Low Power, Precision Rail-to-Rail Output Op Amp

Data Sheet

FEATURES

Very low offset voltage
$125 \mu \mathrm{~V}$ maximum
Supply current: $215 \mu \mathrm{~A} / \mathrm{amp}$ typical
Input bias current: 200 pA maximum
Low input offset voltage drift: $1.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum
Very low voltage noise: $11 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Operating temperature: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Rail-to-rail output swing
Unity gain stable
$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ operation

APPLICATIONS

Portable precision instrumentation

Laser diode control loops
Strain gage amplifiers
Medical instrumentation
Thermocouple amplifiers

GENERAL DESCRIPTION

The AD8622/AD8624 are dual and quad precision rail-to-rail output operational amplifiers with low supply currents of only $350 \mu \mathrm{~A} /$ amplifier maximum over temperature and supply voltages. The AD8622/AD8624 also has an input bias current cancellation circuitry that provides a very low input bias current over the full operating temperature.
With a typical offset voltage of only $10 \mu \mathrm{~V}$, offset drift of $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, and noise of only $0.2 \mu \mathrm{~V}$ p-p (0.1 Hz to 10 Hz), they are perfectly suited for applications where large error sources cannot be tolerated. Many systems can take advantage of the low noise, dc precision, and rail-to-rail output swing provided by the AD8622/AD8624 to maximize the signal-to-noise ratio and dynamic range for low power operation. The AD8622/AD8624 are specified for the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The AD8622 is available in lead-free 8-lead SOIC and MSOP packages, while the AD8624 is available in lead-free 14-lead TSSOP and 16-lead LFCSP packages.

PIN CONFIGURATIONS

Figure 1.8-Lead Narrow-Body SOIC

Figure 2. 8-Lead MSOP

Figure 3. 14-Lead TSSOP

NOTES

1. NC = NO CONNECT
2. IT IS NECOMMENDED THAT THE EXPOSED

PAD BE CONNECTED TO V -.
Figure 4. 16-Lead LFCSP

Table 1. Low Power Op Amps

Supply	$\mathbf{4 0}$ V	$\mathbf{3 6}$ V	$\mathbf{1 2}$ V to 18 V	$\mathbf{6 V}$
Single	OP97	OP777 OP1177	AD8663	
Dual	OP297	OP727 OP2177	AD8667	ADA4692-2
Quad	OP497	OP747 OP4177	AD8669	ADA4692-4

Rev. D

AD8622/AD8624

TABLE OF CONTENTS

Features1
Applications. 1
General Description 1
Pin Configurations 1
Revision History 2
Specifications 3
Electrical Characteristics- ± 2.5 V Operation 3
Electrical Characteristics- ± 15 V Operation 4
Absolute Maximum Ratings 5
Thermal Resistance 5
REVISION HISTORY
12/13-Rev. C to Rev. D
Change to Figure 58 17
Updated Outline Dimensions 19
6/11—Rev. B to Rev. C
Changes to Figure 13 7
2/10—Rev. A to Rev. B
Changed 16-Lead to 14-Lead in Figure 62 Caption 19
1/10—Rev. 0 to Rev. A
Added 14-Lead TSSOP Universal
Added 16-Lead LFCSP Universal
Added Figure 3 and Figure 4; Renumbered Sequentially 1
Changes to Table 5 5
Changes to Figure 10 to Figure 16 6
Changes to Figure 26 9
Changes to Figure 29 10
Updated Outline Dimensions 18
Changes to Ordering Guide 19
ESD Caution5
Typical Performance Characteristics 6
Applications Information 15
Input Protection 15
Phase Reversal 15
Micropower Instrumentation Amplifier 15
Hall Sensor Signal Conditioning. 16
Simplified Schematic 17
Outline Dimensions 18
Ordering Guide 19

7/09—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS— ± 2.5 V OPERATION

$\mathrm{V}_{\text {SY }}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Table 2.

