6-Pin DIP Schmitt Trigger Output Optocoupler

H11L1M, H11L2M, H11L3M

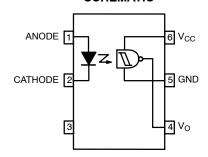
Description

The H11LXM series has a high-speed integrated circuit detector optically coupled to a gallium-arsenide infrared emitting diode. The output incorporates a Schmitt trigger, which provides hysteresis for noise immunity and pulse shaping. The detector circuit is optimized for simplicity of operation and utilizes an open-collector output for maximum application flexibility.

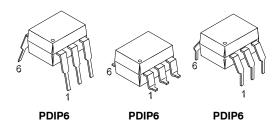
Features

- High Data Rate, 1 MHz Typical (NRZ)
- Free from Latch-up and Oscillation Throughout Voltage and Temperature Ranges
- Microprocessor Compatible Drive
- Logic Compatible Output Sinks 16 mA at 0.4 V Maximum
- Guaranteed On/Off Threshold Hysteresis
- Wide Supply Voltage Capability, Compatible with All Popular Logic Systems
- Safety and Regulatory Approvals:
 - ◆ UL1577, 4,170 VAC_{RMS} for 1 Minute
 - DIN-EN/IEC60747-5-5, 850 V Peak Working Insulation Voltage

Applications

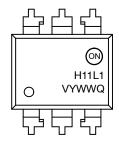

- Logic-to-Logic Isolator
- Programmable Current Level Sensor
- Line Receiver Eliminate Noise and Transient Problems
- AC to TTL Conversion Square Wave Shaping
- Digital Programming of Power Supplies
- Interfaces Computers with Peripherals

ON Semiconductor®


www.onsemi.com

SCHEMATIC

Truth Table


Input	Output
Н	L
L	Н

MARKING DIAGRAM

CASE 646BY

CASE 646BZ

H11L1 = Specific Device Code

V = DIN EN/IEC40747-5-5 Option Y = Year Code

WW = Work Week

CASE 646BX

Q = Assembly Package Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

SAFETY AND INSULATION RATINGS

As per DIN EN/IEC 60747–5–5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics
Installation Classifications per DIN VDE	< 150 V _{RMS}	I–IV
0110/1.89 Table 1, For For Rated Mains Voltage	< 300 V _{RMS}	I–IV
Climatic Classification	55/100/21	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index		175

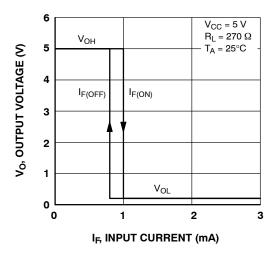
Symbol	Parameter	Value	Units
V_{PR}	Input–to–Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	1360	V_{peak}
	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with t_m = 1 s, Partial Discharge < 5 pC	1594	V_{peak}
V _{IORM}	Maximum Working Insulation Voltage	850	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	6000	V_{peak}
	External Creepage	≥7	mm
	External Clearance	≥7	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥10	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥0.5	mm
T _S	Case Temperature (Note 1)	175	°C
I _{S,INPUT}	Input Current (Note 1)	350	mA
P _{S,OUTPUT}	Output Power (Note 1)	800	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V (Note 1)	>10 ⁹	Ω

^{1.} Safety limit values – maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameters	Value	Units
OTAL DEVIC	E	·	
T _{STG}	Storage Temperature	-40 to +125	°C
T _{OPR}	Operating Temperature	-40 to +85	°C
TJ	Junction Temperature	-40 to +125	°C
T _{SOL}	Lead Solder Temperature	260 for 10 seconds	°C
P_{D}	Total Device Power Dissipation at 25°C	250	mW
	Derate Above 25°C	2.94	mW/°C
MITTER			
Ι _F	Continuous Forward Current	30	mA
V _R	Reverse Voltage	6	V
I _F (pk)	Forward Current - Peak (1 µs pulse, 300 pps)	100	mA
P_{D}	LED Power Dissipation	60	mW
ETECTOR			
P_{D}	Detector Power Dissipation	150	mW
Vo	V ₄₅ Allowed Range	0 to 16	V
V _{CC}	V ₆₅ Allowed Range	3 to 16	V
Io	I ₄ Output Current	50	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


