Dual-Supply, 8-Bit Signal Translator with Configurable Voltage Supplies and Signals Levels, 3-State Outputs and Auto Direction Sensing FXMA108

Description

The FXMA108 is a configurable dual-voltage supply translator designed for both uni-directional and bidirectional voltage translation between two logic levels. The device allows translation between voltages as high as 5.5 V to as low as 1.65 V . The A port tracks the $\mathrm{V}_{\mathrm{CCA}}$ level and the B port tracks the $\mathrm{V}_{\mathrm{CCB}}$ level. This allows for bi-directional voltage translation over a variety of voltage levels: $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$, and 5.0 V .

The device remains in 3-state until both V_{CC} reach active levels, allowing either V_{CC} to be powered-up first. Internal power-down control circuits place the device in 3-state if either V_{CC} is removed.

The /OE input, when high, disables both the A and B Side by placing them in a 3 -state condition. The / OE input is supplied by $\mathrm{V}_{\mathrm{CCA}}$.

The FXMA108 supports bi-directional translation without the need for a direction control pin. The two sides of the device have auto-direction-sense capability. Either port may sense an input signal and transfer it as an output signal to the other port.

Features

- Bi-Directional Interface between Two Levels from 1.65 V to 5.5 V
- Fully Configurable: Inputs and Outputs Track V_{CC}
- Non-Preferential Power-Up; Either $V_{C C}$ May Be Powered-Up First
- Outputs Remain in 3-State Until Active V_{CC} Level is Reached
- Outputs Switch to $3-$ State if Either $V_{C C}$ is at GND
- Power-Off Protection
- Bus Hold On Data Inputs Eliminates the Need for Pull-Up Resistors
- Control Input (/OE) is Referenced to $\mathrm{V}_{\mathrm{CCA}}$ Voltage
- Packaged in 20-Terminal WQFN
- Direction Control Not Needed
- 80 Mbps Throughput when Translating between 2.5 V and 5.0 V
- ESD Protection Exceeds:
- 8 kV Human Body Model (B Port I/O to GND) (JESD22-A114 \& Mil Std 883e 3015.7)
- 5 kV Human Body Model (A Port I/O to GND) (JESD22-A114 \& Mil Std 883e 3015.7)
- 2 kV Charged Device Model (ESD STM 5.3) (JESD22-C101)

Applications

- Cell Phones, PDA, Digital Camera, Portable GPS, and Storage

WQFN-20 CASE 510CD

MARKING DIAGRAM

\$Y\&Z\&2\&K
FXMA108

ORDERING INFORMATION

See detailed ordering and shipping information on page 14 of this data sheet.

FXMA108
FUNCTIONAL DIAGRAM

Figure 1. Block Diagram

FUNCTIONAL TABLE

Control	Outputs
/OE	
LOW Logic Level	3-State
HIGH Logic Levl	

PIN CONFIGURATION

Figure 2. Pin Configuration (Top Through View)

PIN DEFINITIONS

Pin No.	Symbol	
1	V CCA	A-Side Power Supply
2	A0	A-Side Inputs or 3-State Outputs
3	A1	A-Side Inputs or 3-State Outputs
4	A2	A-Side Inputs or 3-State Outputs
5	A3	A-Side Inputs or 3-State Outputs
6	A4	A-Side Inputs or 3-State Outputs
7	A5	A-Side Inputs or 3-State Outputs
8	A6	A-Side Inputs or 3-State Outputs
9	A7	A-Side Inputs or 3-State Outputs
10	GND	Ground
11	/OE	Output Enable Input
12	B7	B-Side Inputs or 3-State Outputs
13	B6	B-Side Inputs or 3-State Outputs
14	B5	B-Side Inputs or 3-State Outputs
15	B4	B-Side Inputs or 3-State Outputs
16	B3	B-Side Inputs or 3-State Outputs
17	B2	B-Side Inputs or 3-State Outputs
18	B1	B-Side Inputs or 3-State Outputs
19	B0	B-Side Inputs or 3-State Outputs
20	VCCB	B-Side Power Supply
DAP	NC	No Connect

