Programmable Shunt Regulator

KA431S, KA431SA, KA431SL

Description

The KA431S / KA431SA / KA431SL are three–terminal adjustable regulator series with a guaranteed thermal stability over the operating temperature range. The output voltage can be set to any value between V_{REF} (approximately 2.5 V) and 36 V with two external resistors. These devices have a typical dynamic output impedance of 0.2 Ω . Active output circuitry provides a sharp turn–on characteristic, making these devices excellent replacement for zener diodes in many applications.

Features

- Programmable Output Voltage to 36 V
- Low Dynamic Output Impedance 0.2 Ω (Typical)
- Sink Current Capability: 1.0 to 100 mA
- Equivalent Full-Range Temperature Coefficient of 50 ppm/°C (Typical)
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range
- Low Output Noise Voltage
- Fast Turn-on Response
- These Devices are Pb-Free and Halogen Free

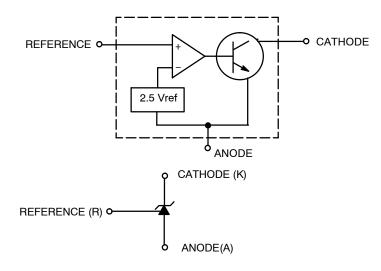


Figure 1. Block Diagram

ON Semiconductor®

www.onsemi.com

SOT23-FL3L

CASE 318AB

MF 1. Cathode

thode

Ref
 Anode

MF2

Ref
 Cathode

3. Anode

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 2 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

MARKING INFORMATION

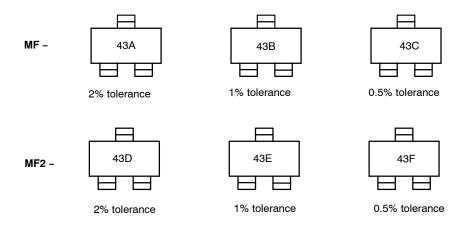


Figure 2. Top Mark (per package)

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Value	Unit
V _{KA}	Cathode Voltage	37	V
I _{KA}	Cathode Current Range (Continuous)	−100 ~ +150	mA
I _{REF}	Reference Input Current Range	−0.05 ~ +10	mA
$R_{ heta JA}$	Thermal Resistance Junction-Air (Note 1) (Note 2) MF Suffix Package	350	°C/W
I _{REF}	Power Dissipation (Note 3) (Note 4) MF Suffix Package	350	mW
TJ	Junction Temperature	150	°C
T _{OPR}	Operating Temperature Range	−25 ~ +85	°C
T _{STG}	Storage Temperature Range	−65 ~ +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Thermal resistance test board:
 - Size: 1.6 mm x 76.2 mm x 114.3 mm (1S0P))
 - JEDEC Standard: JESD51-3, JESD51-7
- 2. Assume no ambient airflow.
- 3. $T_{JMAX} = 150$ °C; Ratings apply to ambient temperature at 25°C.
- 4. Power dissipation calculation: $P_D = (T_J T_A) / R_{\theta JA}$.

RECOMMENDED OPERATING RANGES

Symbol	Parameter	Min.	Max.	Unit
V_{KA}	Cathode Voltage	V_{REF}	36	V
I _{KA}	Cathode Current	1	100	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (Note 5)

Values are at T_A = 25°C unless otherwise noted

				-	KA431S	3	KA431SA		A	KA431SL			
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{REF}	Reference Input Voltage	V _{KA} = V _{RE}	$V_{KA} = V_{REF}$, $I_{KA} = 10 \text{ mA}$		2.500	2.550	2.470	2.495	2.520	2.482	2.495	2.508	V
ΔV _{REF} /ΔT	Deviation of Reference Input Voltage Over– Temperature	$V_{KA} = V_{REF}, I_{KA} = 10 \text{ mA},$ $T_{MIN} \le T_A \le T_{MAX}$		-	4.5	17.0	-	4.5	17.0	-	4.5	17.0	mV
$\Delta V_{REF}/\Delta V_{KA}$	Ratio of Change in Reference Input Voltage	I _{KA} = 10 mA	ΔV _{KA} = 10 V - V _{REF}	_	-1.0	-2.7	_	-1.0	-2.7	_	-1.0	-2.7	mV/V
	to the Change in Cathode Voltage		ΔV _{KA} = 36 V - 10 V	_	-0.5	-2.0	_	-0.5	-2.0	_	-0.5	-2.0	
I _{REF}	Reference Input Current	I_{KA} = 10 mA, R1 = 10 kΩ, R2 = ∞		_	1.5	4.0	_	1.5	4.0	_	1.5	4.0	μΑ
ΔI _{REF} /ΔΤ	Deviation of Reference Input Current Over Full Temperature Range	I_{KA} = 10 mA, R1 = 10 kΩ, R2 = ∞ T_A = Full Range		-	0.4	1.2	-	0.4	1.2	-	0.4	1.2	μΑ
I _{KA(MIN})	Minimum Cathode Current for Regulation	$V_{KA} = V_{REF}$		_	0.45	1.00	-	0.45	1.00	-	0.45	1.00	mA
I _{KA(OFF)}	Off-Stage Cathode Current	V _{KA} = 36 V, V _{REF} = 0		_	0.05	1.00	_	0.05	1.00	_	0.05	1.00	μΑ
Z _{KA}	Dynamic Impedance	I _{KA} = 1	$V_{KA} = V_{REF}$, $I_{KA} = 1 \text{ to } 100 \text{ mA}$, $f \ge 1.0 \text{ kHz}$		0.15	0.50	-	0.15	0.50	-	0.15	0.50	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. $T_{MIN} = -25^{\circ}C$, $T_{MAX} = +85^{\circ}C$

