | -                   | - Add in AC double power                                                                                          |
| Version 4 | May 25, 2015  | -                   | - Remove 7D packing<br>- Extend resistance range<br>- Add in AC0201<br>- Update FOS test and requirements         |
| Version 3 | Feb 13, 2014  | -                   | <ul> <li>Feature description updated</li> <li>add ±0.5%</li> <li>delete 10" taping reel</li> </ul>                |
| Version 2 | Feb. 10, 2012 | -                   | - Jumper criteria added<br>- AC1218 marking and outline figure updated                                            |
| Version I | Feb. 01, 2011 | -                   | - Case size 1210, 1218, 2010, 2512 extended<br>- Test method and procedure updated<br>- Packing style of 7D added |
| Version 0 | Nov. 10, 2010 | -                   | - First issue of this specification                                                                               |



#### <u>LEGAL DISCLAIMER</u>

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

YAGEO statements regarding the suitability of products for certain types of applications are based on YAGEO's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of YAGEO nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether YAGEO products are the correct products for their application or use. In addition, unpredicatable and isolated cases of product failure may still occur, therefore, customer application or use of YAGEO products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

YAGEO products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of YAGEO products could result in personal injury or death. Customers using or selling YAGEO products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify YAGEO and hold YAGEO harmless.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

## **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

## YAGEO:

AC0603FR-0733KL AC0603FR-0710RL AC0603FR-070RL AC0603FR-071KL AC0603FR-071K37L AC0603FR-071K5L AC0603FR-071K8L AC0603FR-071ML AC0603FR-0710KL AC0603FR-07100KL AC0603FR-07120RL AC0603FR-07191KL AC0603FR-072K21L AC0603FR-0720KL AC0603FR-074K7L AC0603FR-074R75L AC0603FR-07470RL AC0402FR-07100KL AC0402FR-07100RL AC0402FR-0710KL AC0402FR-07110RL AC0402FR-07120RL AC0402FR-0712KL AC0402FR-0712RL AC0402FR-07130RL AC0402FR-07150RL AC0402FR-0715KL AC0402FR-07180KL AC0402FR-0718KL AC0402FR-071K5L AC0402FR-071K8L AC0402FR-071KL AC0402FR-071ML AC0402FR-07200KL AC0402FR-0720KL AC0402FR-07220KL AC0402FR-07220RL AC0402FR-0722KL AC0402FR-0722RL AC0402FR-07240KL AC0402FR-0724KL AC0402FR-07270KL AC0402FR-07270RL AC0402FR-072K2L AC0402FR-072K7L AC0402FR-072KL AC0402FR-07300KL AC0402FR-0730KL AC0402FR-07330KL AC0402FR-0733RL AC0402FR-07360KL AC0402FR-073K3L AC0402FR-073KL AC0402FR-07430KL AC0402FR-0743RL AC0402FR-07470KL AC0402FR-07470RL AC0402FR-0747KL AC0402FR-0747RL AC0402FR-074K7L AC0402FR-0751KL AC0402FR-0751RL AC0402FR-07560RL AC0402FR-075K6L AC0402FR-0762RL AC0402FR-07680RL AC0402FR-0768KL AC0402FR-0768RL AC0402FR-07750KL AC0402FR-0775RL AC0402FR-07820RL AC0402FR-0782RL AC0402FR-07910KL AC0402FR-079K1L AC0603FR-07100RL AC0603FR-07110KL AC0603FR-07110RL AC0603FR-0711KL AC0603FR-0711RL AC0603FR-07120KL AC0603FR-0712KL AC0603FR-0712RL AC0603FR-07130KL AC0603FR-0713KL AC0603FR-07150KL AC0603FR-07150RL AC0603FR-0715KL AC0603FR-0715RL AC0603FR-07160KL AC0603FR-0716KL AC0603FR-0716RL AC0603FR-07180KL AC0603FR-07180RL AC0603FR-0718KL AC0603FR-07200KL AC0603FR-0720RL AC0603FR-07220KL AC0603FR-07220RL AC0603FR-0722KL AC0603FR-0722RL