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Condition	Min	Max	Unit
V_{CC}	Supply Voltage		$\mathrm{V}_{\text {CCA }}$	-0.5	7.0	V
			$V_{\text {CCB }}$	-0.5	7.0	
V_{IN}	DC Input Voltage		I/O Side A and B	-0.5	7.0	V
			Control Input (/OE)	-0.5	7.0	
V_{O}	Output Voltage		Output 3-State	-0.5	7.0	V
			Output Active (A_{n}) (Note 1)	-0.5	$\mathrm{V}_{\mathrm{CCA}}+0.5$	
			Output Active (B_{n}) (Note 1)	-0.5	$\mathrm{V}_{\text {CCB }}+0.5$	
I_{IK}	DC Input Diode Current		$\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$		-50	mA
lok	DC Output Diode Current		$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$		-50	mA
			$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$		+50	
$\mathrm{IOH}^{\prime} / \mathrm{loL}$	DC Output Source/Sink Current			-50	+50	mA
I_{CC}	DC V ${ }_{C C}$ or Ground Current (Per Supply Pin)				± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range			-65	+150	${ }^{\circ} \mathrm{C}$
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22A114, and Mil Std 883e 3015.7	B Port I/O to GND		8000	V
		Human Body Model, JESD22A114 and Mil Std 883e 3015.7	A Port I/O to GND		5000	
		Charged Device Model, JESD22-C101 per ESD STM 5.3			2000	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. I_{0} absolute maximum ratings must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Typ	Max	Unit
V_{CC}	Power Supply	Operating $\mathrm{V}_{\mathrm{CCA}}$ or $\mathrm{V}_{\mathrm{CCB}}$	1.65	5.50	V
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage	Side A and B	0	5.5	V
		Control Input (/OE)	0	$\mathrm{~V}_{\mathrm{CCA}}$	V
T_{A}	Operating Temperature, Free Air		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dV}$	Input Edge Rate	$\mathrm{V}_{\mathrm{CCA} / \mathrm{B}}=1.65 \mathrm{~V}$ to 5.5 V		10	$\mathrm{~ns} / \mathrm{V}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
2. All unused inputs and input/outputs must be held at $\mathrm{V}_{\mathrm{CCI}}$ or GND . $\mathrm{V}_{\mathrm{CCI}}$ is the V_{CC} associated with the input side.

Power-Up/Power-Down Sequence

onsemi translators offer an advantage in that either V_{CC} may be powered up first. This benefit derives from the chip design. When either V_{CC} is at 0 V , outputs are in a high-impedance state. The control input (/OE) is designed to track the $\mathrm{V}_{\mathrm{CCA}}$ supply. A pull-up resistor tying /OE to $\mathrm{V}_{\mathrm{CCA}}$ should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up or power-down. The size of the pull-up resistor is based upon the current-sinking capability of the device driving the /OE pin.
The recommended power-up sequence is:

1. Apply power to the first V_{CC} -
2. Apply power to the second V_{CC}.
3. Drive the /OE input LOW to enable the device.

The recommended power-down sequence is:

1. Drive /OE input HIGH to disable the device.
2. Remove power from either V_{CC}.
3. Remove power from the other V_{CC}.

Pull-Up/Pull-Down Resistors

Do not use pull-up or pull-down resistors. This device has bus-hold circuits: pull-up or pull-down resistors are not recommended because they interfere with the output state. The current through these resistors may exceed the hold drive, $I_{I_{(H O L D)}}$ and/or $I_{(O D)}$ bus-hold currents. The bus-hold feature eliminates the need for extra resistors.