AD8622/AD8624

ELECTRICAL CHARACTERISTICS— ± 15 V OPERATION

$\mathrm{V}_{\mathrm{SY}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Table 3.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	$\pm 18 \mathrm{~V}$
Input Voltage	$\pm \mathrm{V}_{\text {SY }}$
Input Current 1	$\pm 10 \mathrm{~mA}$
Differential Input Voltage 2	$\pm 10 \mathrm{~V}$
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$

${ }^{1}$ The input pins have clamp diodes to the power supply pins. The input current should be limited to 10 mA or less whenever input signals exceed the power supply rail by 0.5 V .
${ }^{2}$ Differential input voltage is limited to 10 V or the supply voltage, whichever is less.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. This was measured using a standard 4 -layer board.

Table 3. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}$	$\boldsymbol{\theta}_{\boldsymbol{\jmath c}}$	Unit
8-Lead SOIC_N (R-8)	120	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead MSOP (RM-8)	142	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Lead TSSOP (RU-14)	112	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP (CP-16-17)	55	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 5. Input Offset Voltage Distribution

Figure 6. Input Offset Voltage Drift Distribution

Figure 7. Input Offset Voltage vs. Common-Mode Voltage

Figure 8. Input Offset Voltage Distribution

Figure 9. Input Offset Voltage Drift Distribution

Figure 10. Input Offset Voltage vs. Common-Mode Voltage

Figure 11. Input Bias Current vs. Temperature

Figure 12. Input Bias Current vs. Common-Mode Voltage

Figure 13. Output Voltage to Supply Rail vs. Load Current

Figure 14. Input Bias Current vs. Temperature

Figure 15. Input Bias Current vs. Common-Mode Voltage

Figure 16. Output Voltage to Supply Rail vs. Load Current

Figure 17. Output Voltage to Supply Rail vs. Temperature

Figure 18. Supply Current vs. Supply Voltage

Figure 19. Open-Loop Gain and Phase vs. Frequency

Figure 20. Output Voltage to Supply Rail vs. Temperature

Figure 21. Supply Current vs. Temperature

Figure 22. Open-Loop Gain and Phase vs. Frequency

Figure 23. Closed-Loop Gain vs. Frequency

Figure 24. Output Impedance vs. Frequency

Figure 25. CMRR vs. Frequency

Figure 26. Closed-Loop Gain vs. Frequency

Figure 27. Output Impedance vs. Frequency

Figure 28. CMRR vs. Frequency

Figure 29. PSRR vs. Frequency

Figure 30. Small-Signal Overshoot vs. Load Capacitance

Figure 31. Large-Signal Transient Response

Figure 32. PSRR vs. Frequency

Figure 33. Small-Signal Overshoot vs. Load Capacitance

Figure 34. Large-Signal Transient Response

Figure 35. Small-Signal Transient Response

Figure 36. Negative Overload Recovery

Figure 37. Positive Overload Recovery

Figure 38. Small-Signal Transient Response

Figure 39. Negative Overload Recovery

Figure 40. Positive Overload Recovery

Figure 41. Output Step vs. Settling Time

Figure 42. Voltage Noise Density vs. Frequency

Figure 43. Current Noise Density vs. Frequency

Figure 44. Output Step vs. Settling Time

Figure 45. Voltage Noise Density vs. Frequency

Figure 46. Current Noise Density vs. Frequency

Figure 47. 0.1 Hz to 10 Hz Noise

Figure 48. THD + Noise vs. Amplitude

Figure 49. 0.1 Hz to 10 Hz Noise

Figure 50. THD + Noise vs. Amplitude

Figure 51. THD + Noise vs. Frequency

Figure 52. Channel Separation vs. Frequency

Figure 53. THD + Noise vs. Frequency

APPLICATIONS INFORMATION

INPUT PROTECTION

The maximum differential input voltage that can be applied to the AD8622/AD8624 is determined by the internal diodes connected across its inputs and series resistors at each input. These internal diodes and series resistors limit the maximum differential input voltage to $\pm 10 \mathrm{~V}$ and are needed to prevent baseemitter junction breakdown from occurring in the input stage of the AD8622/AD8624 when very large differential voltages are applied. In addition, the internal resistors limit the currents that flow through the diodes. However, in applications where large differential voltages can be inadvertently applied to the device, large currents may still flow through these diodes. In such a case, external resistors must be placed at both inputs of the op amp to limit the input currents to $\pm 10 \mathrm{~mA}$ (see Figure 54).

