

EcoSPARK® Ignition IGBT

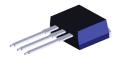
20 mJ, 360 V, N-Channel Ignition IGBT

FGB3236-F085, FGI3236-F085

Features

- Industry Standard D²PAK Package
- SCIS Energy = 330 mJ at $T_J = 25^{\circ}C$
- Logic Level Gate Drive
- AEC-Q101 Qualified and PPAP Capable
- RoHS Compliant

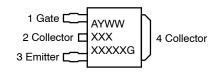
Applications


- Automotive Ignition Coil Driver Circuits
- Coil On Plug Applications

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

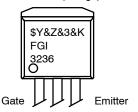
Symbol	Parameter	Value	Units
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	360	V
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	٧
E _{SCIS25}	Self Clamping Inductive Switching Energy ($I_{SCIS} = 14.7 \text{ A}, L = 3.0 \text{ mHy}, T_J = 25^{\circ}\text{C}$)	320	mJ
E _{SCIS150}	Self Clamping Inductive Switching Energy ($I_{SCIS} = 10.4 \text{ A}, L = 3.0 \text{ mHy}, T_J = 150^{\circ}\text{C}$)	160	mJ
I _{C25}	Collector Current Continuous at V _{GE} = 4.0 V, T _C = 25°C	44	Α
I _{C110}	Collector Current Continuous at V _{GE} = 4.0 V, T _C = 110°C	27	Α
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V
P_{D}	Power Dissipation Total, at $T_C = 25^{\circ}C$	187	W
	Power Dissipation Derating, for $T_C > 25^{\circ}C$	1.25	W/°C
T_J	Operating Junction Temperature Range	-40 to +175	°C
T _{STG}	Storage Junction Temperature Range	-40 to +175	°C
TL	Max. Lead Temperature for Soldering (Leads at 1.6 mm from case for 10 s)	300	°C
T _{PKG}	Max. Lead Temperature for Soldering (Package Body for 10 s)	260	°C
ESD	Electrostatic Discharge Voltage at 100 pF, 1500 Ω	4	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



D²PAK-3 CASE 418AJ

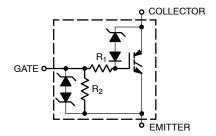
I2PAK (TO-262 3 LD) CASE 418AV


MARKING DIAGRAM

A = Assembly Location Y = Year

WW = Work Week
XXXX = Device Code
G = Pb-Free Package

Collector (Flange)


