Product Data Sheet PD-0053-A

3M[™] Mini D Ribbon (MDR) Connector MDR Surface Mount Right Angle Receptacle 102XX-1210 XE 102XX-1S10 XE

3M Electronic Solutions Division 6801 River Place Blvd. Austin, TX 78726-9000

Document Number:	PD-0053-A
Title:	Product Data Sheet
Subject:	3M [™] Mini Delta Ribbon (MDR) Surface Mount,
	Right Angle Receptacle

Issue Date:	May 16, 200)8
Supersedes:	Initial Relea	se
Page: 1	of 11	

Table of Contents

1.0	SCOPE	2
2.0	PRODUCT TESTED	2
3.0	GENERAL CONDITIONS	2
3.1	Test Specimens	2
3.2	Standard Test Conditions	2
4.0	TEST RESULTS SUMMARY	3
5.0	TESTING	4
5.1	General	
	val (Appearance)	
Con	tact Resistance — MIL-STD-202F Method 307	4
5.2	Environmental	
	Sequence #1	
	rtion/withdrawal (50 cycles)	
	sture Resistance — MIL-STD-202F Method 106F	
Salt	Atmosphere (Corrosion) — MIL-STD-202F Method 101D	5
Test	Sequence #2	6
The	rmal Shock — MIL-STD-202F Method 107G	6
Hur	nidity (Steady State) — MIL-STD-202F Method 103B	6
Vibi	ration — MIL-STD-202F Method 201A	6
Test	Sequence #3: Life (at Elevated Ambient Temperature) — MIL-STD-202F Method 108A	7
	Gas Sequence	
Inse	rtion/withdrawal (50 cycles)	7
	lrogen Sulfide Test for Electronic Equipment Connectors — JEIDA-38-1984	
5.3	Mechanical	8
Mat	ing and Unmating Forces — EIA-364-13A	8
Dur	ability	8
Med	hanical Shock — MIL-STD-202F Method 213B	9
Sold Dev	ler Heat Resistance (Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount ices) — JEDEC J-STD-020C.	9
5.4	Electrical	.10
	lectric Withstanding Voltage — MIL-STD-202F Method 301	
	lation Resistance — MIL-STD-202F Method 302	
	RTANT NOTICE	

Document Number:	PD-0053-A	Issue Date:	May 16, 2008
Title:	Product Data Sheet	Supersedes:	Initial Release
Subject:	3M [™] Mini Delta Ribbon (MDR) Surface Mount,	Page: 2	of 11
	Right Angle Receptacle		

1.0 Scope

This data sheet summarizes test methods, test conditions and product performance for the 3M MDR Surface Mount Right Angle Receptacle 102XX-1XX0 XX.

2.0 Product Tested

Product:	MDR Surface Mount Right Angle Receptacle
Product Number:	102XX-1210 XE, 102XX-1S10 XE
Related Specification Sheets:	TS-0755, TS-2242
Mating Product:	3M MDR Wire Mount Plug
Mating Product Number:	101XX-6000 XX

This test report applies to the MDR receptacles listed below, which have identical mating contact structure and plating specifications:

- 102XX-1210 VE, PE (Wiping Area Plating: 0.50 μm [20 μ"] Min. Gold)
- 102XX-1S10 VE, PE (Wiping Area Plating: 0.50 μm [20 μ"] Min. Gold)

3.0 General Conditions

3.1 Test Specimens

The test specimens shall be strictly in compliance with the design, construction details and physical properties detailed in the relevant Technical Specification Sheet (See Section 2).