PHASE REVERSAL

An undesired phenomenon, phase reversal (also known as phase inversion) occurs in many op amps when one or both of the inputs are driven beyond the specified input voltage range (IVR), in effect reversing the polarity of the output. In some cases, phase reversal can induce lockups and even cause equipment damage as well as self destruction.
The AD8622/AD8624 amplifiers have been carefully designed to prevent output phase reversal when both inputs are maintained within the specified input voltage range. In addition, even if one or both inputs exceed the input voltage range but remain within the supply rails, the output still does not phase reverse. Figure 55 shows the input/output waveforms of the AD8622/AD8624 configured as a unity-gain buffer with a supply voltage of $\pm 15 \mathrm{~V}$.

Figure 55. No Phase Reversal

MICROPOWER INSTRUMENTATION AMPLIFIER

The AD8622 is a dual, high precision, rail-to-rail output op amp operating at just $215 \mu \mathrm{~A}$ quiescent current per amplifier. Its ultralow offset, offset drift, and voltage noise, combined with its very low bias current and high common-mode rejection ratio (CMRR), are ideally suited for high accuracy and micropower instrumentation amplifier.

Figure 56 shows the classic 2-op-amp instrumentation amplifier with four resistors using the AD8622. The key to high CMRR for this instrumentation amplifier are resistors that are well matched from both the resistive ratio and the relative drift. For true difference amplification, matching of the resistor ratio is very important, where R3/R4 = R1/R2. Assuming perfectly matched resistors, the gain of the circuit is $1+\mathrm{R} 2 / \mathrm{R} 1$, which is approximately 100 . Tighter matching of two op amps in one package, like the AD8622, offers a significant boost in performance over the classical 3-op-amp configuration. Overall, the circuit only requires about $430 \mu \mathrm{~A}$ of supply current.

2. TYPICAL: $0.01 \mathrm{mV}<|\mathrm{V} 2-\mathrm{V} 1|<149.7 \mathrm{mV}$
3. TYPICAL: $-14.97 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<+14.97 \mathrm{~V}$
4. USE MATCHED RESISTORS.

Figure 56. Micropower Instrumentation Amplifier

AD8622/AD8624

HALL SENSOR SIGNAL CONDITIONING

The AD8622/AD8624 is also highly suitable for high accuracy, low power signal conditioning circuits. One such use is in Hall sensor signal conditioning (see Figure 57). The magnetic sensitivity of a Hall element is proportional to the bias voltage applied across it. With 1 V bias voltage, the Hall element consumes about 2.5 mA of supply current and has a sensitivity of $5.5 \mathrm{mV} / \mathrm{mT}$ typical. To reduce power consumption, bias voltage must be reduced, but at the risk of lower sensitivity. The only way to achieve higher sensitivity is by introducing a gain using a precision micropower amplifier. The AD8622/AD8624, with all its features, is well suited to amplify the sensitivity of the Hall element.
The ADR121 is a precision micropower 2.5 V voltage reference. A precision voltage reference is required to hold a constant current so that the Hall voltage only depends on the intensity of the

Figure 57. Hall Sensor Signal Conditioning

SIMPLIFIED SCHEMATIC

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 59. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-A A
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 60. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)
Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.
Figure 61. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Very Thin Quad (CP-16-17)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
Figure 62. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
AD8622ARMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	A1P
AD8622ARMZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	A1P
AD8622ARMZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	A1P
AD8622ARZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
AD8622ARZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead SOIC_N	R-8	
AD8622ARZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
AD8624ACPZ-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead LFCSP_WQ	$\mathrm{CP}-16-17$	
AD8624ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead LFCSP_WQ	$\mathrm{CP}-16-17$	
AD8624ACPZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead LFCSP_WQ	CP-16-17	RU-14
AD8624ARUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead TSSOP	RU-14	
AD8624ARUZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead TSSOP		

[^0]
[^0]: ${ }^{1} Z=$ RoHS Compliant Part.