FI FCTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Device	Min	Тур	Max	Units
NDIVIDUAL	COMPONENT CHARACTERIST	ics					
mitter							
V _F	Input Forward Voltage	I _F = 10 mA	All		1.2	1.5	V
		I _F = 0.3 mA		0.75	1.0		1
I _R	Reverse Current	V _R = 3 V	All			10	μΑ
CJ	Capacitance	V = 0, f = 1.0 MHz	All			100	pF
etector		•					-
V _{CC}	Operating Voltage Range		All	3		15	V
I _{CC(off)}	Supply Current	I _F = 0, V _{CC} = 5 V	All		1.6	5.0	mA
I _{OH}	Output Current, High	$I_F = 0$, $V_{CC} = V_O = 15 V$	All			100	μΑ
RANSFER	CHARACTERISTICS						-
C Character							
I _{CC(on)}	Supply Current	I _F = 10 mA, V _{CC} = 5 V	All		1.6	5.0	mA
V _{OL}	Output Voltage, Low	$R_L = 270 \Omega$, $V_{CC} = 5 V$, $I_F = I_{F(on)}$ max.	All		0.2	0.4	V
I _{F(on)}	Turn–On Threshold Current (Note 2) $R_L = 270 \ \Omega, \ V_{CC} = 5 \ V$	$R_L = 270 \Omega, V_{CC} = 5 V$	H11L1M			1.6	mA
		H11L2M			10.0		
			H11L3M			5.0	
I _{F(off)}	Turn-Off Threshold Current	$R_L = 270 \Omega, V_{CC} = 5 V$	All	0.3	1.0		mA
I _{F(off)} /I _{F(on)}	Hysteresis Ratio	$R_L = 270 \Omega, V_{CC} = 5 V$	All	0.50	0.75	0.90	
C Character	istics, Switching Speed						
t _{on}	Turn-On Time	$R_L = 270 \Omega, V_{CC} = 5 V,$	All		1.0	4.0	μs
t _f	Fall Time	$I_F = I_{F(on)}, T_A = 25^{\circ}C$	All		0.1		
t _{off}	Turn-Off Time		All		1.2	4.0	
t _r	Rise Time		All		0.1		
	Data Rate		All		1.0		MHz
SOLATION	CHARACTERISTICS						
V _{ISO}	Input-Output Isolation Voltage	t = 1 Minute	4170				VAC _{RM}
C _{ISO}	Isolation Capacitance	V _{I-O} = 0 V, f = 1 MHz			0.4	0.6	pF
R _{ISO}	Isolation Resistance	V _{I-O} = ±500 VDC, T _A = 25°C	10 ¹¹				Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Maximum IF(ON) is the maximum current required to trigger the output. For example, a 1.6 mA maximum trigger current would require the LED to be driven at a current greater than 1.6 mA to guarantee the device turns on. A 10% guard band is recommended to account for degradation of the LED over its lifetime. The maximum allowable LED drive current is 30 mA.