\$Y = **onsemi** Logo

&Z = Assembly Plant Code &3 = Numeric Date Code

&K = Lot Code

FGI3236 = Specific Device Code

SYMBOL

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
OFF STATE	CHARACTERISTICS						
BV _{CER}	Collector to Emitter Breakdown Voltage	I_{CE} = 2 mA, V_{GE} = 0 V, R_{GE} = 1 k Ω , see Figure 15 T_{J} = -40 to 150°C		330	363	390	V
BV _{CES}	Collector to Emitter Breakdown Voltage	$I_{CE} = 10 \text{ mA}, V_{GE} = 0 \text{ V},$ $R_{GE} = 0,$ $T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		350	378	410	V
BV _{ECS}	Emitter to Collector Breakdown Voltage	$I_{CE} = -75 \text{ mA}, V_{GE} = 0 \text{ V},$ $T_{J} = 25^{\circ}\text{C}$		30	_	-	V
BV _{GES}	Gate to Emitter Breakdown Voltage	I _{GES} = ±2 mA		±12	±14	-	V
I _{CES}	Collector to Emitter Leakage Current	V _{CES} = 250 V,	T _J = 25°C	-	-	25	μΑ
		see Figure 11	T _J = 150°C	-	-	1	mA
I _{ECS}	Emitter to Collector Leakage Current	V _{EC} = 24 V,	T _J = 25°C	-	-	1	mA
		see Figure 11	T _J = 150°C	-	_	40	1
R ₁	Series Gate Resistance			-	120	-	Ω
R ₂	Gate to Emitter Resistance			10K	_	30K	Ω
ON STATE (CHARACTERISTICS						
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I _{CE} = 6 A, V _{GE} = 4 V, T _C = 25°C, see Figure 3		-	1.14	1.4	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I_{CE} = 10 A, V_{GE} = 4.5 V, T_{C} = 150°C, see Figure 4		-	1.32	1.7	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I _{CE} = 15 A, V _{GE} = 4.5 V, T _C = 150°C		-	1.61	2.05	V
I _{CE(ON)}	Collector to Emitter On State Current	V _{GE} = 5 V, V _{CE} = 5 V		50	_	-	Α
	HARACTERISTICS		•				
Q _{G(ON)}	Gate Charge	I _{CE} = 10 A, V _{CE} = 12 V, V _{GE} = 5 V, see Figure 14		-	20	-	nC
V _{GE(TH)}	Gate to Emitter Threshold Voltage	I _{CE} = 1 mA,	T _C = 25°C	1.3	1.6	2.2	V
		V _{CE} = V _{GE} , see Figure 10	T _C = 150°C	0.75	1.1	1.8	1
V _{GEP}	Gate to Emitter Plateau Voltage	V _{CE} = 12 V, I _{CE} =	10 A		2.6	_	V
	CHARACTERISTICS	JL - 1, OE				<u> </u>	
t _{d(ON)R}	Current Turn-On Delay Time-Resistive	$V_{CE} = 14 \text{ V}, R_L = 1 \Omega,$ $V_{GE} = 5 \text{ V}, R_G = 1 \text{ k}\Omega,$ $T_J = 25^{\circ}\text{C}, \text{ see Figure 12}$		-	0.65	4	μs
t _{rR}	Current Rise Time-Resistive			_	1.7	7	†
t _{d(OFF)} L	Current Turn-Off Delay Time-Inductive	V_{CE} = 300 V, L = 500 μ Hy, V_{GE} = 5 V, R_{G} = 1 k Ω , T_{J} = 25°C, see Figure 12		-	5.4	15	1
t _{fL}	Current Fall Time-Inductive			_	1.64	15	1
SCIS	Self Clamped Inductive Switching	T_J = 25°C, L = 3.0 mHy, I_{CE} = 14.7 A, V_{GE} = 5 V, R_G = 1 k Ω , see Figures 1 & 2		-	-	320	mJ
THERMAL (CHARACTERISTICS						
$R_{ heta JC}$	Thermal Resistance Junction to Case	All Packages		_	_	0.8	°C/W
300	l				1	L	<u> </u>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PACKAGE MARKING AND ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
FGB3236-F085	FGB3236	D ² PAK (Pb-Free)	800 units / Tape & Reel
FGB3236-F085C	FGB3236	D ² PAK (Pb-Free)	800 units / Tape & Reel
FGl3236-F085	FGI3236	I2PAK (TO-262 3 LD) (Pb-Free)	400 units / Tube

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL PERFORMANCE CHARACTERISTICS