DC ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cca }}(\mathrm{V})$	$\mathrm{V}_{\text {ccb }}(\mathrm{V})$	Min	Max	Unit
$\mathrm{V}_{\text {IHA }}$	High Level Input Voltage	Data Inputs An Control Pin /OE	1.65-5.50	1.65-5.50	$0.65 \times \mathrm{V}_{\text {CCA }}$		V
$\mathrm{V}_{\text {IHB }}$		Data Inputs Bn	1.65-5.50	1.65-5.50	$0.65 \times \mathrm{V}_{\text {CCA }}$		
$\mathrm{V}_{\text {ILA }}$	Low Level Input Voltage	Data Inputs An Control Pin /OE	1.65-5.50	1.65-5.50		$0.35 \times \mathrm{V}_{\text {CCA }}$	V
$\mathrm{V}_{\text {ILB }}$		Data Inputs Bn	1.65-5.50	1.65-5.50		$0.35 \times \mathrm{V}_{\text {CCA }}$	
$\mathrm{V}_{\text {OHA }}$	High Level Output Voltage (Note 3)	$\mathrm{I}_{\mathrm{OH}}=20 \mu \mathrm{~A}$	1.65-5.50	1.65-5.50	$\mathrm{V}_{\text {CCA }}-0.4$		V
$\mathrm{V}_{\text {OHB }}$		$\mathrm{I}_{\mathrm{OH}}=20 \mu \mathrm{~A}$	1.65-5.50	1.65-5.50	$\mathrm{V}_{\text {CCB }}-0.4$		
$\mathrm{V}_{\text {OLA }}$	Low Level Output Voltage (Note 3)	$\mathrm{I}_{\text {OL }}=20 \mu \mathrm{~A}$	1.65-5.50	1.65-5.50		0.4	V
$\mathrm{V}_{\text {OLB }}$		$\mathrm{IOL}^{2}=20 \mu \mathrm{~A}$	1.65-5.50	1.65-5.50		0.4	
$l_{\text {(HOLD) }}$	Bushold Input Minimum Drive Current	$\mathrm{V}_{\text {IN }}=1.60 \mathrm{~V}$	4.5	4.5	140		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=2.90 \mathrm{~V}$	4.5	4.5	-140		
		$\mathrm{V}_{\text {IN }}=1.05 \mathrm{~V}$	3.0	3.0	75		
		$\mathrm{V}_{\mathrm{IN}}=1.95 \mathrm{~V}$	3.0	3.0	-75		
		$\mathrm{V}_{\text {IN }}=0.80 \mathrm{~V}$	2.3	2.3	45		
		$\mathrm{V}_{\mathrm{IN}}=1.50 \mathrm{~V}$	2.3	2.3	-45		
		$\mathrm{V}_{\text {IN }}=0.57 \mathrm{~V}$	1.65	1.65	25		
		$\mathrm{V}_{\text {IN }}=1.07 \mathrm{~V}$	1.65	1.65	-25		
$\mathrm{I}_{(\text {(ODH) }}$	Bushold Input Overdrive High Current (Note 4)	Data Inputs An, Bn	5.5	5.5	750		$\mu \mathrm{A}$
			3.6	3.6	450		
			2.7	2.7	300		
			1.95	1.95	200		
$\mathrm{I}_{(\text {(ODL) }}$	Bushold Input Overdrive Low Current (Note 5)	Data Inputs An, Bn	5.5	5.5	-750		$\mu \mathrm{A}$
			3.6	3.6	-450		
			2.7	2.7	-300		
			1.95	1.95	-200		
1	Input Leakage Current	Control Inputs /OE $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CCA}}$ or GND	1.65-5.50	5.5		± 1	$\mu \mathrm{A}$
IoFF	Power Off Leakage Current	An, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 5.5 V	0	5.5		± 2	$\mu \mathrm{A}$
		$\mathrm{Bn}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 5.5 V	5.5	0		± 2	
l O	3-State Output Leakage	$\begin{aligned} & \mathrm{An}, \mathrm{Bn} \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \text {, } \\ & / \mathrm{OE} \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	5.5	5.5		± 5	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{An}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V}, \\ & / \mathrm{OE}=\mathrm{GND} \end{aligned}$	5.5	0		± 5	
		$\begin{aligned} & \mathrm{Bn}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V}, \\ & / \mathrm{OE}=\mathrm{GND} \end{aligned}$	0	5.5		± 5	
$\mathrm{I}_{\text {CCA/B }}$	Quiescent Supply Current (Notes 6, 7)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CCI}} \text { or GND, } \mathrm{I}_{\mathrm{O}}=0 \\ & / \mathrm{OE}=\mathrm{GND} \end{aligned}$	1.65-5.50	1.65-5.50		10	$\mu \mathrm{A}$
ICCZ		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CCI}} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0 \\ & / \mathrm{OE}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	1.65-5.50	1.65-5.50		10	
ICCA	Quiescent Supply Current (Notes 6, 7)	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{CCB}} \text { or GND, } \mathrm{I}=0 \\ & \mathrm{~B}-\text {-to-A Direction } \\ & / \mathrm{OE}=\mathrm{GND} \end{aligned}$	0	1.65-5.50		-10	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}=\mathrm{V}_{\mathrm{CCA}} \text { or GND, } \mathrm{I}_{\mathrm{O}}=0}^{\text {A-to-B }} \end{aligned}$	1.65-5.50	0		10	