3.2 Standard Test Conditions

The test shall be done under the following conditions:

Temperature:	15°C to 35°C
Relative Humidity:	45% to 75%
Atmospheric pressure:	650 to 800 mm Hg

Document Number:	PD-0053-A
Title:	Product Data Sheet
Subject:	3M [™] Mini Delta Ribbon (MDR) Surface Mount,
	Right Angle Receptacle

Issue Date:		Ma	y 16, 2008
Supersedes:		Init	ial Release
Page:	3	of	11

4.0 Test Results Summary

	Items	Specification	Test Method	Results
General	Visual	No defects such as deformation,	Sumitomo 3M	Pass
		blister, damage, crack, etc.	Design Spec	
	Contact Resistance	Max. R: $< 50 \text{ m}\Omega$	MIL-STD-202F	Pass
			Method 307	
Environmental	Moisture Resistance	Max. Δ R: $\leq \pm 25 \text{ m}\Omega$	MIL-STD-202F	Pass
		10 Cycles	Method 106F	
	Salt Atmosphere (Corrosion)	No Physical abnormalities after test	MIL-STD-202F	Pass
		Max. Δ R: $\leq \pm 25 \text{ m}\Omega$	Method 101D	
			Condition B	
	Thermal Shock	No Physical abnormalities after test	MIL-STD-202F	Pass
		Max. Δ R: $\leq \pm 25 \text{ m}\Omega$	Method 107G	
		5 Cycles, -55 °C to +85 °C	Condition A	
	Humidity (Steady State)	Max. Δ R: $\leq \pm 25 \text{ m}\Omega$	MIL-STD-202F	Pass
		Conditions: $40^{\circ} \pm 2^{\circ}C$	Method 103B,	
		/ 90 – 95 %RH for 96 Hours	Condition B	_
	Life at Elevated Ambient	No Physical abnormalities after test	MIL-STD-202F	Pass
	Temperature	Max. ΔR : $\leq \pm 25 \text{ m}\Omega$	Method 108A,	
	(Thermal Aging)	85 °C for 1000 Hours	Condition D	-
	Hydrogen Sulfide Gas	No Physical abnormalities after test	JEIDA-38-1984	Pass
		Max. Δ R: $< \pm 25 \text{ m}\Omega$		
		Conditions: $H_2S 3 \pm 1$ PPM, 40°C, 70–		
		80 %RH for 96 hours		
Mechanical	Vibration	No Physical abnormalities after test	MIL-STD-202F	Pass
		Max. ΔR : $<\pm 25 \text{ m}\Omega$	Method 201A	
		No electrical discontinuity > 1 μ sec	FIA 264 12A	D
	Mating and Unmating Forces	Mating force: 1.47N/pin Max	EIA-364-13A	Pass
	Durability	Unmating force: 0.39N/pin Min Insertions/Withdrawals	Sumitomo 3M	Pass
	Durability	Max. ΔR : $<\pm 25 \text{ m}\Omega$	Design Spec	Pass
	Mechanical Shock	No Physical abnormalities after test	MIL-STD-202F	Pass
	Mechanical Shock	5	Mill-STD-202F Method 213B	Pass
		Max. ΔR : $\leq \pm 25 \text{ m}\Omega$ No electrical discontinuity $> 1 \mu$ sec	Condition A	
		No electrical discontinuity $> 1 \mu$ sec	Half sine, (11	
			milliseconds) 50	
			$g \pm X, Y, Z$	
			(9 total shocks)	
	Resistance To Soldering Heat	No Physical abnormalities after test.	JEDEC J-STD-	Pass
		-	020C	
Electrical	Dielectric Withstanding Voltage	500 VAC _{RMS} @ Sea Level	MIL-STD-202F	Pass
			Method 301	1 400
	Insulation Resistance	500 MΩ @ 500 V _{DC}	MIL-STD-202F	Pass
			Method 302	- 400
			Condition B	

Document Number:	PD-0053-A	Issue D	ate:	May	16, 2008
Title:	Product Data Sheet	Supersec	les:	Initia	al Release
Subject:	3M [™] Mini Delta Ribbon (MDR) Surface Mount,	Page:	4	of	11
	Right Angle Receptacle				

5.0 Testing

Test methods are based upon Sumitomo 3M test procedures, the United States Department of Defense MIL-STD-202F, 1 April 1980, "Test Method Standard - Electronic And Electrical Component Parts" and the Japan Electronic Industry Development Association JEIDA-38-1984, "Hydrogen Sulphide Test for Electronic Equipment Connectors."

5.1 General

Visual (Appearance)

Purpose

The purpose of this test is to visually examine and dimensionally inspect the connector in order to determine whether the connector conforms to the applicable specification and detail documents not covered by performance requirements.