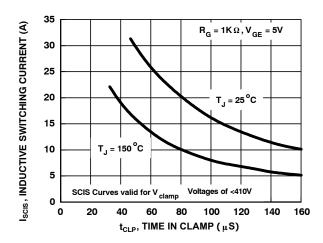


Figure 1. Self Clamped Inductive Switching Current vs. Time in Clamp

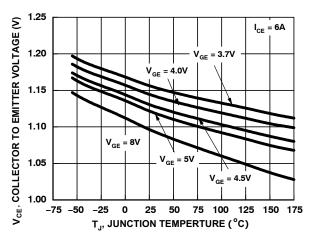


Figure 3. Collector to Emitter On-State Voltage vs. Junction Temperature

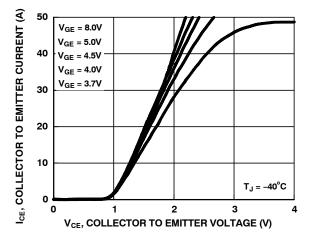


Figure 5. Collector to Emitter On–State Voltage vs. Collector Current

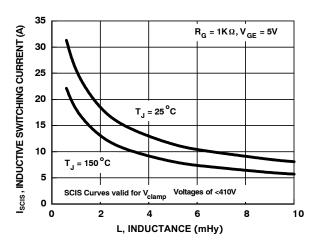


Figure 2. Self Clamped Inductive Switching Current vs. Inductance

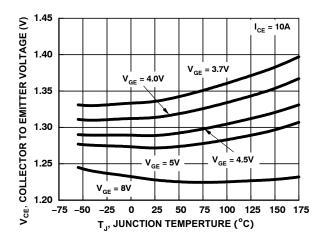


Figure 4. Collector to Emitter On-State Voltage vs. Junction Temperature

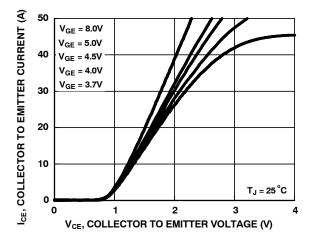


Figure 6. Collector to Emitter On-State Voltage vs. Collector Current

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

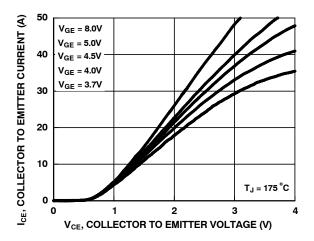


Figure 7. Collector to Emitter On–State Voltage vs. Collector Current

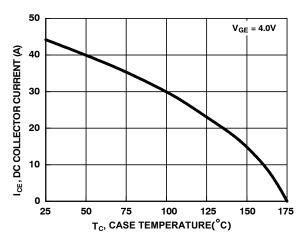


Figure 9. DC Collector Current vs. Case Temperature

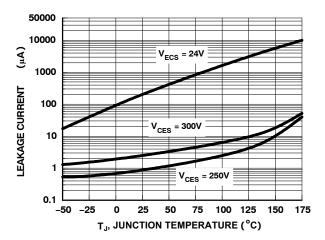


Figure 11. Leakage Current vs. Junction Temperature

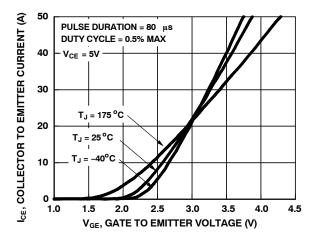


Figure 8. Transfer Characteristics

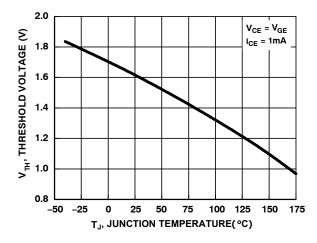


Figure 10. Threshold Voltage vs. Junction Temperature

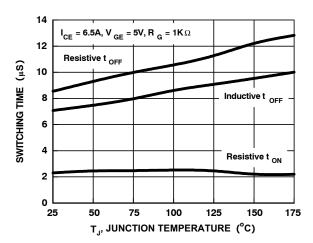
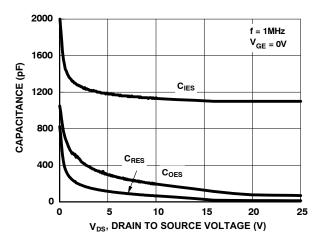



Figure 12. Switching Time vs. Junction Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

10 V_{CE} = 10A, T_J = 25°C V_{CE} = 6V V_{CE} = 12V Q_g, GATE CHARGE(nC)

Figure 13. Capacitance vs. Collector to Emitter Voltage

Figure 14. Gate Charge

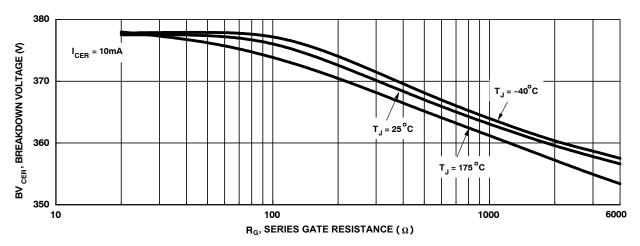


Figure 15. Break Down Voltage vs. Series Gate Resistance

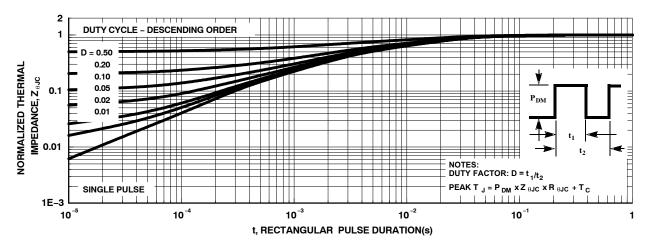


Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

TEST CIRCUIT AND WAVEFORMS

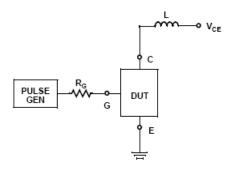


Figure 17. Inductive Switching Test Circuit

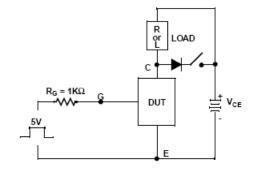


Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

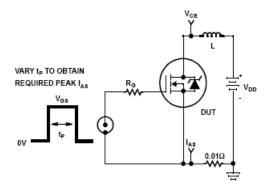


Figure 19. Energy Test Circuit

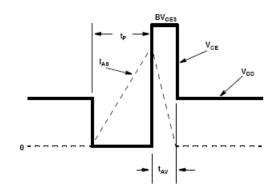
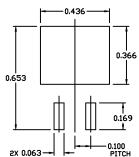
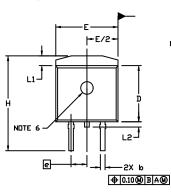
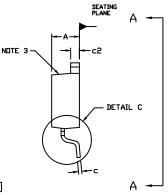