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ (continued)

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cca }}(\mathrm{V})$	$\mathrm{V}_{\text {ccB }}(\mathrm{V})$	Min	Max	Unit
$I_{\text {CCB }}$	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CCA }} \text { or GND, } \mathrm{I}_{\mathrm{O}}=0 \\ & \text { A-to- } \mathrm{B} \text { Direction } \\ & / \mathrm{OE}=\mathrm{GND} \end{aligned}$	1.65-5.50	0		-10	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CCB }} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0 \\ & \mathrm{~B} \text {-to-A } \end{aligned}$	0	1.65-5.50		10	

3. This is the output voltage for static conditions.
4. An external driver must source at least the specified current to switch LOW-to-HIGH.
5. An external driver must source at least the specified current to switch HIGH-to-LOW.
6. $\mathrm{V}_{\mathrm{CCI}}$ is the V_{CC} associated with the input side.
7. Reflects current per supply, $\mathrm{V}_{\mathrm{CCA}}$ or $\mathrm{V}_{\mathrm{CCB}}$.

DYNAMIC OUTPUT ELECTRICAL CHARACTERISTICS
A PORT (An) (Output Load: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{M} \Omega$.) (Note 8)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				Unit
		$\mathrm{V}_{\text {ccA }}=4.5 \mathrm{~V}$ to 5.5 V	$\mathrm{V}_{\text {cCA }}=3.0 \mathrm{~V}$ to 3.6 V	$\mathrm{V}_{\text {CCA }}=2.3 \mathrm{~V}$ to 2.7 V	$\mathrm{V}_{\text {CCA }}=1.65 \mathrm{~V}$ to 1.95 V	
		Max	Max	Max	Max	
$\mathrm{t}_{\text {rise }}$	Output Rise Time A Side (Note 9)	2.5	3.0	3.5	4.0	ns
$\mathrm{t}_{\text {fall }}$	Output Fall Time A Side (Note 10)	2.5	3.0	3.5	4.0	ns

DYNAMIC OUTPUT ELECTRICAL CHARACTERISTICS

B PORT (Bn) (Output Load: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{M} \Omega$.) (Note 8)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				Unit
		$\mathrm{V}_{\mathrm{CCB}}=4.5 \mathrm{~V}$ to 5.5 V	$\mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V}$ to 3.6 V	$\mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V}$ to 2.7 V	$\mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V}$ to 1.95 V	
		Max	Max	Max	Max	
$\mathrm{t}_{\text {rise }}$	Output Rise Time B Side (Note 9)	3.5	3.5	3.5	4.0	ns
$\mathrm{t}_{\text {fall }}$	Output Fall Time B Side (Note 10)	3.5	3.5	3.5	4.0	ns

[^0]AC CHARACTERISTICS (VCCA $=4.5 \mathrm{~V}$ to 5.5 V , Output Load) (See Table 2)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$								Unit
		$\mathrm{V}_{\text {CCB }}=4.5 \mathrm{~V}$ to 5.5 V		$\mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V}$ to 2.7 V		$\mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V}$ to 1.95 V		
		Min	Max	Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	A-to-B Side	1.5	5.0	1.75	6.0	2.0	6.5	2.6	10.5	ns
	B-to-A Side	1.5	5.0	1.75	6.0	2.0	6.5	2.6	10.5	
$\mathrm{t}_{\text {PZL, }}$, tPZH	$\begin{aligned} & \text { /OE-to-A, } \\ & \text { /OE-to-B } \end{aligned}$		1.7		1.7		1.7		1.7	us
$\mathrm{t}_{\text {skew }}$	A Port, B Side (Note 11)		0.5		0.5		0.5		0.5	ns

11. Skew is the variation of propagation delay between output signals and applies only to output signals on the same Side (An or Bn) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW). Skew is guaranteed, but not tested in production (see Figure 11).