Test Method

The examination shall be made in accordance with Sumitomo 3M design specifications. The visual examination shall include inspection of the following features as a minimum: workmanship, marking, materials, finish, standards, design and construction. The dimensional inspection shall be a check for compliance with the outline drawings of the detail specification.

Contact Resistance — MIL-STD-202F Method 307

Purpose

The purpose of this test is to evaluate contact resistance characteristics of electrical contacts under conditions where applied voltages and currents do not alter the physical contact interface or modify the conductive oxide films which may be present.

Test Method

The low-signal level contact resistance shall be tested with circuit current of 1.5 mA and open circuit voltage of 20 mV maximum. The termination resistance includes contact to wire interface resistance, bulk resistance of contact, and resistance of solder joints of connectors to circuit boards. See Figure 1.

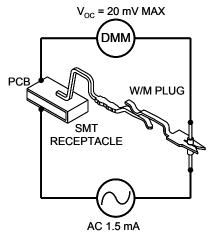


Figure 1. Contact resistance measurement method

Test Results

The initial readings are in milliohms. All other readings are the change in resistance from the initial reading in milliohms. All initial readings meet the specification requirement of less than 50 milliohms.

Document Number:	PD-0053-A	Issue Date:	M
Title:	Product Data Sheet	Supersedes:	Ini
Subject:	3M [™] Mini Delta Ribbon (MDR) Surface Mount,	Page: 5	of
	Right Angle Receptacle		

Issue Date:May 16, 2008Supersedes:Initial ReleasePage:5of

5.2 Environmental

Test Sequence #1

Introduction

In this test sequence, initial contact resistance measurements are taken for a sample of connectors. The sample is then subjected to a series of three tests: Insertion/withdrawal (50 cycles), Moisture Resistance and Salt Atmosphere (Corrosion). Measurements are taken after each test to record the change in connection resistance (Delta-R). The results follow.

Insertion/withdrawal (50 cycles)

Purpose

The purpose of this test is to determine the effects of subjecting electrical connectors to a conditioning action of mating and unmating of connector simulating typical operation of the connector.

Test Method

The plug and receptacle were mated and un-mated manually 50 times at the approximate rate of one cycle per second. Contact resistance was measured at completion.

Condition: 50 Cycles

Moisture Resistance — MIL-STD-202F Method 106F

Purpose

The purpose of this test is to evaluate, in an accelerated manner, the resistance of component parts and constituent materials to the deteriorative effects of the high-humidity and heat conditions typical of tropical environments. This test differs from the steady-state humidity test (Method 103B) and derives its added effectiveness in its employment of temperature cycling, which provides alternate periods of condensation and drying essential to the development of the corrosion processes and, in addition, produces a "breathing" action of moisture into partially sealed containers. Increased effectiveness is also obtained by use of a higher temperature, which intensifies the effects of humidity.

Test Method

Mated connectors shall be tested in accordance with MIL-STD-202F Method 106F.

Temperature Cycle:	-10 °C to 65 °C
Relative Humidity:	90 – 100 %RH
Duration:	10 Cycles (10 Days)

Salt Atmosphere (Corrosion) — MIL-STD-202F Method 101D

Purpose

The purpose of this test is to determine the effects of a controlled salt laden atmosphere on the electrical connector.

Test Method

Mated connectors shall be tested in accordance with MIL-STD-202F Method 101D, Test Condition B.

Salt Solution:	5 ±1%
Temperature:	35 °C±3 °C (95 °F
	±5 °F).
Duration:	48 Hours

Document Number:	PD-0053-A
Title:	Product Data Sheet
Subject:	3M [™] Mini Delta Ribbon (MDR) Surface Mount,
	Right Angle Receptacle

Issue Date:May 16, 2008Supersedes:Initial ReleasePage:6of

Test Results

N = 100	Initial	I/W		Moisture		Salt Atmosphere	
		(50 cycles)		(10 cycles)		(48 hours)	
Resistance $(m\Omega)$	R	R	ΔR	R	ΔR	R	ΔR
Maximum:	38.71	37.03	2.82	47.38	12.41	53.83	19.38
Average:	34.93	34.85	-0.07	35.14	0.22	36.20	1.27
Minimum:	32.53	32.60	-2.60	32.69	-2.98	32.72	-2.55
Standard Deviation:	1.44	1.04	1.33	1.96	2.15	3.38	3.41

Test Sequence #2

Introduction

In this test sequence, initial contact resistance measurements are taken for a sample of connectors. The sample is then subjected to a series of three tests: Thermal Shock, Humidity and Vibration. Measurements are taken after each test to record the change in connection resistance (Delta-R). The results follow.