TEST CIRCUITS

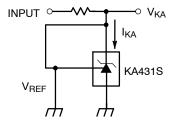


Figure 3. Test Circuit for $V_{KA} = V_{REF}$

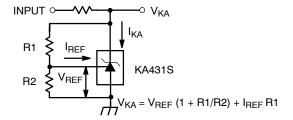


Figure 4. Test Circuit for $V_{KA} \ge V_{REF}$

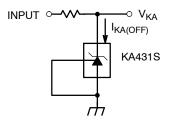


Figure 5. Test Circuit for $I_{KA(OFF)}$

TYPICAL APPLICATIONS

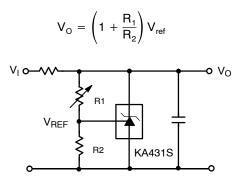


Figure 6. Shunt Regulator

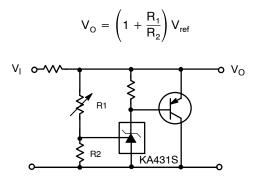


Figure 8. High Current Shunt Regulator

$$I_{O} = \frac{V_{REF}}{R_{S}}$$

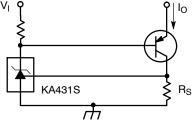


Figure 10. Constant-Current Sink

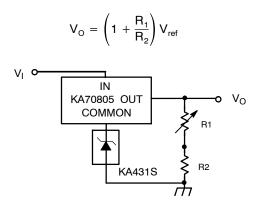


Figure 7. Output Control for Three-Terminal Fixed Regulator

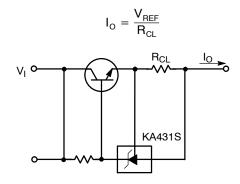


Figure 9. Current limit or Current Source

TYPICAL CHARACTERISTICS

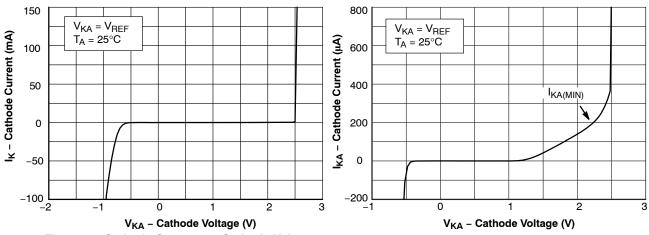


Figure 11. Cathode Current vs. Cathode Voltage

Figure 12. Cathode Current vs. Cathode Voltage

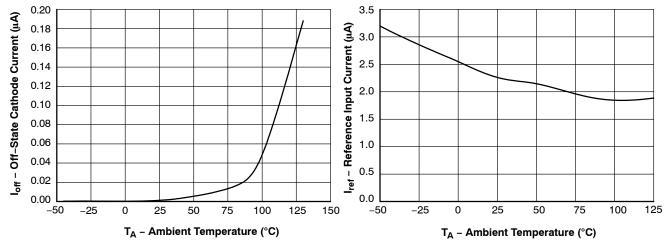


Figure 13. OFF-State Cathode Current vs. **Ambient Temperature**

60

50

40

30

20

10

0

-10

1k

Open Loop Voltage Gain (dB)

6 $T_A = 25^{\circ}C$ ΊΝΡυΤ Voltage Swing (V) 3 OUTPUT 2

T_A = 25°C $I_{KA} = 10 \text{ mA}$

100k

Frequency (Hz)