AC CHARACTERISTICS (VCA $=3.0 \mathrm{~V}$ to 3.6 V , Output Load) (See Table 2)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$								Unit
		$\mathrm{V}_{\mathrm{CCB}}=4.5 \mathrm{~V}$ to 5.5 V		$\mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V}$ to 2.7 V		$\mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V}$ to 1.95 V		
		Min	Max	Min	Max	Min	Max	Min	Max	
tplh, $^{\text {tPHL }}$	A-to-B Side	2.0	5.5	2.2	6.5	2.4	7.5	2.6	11.0	ns
	B-to-A Side	2.0	5.5	2.2	6.5	2.4	7.5	2.6	11.0	
tpzL, tpzH	$\begin{aligned} & \text { /OE-to-A, } \\ & \text { /OE-to-B } \end{aligned}$		1.7		1.7		1.7		1.7	us
$\mathrm{t}_{\text {skew }}$	A Port, B Side (Note 12)		0.7		0.7		0.7		0.7	ns

12. Skew is the variation of propagation delay between output signals and applies only to output signals on the same Side (An or Bn) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW). Skew is guaranteed, but not tested in production (see Figure 11).

AC CHARACTERISTICS ($\mathrm{V}_{\mathrm{CCA}}=2.3 \mathrm{~V}$ to 2.7 V, Output Load) (See Table 2)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$								Unit
		$\mathrm{V}_{\text {CCB }}=4.5 \mathrm{~V}$ to 5.5 V		$\mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V}$ to 2.7 V		$\mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V}$ to 1.95 V		
		Min	Max	Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	A-to-B Side	2.0	6.5	2.2	7.7	2.4	8.5	2.6	11.0	ns
	B-to-A Side	2.0	7.0	2.2	7.5	2.4	8.5	2.6	12.0	
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	$\begin{aligned} & \text { /OE-to-A, } \\ & \text { /OE-to-B } \end{aligned}$		1.7		1.7		1.7		1.7	us
$\mathrm{t}_{\text {skew }}$	A Port, B Side (Note 13)		0.7		0.7		0.7		0.7	ns

13. Skew is the variation of propagation delay between output signals and applies only to output signals on the same Side (An or Bn) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW). Skew is guaranteed but not tested in production (see Figure 11).

AC CHARACTERISTICS ($\mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V}$ to 1.95 V , Output Load) (See Table 2)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$								Unit
		$\mathrm{V}_{\text {CCB }}=4.5 \mathrm{~V}$ to 5.5 V		$\mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V}$ to 2.7 V		$\mathrm{V}_{\text {CCB }}=1.65 \mathrm{~V}$ to 1.95 V		
		Min	Max	Min	Max	Min	Max	Min	Max	
tPLH, tPHL	A-to-B Side	2.0	10.0	2.2	11.0	2.4	12.0	2.6	14.0	ns
	B-to-A Side	2.0	10.0	2.2	10.5	2.4	11.0	2.6	14.0	
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	$\begin{aligned} & \hline \text { OE-to-A, } \\ & / \mathrm{OE}-\mathrm{to}-\mathrm{B} \end{aligned}$		1.7		1.7		1.7		1.7	$\mu \mathrm{S}$
$\mathrm{t}_{\text {skew }}$	A Port, B Side (Note 14)		1.2		1.2		1.2		1.2	ns

14. Skew is the variation of propagation delay between output signals and applies only to output signals on the same Side (An or Bn) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW). Skew is guaranteed, but not tested in production (see Figure 11).