Thermal Shock — MIL-STD-202F Method 107G

Purpose

The purpose of this test is to determine the resistance of a given electrical connector to exposure at extremes of high and low temperatures and to the shock of alternate exposures to these extremes, simulating the worst probable conditions of storage, transportation and application.

Test Method

Mated connectors shall be tested in accordance with MIL-STD-202F Method 107G, Test Condition A.

Temperature:	-55 °C & +85 °C
Cycle Time:	30 minutes each Temperature
Transition Time:	5 minute maximum
Cycles:	5

Humidity (Steady State) — MIL-STD-202F Method 103B

Purpose

The purpose of this test is to permit evaluation of the properties of materials used in connectors as they are influenced or deteriorated by the effects of high humidity and heat condition.

Test Method

Mated connectors shall be tested in accordance with MIL-STD-202F Method 103B, Test Condition B.

Temperature Range:	40 ± 2 °C
Relative Humidity:	90 – 95 %RH
Duration:	96 Hours

Vibration — MIL-STD-202F Method 201A

Purpose

The purpose of this test is to determine the effects of vibration within the predominant or random vibration frequency ranges and magnitudes that may be encountered during the life of the connector.

Test Method

Mated connectors shall be tested in accordance with MIL-STD-202F Method 201A.

Amplitude:	0.03 inch (0.06 inch max. total excursion)
Frequency:	10 to 55 Hz
Duration:	2 hours in each of 3 mutually perpendicular directions (total of 6 hours)

Document Number:	PD-0053-A
Title:	Product Data Sheet
Subject:	3M [™] Mini Delta Ribbon (MDR) Surface Mount,
	Right Angle Receptacle

Issue Date:May 16, 2008Supersedes:Initial ReleasePage:7of

Test Results

N = 100	Initial	Thermal Shock		(Ste	nidity eady ate)	Vibration	
Resistance (mΩ)	R	R	ΔR	R	ΔR	R	ΔR
Maximum:	38.41	45.71	8.08	46.55	8.92	46.99	9.44
Average:	34.88	35.17	0.29	35.26	0.38	35.86	0.98
Minimum:	32.43	32.51	-1.32	32.62	-2.16	32.81	-0.46
Standard	1.55	1.71	0.94	1.98	1.43	2.34	1.42
Deviation:							

Test Sequence #3: Life (at Elevated Ambient Temperature) — MIL-STD-202F Method 108A

Introduction

In this test sequence, initial contact resistance measurements are taken for a sample of connectors. The sample is then subjected to exposure to an elevated ambient temperature for a specified length of time. A sequence of contact resistance measurements are taken after 42, 180, 630 and 1000 hours to record the change in connection resistance (Delta-R). The results follow.

Purpose

The purpose of this test is to determine the effects on the electrical and mechanical characteristics of the connector resulting from exposure of the connector to an elevated ambient temperature for a specified length of time.

Test Method

Mated connectors shall be tested in accordance with MIL-STD-202F Method 108A, Test Condition D.

Temperature:	85 °C
Duration:	1000 hours

Test Results

N = 100	Initial	42	Hrs	180) Hrs	630) Hrs	100	0 Hrs
Resistance, m Ω	R	R	ΔR	R	ΔR	R	ΔR	R	ΔR
Maximum:	37.54	38.13	4.76	45.67	12.30	42.14	5.92	48.38	10.84
Average:	34.26	34.53	0.27	34.98	0.72	34.84	0.58	35.22	0.95
Minimum:	32.89	33.10	-2.03	32.86	-1.53	32.92	-1.60	33.14	-1.23
Standard Deviation:	0.94	1.06	0.81	1.84	1.57	1.37	1.05	1.97	1.48

H₂S Gas Sequence

Introduction

In this test sequence, initial contact resistance measurements are taken for a sample of connectors. The sample is then subjected to a series of two tests: Insertion/withdrawal (50 cycles) and Hydrogen Sulfide Test for Electronic Equipment Connectors. Measurements are taken after each test to record the change in connection resistance (Delta-R). The results follow.