1M

Figure 15. Frequency vs. Small Signal **Voltage Amplification**

10k

Figure 14. Reference Input Current vs. Ambient Temperature

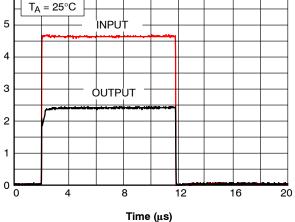


Figure 16. Pulse Response

10M

TYPICAL CHARACTERISTICS (Continued)

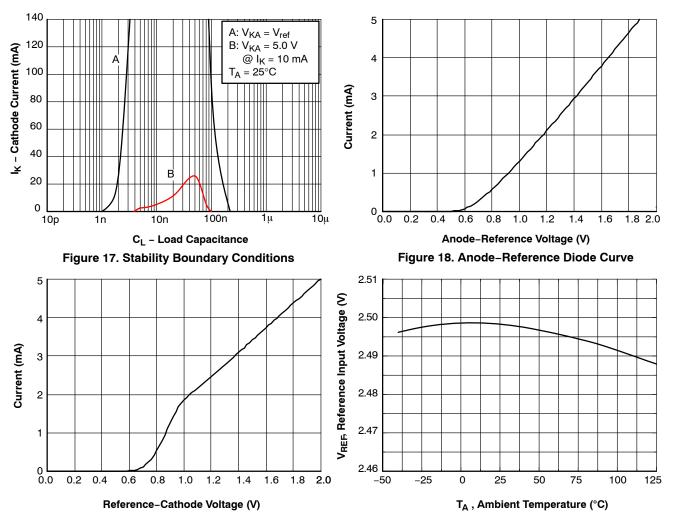
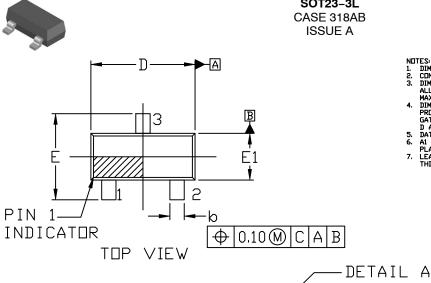


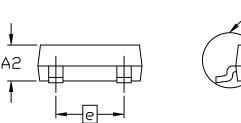
Figure 19. Reference-Cathode Diode Curve


Figure 20. Reference Input Voltage vs. Ambient Temperature

ORDERING INFORMATION

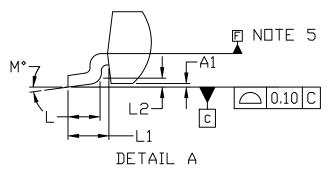
Part Number	Output Voltage Tolerance	Operating Temperature Range	Top Mark	Package	Shipping [†]
KA431SMFTF	2%	−25 to +85°C	43A	SOT23-FL3L	3000 / Tape and Reel
KA431SMF2TF			43D	(Pb-Free)	
KA431SAMFTF	1%		43B	1	
KA431SAMF2TF			43E	1	
KA431SLMFTF	0.5%		43C	1	
KA431SLMF2TF			43F]	ļ

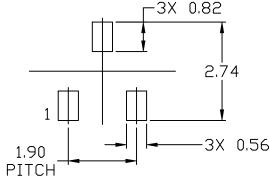
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


SOT23-3L CASE 318AB

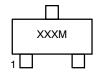
DATE 14 DEC 2021

- TES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
 CONTROLLING DIMENSION: MILLIMETERS
 DIMENSION & DUES NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE PROTRUSION SHALL BE 0.127 mm IN EXCESS OF
 MAXIMUM MATERIAL CONDITION.
 DIMENSIONS D AND EI DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSIONS
 D AND EI ARE DETERMINED AT DATUM F.
 DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
 AI IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING
 PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.


	PLANE	. TO	THE	LOVE:	ST P	DINT	ΠN	THE	PAC	KAGE I	BODY.	
7.	LEAD	THIC	KNESS	(2)	AND	LEAI) VI	DTH	(b)	INCLUI	DE PI	_ATING
	THICK	NESS	: .									


	MILLIMETERS							
DIM	MIN.	NDM.	MAX.					
Α			1.15					
A1	0.00		0.10					
A2	0.90	1.00	1.10					
b	0.30		0.50					
c	0.127 REF							
D	2.80	2.90	3.00					
E	2.25	2.40	2.55					
E1	1.20	1.30	1.40					
e		1.90 BSC						
L	0.30							
L1	0.55 REF							
L2	1	0.25 REF						
М	0*	8*						

END VIEW



RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON27911H	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOT23-3L		PAGE 1 OF 1			

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

KA431SMF2TF KA431SAMF2TF KA431SMFTF KA431SMFTF KA431SAMFTF