TYPICAL PERFORMANCE CURVES

Figure 1. Transfer Characteristics

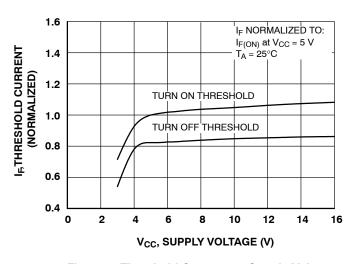


Figure 2. Threshold Current vs. Supply Voltage

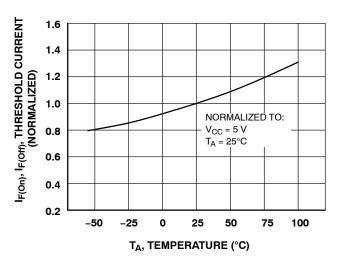


Figure 3. Threshold Current vs. Supply Temperature

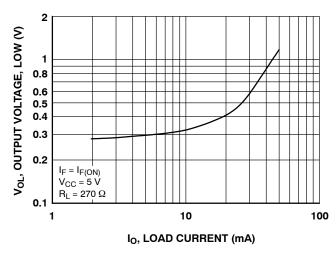


Figure 4. Output Voltage, Low vs. Load Current

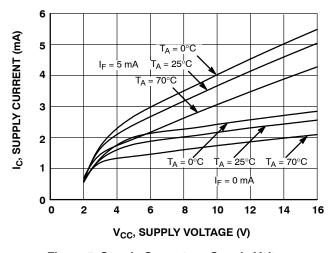


Figure 5. Supply Current vs. Supply Voltage

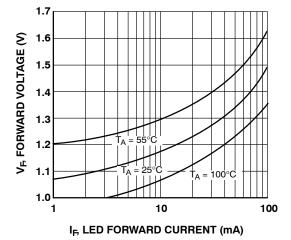


Figure 6. LED Forward Voltage vs. Forward Current

TYPICAL PERFORMANCE CURVES (continued)

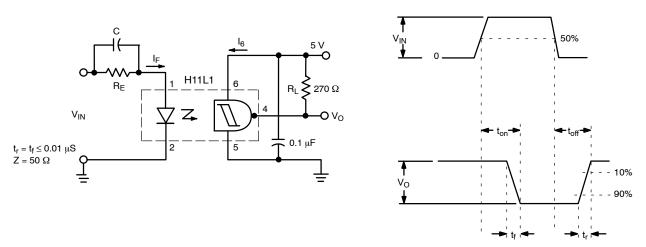


Figure 7. Switching Test Circuit and Waveforms

REFLOW PROFILE

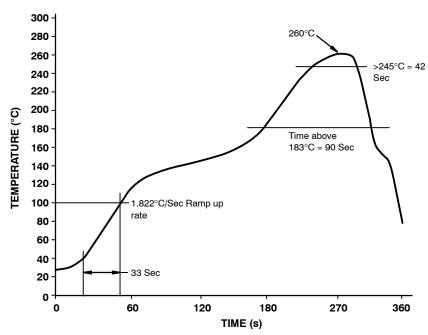
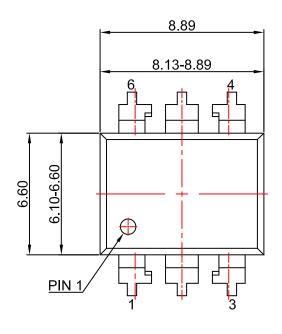


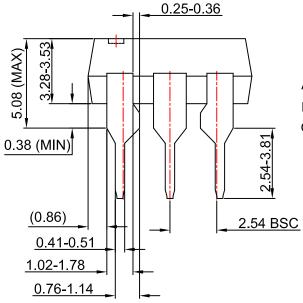
Figure 8. Reflow Profile

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Package	Shipping [†]
H11L1M	DIP 6-Pin	50 Units/Tube
H11L1SM	SMT 6-Pin (Lead Bend)	50 Units/Tube
H11L1SR2M	SMT 6-Pin (Lead Bend)	1000 Units/Tape & Reel
H11L1VM	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	50 Units/Tube
H11L1SVM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	50 Units/Tube
H11L1SR2VM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	1000 Units/Tape & Reel
H11L1TVM	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	50 Units/Tube