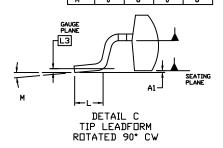
Figure 20. Energy Waveforms

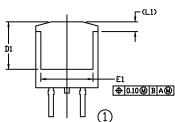
D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ ISSUE F

DATE 11 MAR 2021

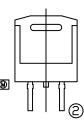

RECOMMENDED MOUNTING FOOTPRINT

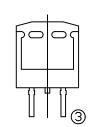

For additional information on our Pb-Free strategy and soldering details, please download the IN Seniconductor Soldering and Mounting Techniques Reference Manual, SILIERRM/D.

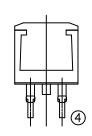

NOTES


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. CHAMFER OPTIONAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH.
 MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE.
 THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST
 EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 5. THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1, AND E1.
- 6. OPTIONAL MOLD FEATURE.
- 7. ①,② ... DPTIONAL CONSTRUCTION FEATURE CALL DUTS.

	INCHES		MILLIMETERS		
DIM	MIN.	MAX.	MIN.	MAX.	
Α	0.160	0.190	4.06	4.83	
A1	0.000	0.010	0.00	0.25	
b	0.020	0.039	0.51	0.99	
С	0.012	0.029	0.30	0.74	
c2	0.045	0.065	1.14	1.65	
D	0.330	0.380	8.38	9.65	
D1	0.260		6.60		
E	0.380	0.420	9.65	10.67	
E1	0.245		6.22		
e	0.100 BSC		2.54 BSC		
Н	0.575	0.625	14.60	15.88	
L	0.070	0.110	1.78	2.79	
L1		0.066		1.68	
L5		0.070		1.78	
L3	0.010	BSC	0.25	BSC	
м	0+	8*	n•	8.	







VIEW A-A

VIEW A-A

OPTIONAL CONSTRUCTIONS

GENERIC MARKING DIAGRAMS*

XXXXXX = Specific Device Code A = Assembly Location

 WL
 = Wafer Lot

 Y
 = Year

 WW
 = Work Week

 W
 = Week Code (SSG)

 M
 = Month Code (SSG)

 G
 = Pb-Free Package

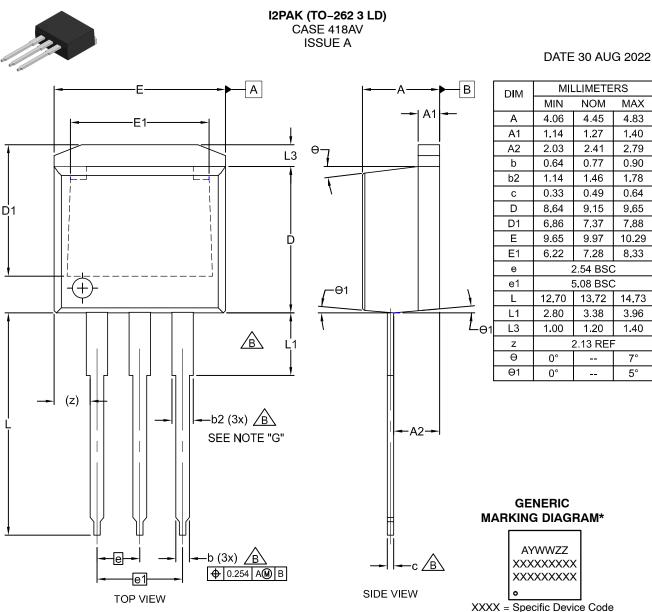
 AKA
 = Polarity Indicator

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:

98AON56370E

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.


DESCRIPTION:

D²PAK-3 (TO-263, 3-LEAD)

PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES:

A. EXCEPT WHERE NOTED CONFORMS TO TO262 JEDEC VARIATION AA.

- C. ALL DIMENSIONS ARE IN MILLIMETERS.
- D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
- E. DIMENSION AND TOLERANCE AS PER ANSI Y14.5-1994.
- F. LOCATION OF PIN HOLE MAY VARY (LOWER LEFT CORNER, LOWER CENTER AND CENTER OF PACKAGE)
- G. MAXIMUM WIDTH FOR F102 DEVICE = 1.35 MAX.

WW = Work Week
 ZZ = Assembly Lot Code
 *This information is generic. Please refer to

= Year

= Assembly Location

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13814G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	I2PAK (TO-262 3 LD)		PAGE 1 OF 1	

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi

FGB3236-F085 FGI3236-F085 FGB3236-F085C