Insertion/withdrawal (50 cycles)

Purpose

The purpose of this test is to determine the effects of subjecting electrical connectors to a conditioning action of mating and unmating of connector simulating typical operation of the connector.

Test Method

The plug and receptacle were mated and un-mated manually 50 times at the approximate rate of one cycle per second. Contact resistance was measured at completion.

Document Number:	PD-0053-A
Title:	Product Data Sheet
Subject:	3M [™] Mini Delta Ribbon (MDR) Surface Mount,
	Right Angle Receptacle

Condition: 50 Cycles

Hydrogen Sulfide Test for Electronic Equipment Connectors — JEIDA-38-1984

Purpose

The purpose of this test is to determine the effects of a controlled environmentally related corrosive atmosphere on the electrical connector.

Test Method

Mated connectors shall be tested in accordance with JEIDA-38-1984.

Relative Humidity:	70 - 80 %
Temperature:	40 ± 2 °C
Duration:	96 Hours
H ₂ S:	3 ± 1 ppm

Test Results

N = 100	Initial	I/	′W	Н	I_2S
		(50 c	ycles)		
Resistance (mΩ)	R	R	ΔR	R	ΔR
Maximum:	38.17	37.14	2.35	37.26	1.42
Average:	35.27	35.46	0.19	35.05	-0.21
Minimum:	33.13	33.25	-2.83	33.27	-3.03
Standard	1.19	1.10	0.79	1.14	0.89
Deviation:					

5.3 Mechanical

Mating and Unmating Forces — EIA-364-13A

Purpose

The purpose of this test is to determine the mechanical forces required to mate and unmate electrical connectors.

Test Method

Using the tensile tester, a 50-position plug is inserted in the receptacle at 5mm/minute. The maximum load is measured. In the removal test, the receptacle is removed from the plug at 5 mm/minute and the maximum load is measured.

Test Results

	Per	Per
	connector	contact
Force:	N [kgf]	N [gf]
Mating:	43.1 [4.4] Max	0.86 [88] Max.
Unmating:	26.5 [2.7] Min.	0.53 [54] Min.

Durability

Purpose

The purpose of this test is to determine the effects of subjecting electrical connectors to a conditioning action of mating and unmating of connector simulating operations approximating the life of the connector.

Test Method

The plug and receptacle were mated and un-mated manually 500 times at the approximate rate of one cycle per second. Contact resistance was measured at completion.

Document Number:	PD-0053-A
Title:	Product Data Sheet
Subject:	3M [™] Mini Delta Ribbon (MDR) Surface Mount,
	Right Angle Receptacle

Issue Da	ate:	May	y 16, 2008	
Supersedes:		Initial Release		
Page:	9	of	11	

Test Results

<i>N</i> = <i>100</i>	Initial R (mΩ)	Final ΔR (m Ω)
Maximum:	37.80	9.76
Average:	34.30	0.43
Minimum:	32.61	-4.56
Standard Deviation:	1.18	1.40

Condition: 500 Cycles

Mechanical Shock — MIL-STD-202F Method 213B

Purpose

This test is conducted to determine the suitability of connectors when subjected to shocks such as those expected from rough handling, transportation and operation.

Test Method

Mated connectors shall be tested in accordance with MIL-STD-202F Method 213B, Test Condition A.

Normal Duration:	11 milliseconds
Peak Acceleration:	50 g
Wave form:	Half Sine
Cycles:	3 times each in +/- X, Y & Z directions

Test Results

<i>N</i> = 100	Initial R	Final ∆R
	$(m\Omega)$	$(m\Omega)$
Maximum:	28.88	14.86
Average:	19.27	0.18
Minimum:	4.90	-9.64
Standard Deviation:	4.65	1.66

Solder Heat Resistance (Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices) — JEDEC J-STD-020C.