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

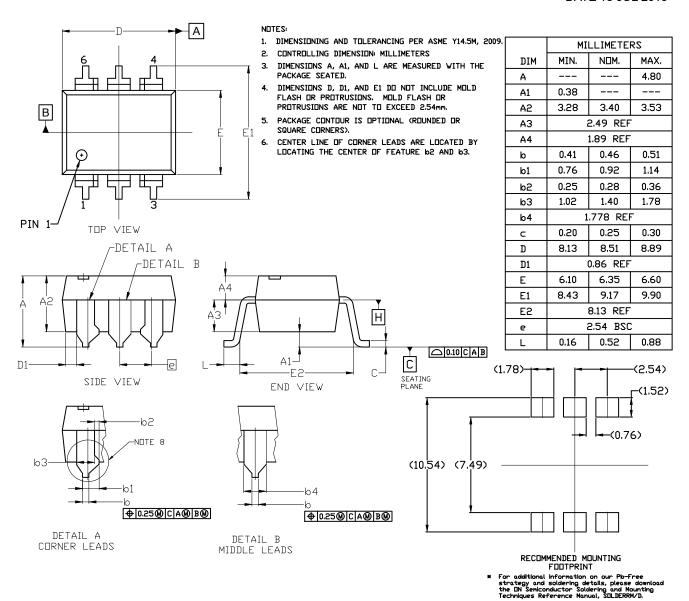
^{3.} The product orderable part number system listed in this table also applies to the H11L2M and H11L3M product families.



PDIP6 8.51x6.35, 2.54P CASE 646BX ISSUE O

DATE 31 JUL 2016

NOTES:

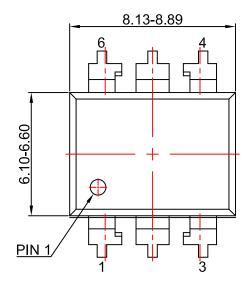

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

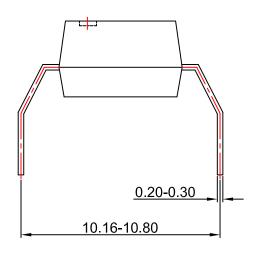
DOCUMENT NUMBER:	98AON13449G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PDIP6 8.51X6.35, 2.54P		PAGE 1 OF 1	

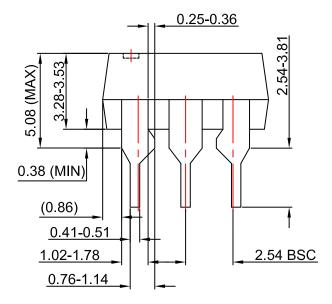
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

PDIP6 8.51x6.35, 2.54P CASE 646BY ISSUE A

DATE 15 JUL 2019




DOCUMENT NUMBER:	98AON13450G	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PDIP6 8.51x6.35, 2.54P		PAGE 1 OF 1	


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

PDIP6 8.51x6.35, 2.54P CASE 646BZ ISSUE O

DATE 31 JUL 2016

NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

DOCUMENT NUMBER:	98AON13451G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PDIP6 8.51X6.35, 2.54P		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

H11L3SR2VM H11L1SR2VM H11L3VM H11L3SM H11L2SR2M H11L1SM H11L1SVM H11L2SVM H11L2SVM H11L2SWM H11L2SWM H11L3SVM H11L3SR2M H11L3TVM H11L1SR2M H11L1SR2W H11L2SR2VM H11L1VM H11L1WM H11L1SR2M H11L1SR2W H11L1SR2WM H11L1FR2VM H11L1SR2M_F132 H11L3FR2VM H11L1FVM H11L1FR2M H11L2FR2M H11L2FM H11L1FM H11L1TM H11L1M_F132 H11L2FVM H11L2FR2VM H11L2FR2VM H11L3FR2VM H11L1TVM_F132 H11L2FVM H11L2FR2VM H11L3FR2VM H11L3TM H11L1TVM_F132 H11L2SVM H11L3SWM H11L1SWM H11L3SWM H11L1SWM H11L1SWM H11L1SWM H11L3SWM H11L1SWM H11L3SWM H11L1SWM H11L1SWM H11L1SWM H11L3SWM H11L1SWM H11L1SWM H11L3SWM H11L1SWM H11L1SWM