MAXIMUM DATA RATE (For output load, see Table 2.) (Notes 15, 16)

$\mathrm{V}_{\text {cCA }}$	Direction	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				Unit
		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=4.5 \mathrm{~V} \\ \text { to } 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$	
		Min	Min	Min	Min	
$\mathrm{V}_{\text {CCA }}=4.5 \mathrm{~V}$ to 5.5 V	A-to-B	100	100	80	60	Mbps
	B-to-A	100	100	80	80	
$\mathrm{V}_{\text {CCA }}=3.0 \mathrm{~V}$ to 3.6 V	A-to-B	100	100	80	60	
	B-to-A	100	100	80	80	
$\mathrm{V}_{\mathrm{CCA}}=2.3 \mathrm{~V}$ to 2.7 V	A-to-B	80	80	60	40	
	B-to-A	80	80	60	60	
$\mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V}$ to 1.95 V	A-to-B	80	80	60	40	
	B-to-A	80	80	40	40	

15. Maximum data rate is guaranteed, but not tested in production.
16. Maximum data rate is specified in megabits per second with all outputs switching, (see Figure 10). It is equivalent to two times the F-toggle frequency, specified in megahertz. For example, 100 Mbps is equivalent to 50 MHz .

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}= \pm 25^{\circ} \mathrm{C}$)

Symbol	Parameter		Conditions	Typical	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance, Control Pin /(OE)		$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\text {CCB }}=\mathrm{GND}$	3	pF
$\mathrm{C}_{1 / \mathrm{O}}$	Input / Output Capacitance	An	$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=5.0 \mathrm{~V}, \\ & / \mathrm{OE}=\mathrm{V}_{\mathrm{CCA}} \end{aligned}$	4	pF
		Bn		5	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	28	pF

I/O ARCHITECTURE BENEFIT

The FXMA108 I/O architecture benefits the end user, beyond level translation, in the following three ways:
Auto Direction without an external direction pin.
Drive Capacitive Loads. Automatically shifts to a higher current drive mode only during "Dynamic Mode" or HL / LH transitions.

Lower Power Consumption. Automatically shifts to low-power mode during "Static Mode" (no transitions), lowering power consumption.

The FXMA108 does not require a direction pin. Instead, the I/O architecture detects input transitions on both side and automatically transfers the data to the corresponding output. For example, for a given channel, if both A and B side are at a static LOW, the direction has been established as $\mathrm{A} \rightarrow \mathrm{B}$, and a LH transition occurs on the B port; the FXMA108 internal I/O architecture automatically changes direction from $\mathrm{A} \rightarrow \mathrm{B}$ to $\mathrm{B} \rightarrow \mathrm{A}$.

During HL / LH transitions, or "Dynamic Mode," a strong (typically 30 mA) output driver drives the output channel in parallel with a weak (typically $100 \mu \mathrm{~A}$) output driver. After a typical delay of approximately $10 \mathrm{~ns}-50 \mathrm{~ns}$, the strong driver is turned off, leaving the weak driver enabled for holding the logic state of the channel. This weak driver is called the "bus hold." "Static Mode" is when only the bus hold drives the channel. The bus hold can be over ridden (typically $500 \mu \mathrm{~A}$) in the event of a direction change. The strong driver allows the FXMA108 to quickly charge and discharge capacitive transmission lines during dynamic mode. Static mode conserves power, where I_{CC} is typically $<5 \mu \mathrm{~A}$.

Bus Hold Minimum Drive Current

Specifies the minimum amount of current the bus hold driver can source/sink. The bus hold minimum drive current ($\mathrm{I}_{\mathrm{HOLD}}$) is V_{CC} dependent and guaranteed in the DC Electrical tables. The intent is to maintain a valid output state in a static mode, but that can be overridden when an input data transition occurs.

Bus Hold Input Overdrive Drive Current

Specifies the minimum amount of current required (by an external device) to overdrive the bus hold in the event of a direction change. The bus hold overdrive ($\mathrm{I}_{\mathrm{ODH}}, \mathrm{I}_{\mathrm{ODL}}$) is V_{CC} dependent and guaranteed in the DC Electrical tables.