Purpose

The purpose of this standard is to identify the classification level of nonhermetic solid state surface mount devices (SMDs) that are sensitive to moisture-induced stress so that they can be properly packaged, stored, and handled to avoid damage during assembly solder reflow attachment and/or repair operations.

Test Method

Surface mount connectors shall be tested in accordance with JEDEC J-STD-020C.

Process: Baking \rightarrow Moisture soak \rightarrow Reflow \rightarrow Room temp. \rightarrow Reflow \rightarrow Room temp. \rightarrow Reflow

(1) Pre-Treatment/Baking: 24 hours minimum at 125 +5/-0 °C.

- (2) Pre-Treatment/Moisture Soak: 85 °C/ 85% relative humidity for 168 +5/-0 hours.
- (3) Reflow Soldering: The samples are mounted on the board under the following soldering conditions.

Test Board:	FR-4 or higher grade, 1.6mm thickness, thickness of copper foil 0.035 mm, with pre-flux treatment. Through hole diameter and land shape of each terminal were designed under each recommended pc board foot pattern.
Reflow:	Preheat: 150 to 200 °C for 60 to 180 seconds Soldering: more than 217 °C for 60 to 150seconds Peak 255 to 260 °C for 20 to 40seconds

Document Number:	PD-0053-A
Title:	Product Data Sheet
Subject:	3M [™] Mini Delta Ribbon (MDR) Surface Mount,
	Right Angle Receptacle

Issue I	Date:	Ma	y 16, 2008
Superse	edes:	Init	ial Release
Page:	10	of	11

TEST TEST CONDTION	SAMPLE	RESULT		
	(JEDEC J-STD-020C)	5.1	Appearance	Wiper Gap
Solder Heat	Bake Moisture Soak	102XX-1210 XE	Passed	Passed
Resistance	Reflow – 3 times	102XX-1S10 XE	Passed	Passed

There were not any appearance changes (such as melting, crazing or blistering) on the bodies. The discoloration levels by each sample were very slight. The changes of the wiper gaps (distance between opposite contacts on mating side) were slight.

5.4 Electrical

Dielectric Withstanding Voltage — MIL-STD-202F Method 301

Purpose

Tost Rosults

The purpose of this test is to prove that a given electrical connector can operate safely at its rated voltage and withstand momentary overpotentials due to switching, surges, and other similar phenomena.

Test Method

Withstanding voltage shall be tested in accordance with MIL-STD-202F Method 301.

Applied Voltage:	500 VAC _{RMS} @ Sea Level
Duration:	1 minute
Observation:	No evidence of a breakdown

Test Results

All samples passed

Insulation Resistance — MIL-STD-202F Method 302

Purpose

The purpose of this test is to establish the methods and procedures to be followed in determining the resistance offered by the insulation materials and the various seals of a connector to a direct current potential tending to produce a leakage of current through or on the surface of these members.

Test Method

Insulation resistance shall be tested in accordance with MIL-STD-202F Method 302, Test Condition B.

Applied Voltage:	500 V _{DC}
Duration:	1 minute

Test Results

	Resistance		
Between pins:	10,000 MΩ Minimum		

Document Number:	PD-0053-A	Issue Da	ate:	May	16, 2008
Title:	Product Data Sheet	Supersedes:		Initial Release	
Subject:	3M [™] Mini Delta Ribbon (MDR) Surface Mount,	Page:	11	of	11
	Right Angle Receptacle				

Important Notice

The information we are furnishing you is being provided free of charge and is based on tests performed at 3M laboratory facilities. While we believe that these test results are reliable, their accuracy or completeness is not guaranteed. Your results may vary due to differences in test types and conditions. This information is intended for use by persons with the knowledge and technical skills to analyze, handle and use such information. You must evaluate and determine whether the product is suitable for your intended application. The foregoing information is provided "AS-IS". In providing this information 3M makes no warranties regarding product use or performance, including any implied warranty of merchantability or fitness for a particular use.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

3M:

10240-1S10PE 10250-1S10PE 10226-1S10PE 10220-1S10PE 10214-1S10PE