Dynamic Output Current

The strength of the output driver during LH / HL transitions is captured in Figure $3\left(\mathrm{I}_{\mathrm{OLH}}, \mathrm{I}_{\mathrm{OHD}}\right)$. The plot depicts the FXMA108 typical dynamic output current with a lumped capacitance of 4 pF .

Because the strong output driver is turned on only during LH / HL transitions, the actual drive current is difficult to measure directly. Approximate the drive current with the following formula:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{OHD}} \approx\left(\mathrm{C}_{1 / \mathrm{O}}\right) \times \frac{\Delta \mathrm{V}_{\mathrm{OUT}}}{\Delta \mathrm{t}}=\left(\mathrm{C}_{1 / \mathrm{O}}\right) \times \frac{0.6 \times \mathrm{V}_{\mathrm{CCO}}}{\mathrm{t}_{\mathrm{RISE}}} \tag{eq.1}
\end{equation*}
$$

where $\mathrm{C}_{\mathrm{I} / \mathrm{O}}=$ the typical lumped capacitance and $\mathrm{V}_{\mathrm{CCO}}$ is the supply voltage of the output driver.

Figure 3. Typical Dynamic Output Current

FXMA108

AC TESTS AND WAVEFORMS

Figure 4. AC Test Circuit

Table 1. TEST CIRCUIT PARAMETERS

Test	Input Signal	Output Enable Control
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Data Pulses	0 V
$\mathrm{t}_{\mathrm{PZL}}$	0 V	HIGH-to-LOW Switch
$\mathrm{t}_{\mathrm{PZH}}$	$\mathrm{V}_{\mathrm{CCI}}$	HIGH-to-LOW Switch

Table 2. AC LOAD TABLE

$\mathbf{V}_{\mathbf{C c O}}$	$\mathbf{C 1}$	$\mathbf{R 1}$
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	15 pF	$1 \mathrm{M} \Omega$
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	15 pF	$1 \mathrm{M} \Omega$
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	15 pF	$1 \mathrm{M} \Omega$
$5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	15 pF	$1 \mathrm{M} \Omega$

AC TESTS AND WAVEFORMS (continued)

Figure 5. Waveform for Inverting and Non-Inverting Functions
NOTES:
17. Input $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90%.
18. Input $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to 90%, at $\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$ to 5.5 V only.

Figure 6. 3-State Output Low Enable Time for Low Voltage Logic
NOTES:
19. Input $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90%.
20. Input $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to 90%, at $\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$ to 5.5 V only.

Figure 7. 3-State Output High Enable Time for Low Voltage Logic
NOTES:
21. Input $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90%.
22. $\operatorname{Input} t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90%, at $\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$ to 5.5 V only.

AC TESTS AND WAVEFORMS (continued)

Symbol	V_{CC}
$\mathrm{V}_{\mathrm{MI}}($ Note 23 $)$	$\mathrm{V}_{\mathrm{CCI} / 2}$
$\mathrm{~V}_{\mathrm{MO}}$	$\mathrm{V}_{\mathrm{CCO} / 2}$
$\mathrm{~V}_{\mathrm{X}}$	$0.9 \times \mathrm{V}_{\mathrm{CCO}}$
V_{Y}	$0.1 \times \mathrm{V}_{\mathrm{CCO}}$

23. $\mathrm{V}_{\mathrm{CCI}}=\mathrm{V}_{\mathrm{CCA}}$ for control pin /OE or $\mathrm{V}_{\mathrm{MI}}=\left(\mathrm{V}_{\mathrm{CCA}} / 2\right)$.

Figure 8. Active Output Rise Time

Figure 9. Active Output Fall Time

Max data rate, $f=1 / \mathrm{tw}$

Figure 10. Maximum Data Rate

tskew $=($ tpHLmax -tpHLmin$)$ or (tpLHmax -tpLHmin$)$

Figure 11. Output Skew Time

FXMA108

ORDERING INFORMATION

Part Number	Operating Temperature Range	Package	Shipping †
FXMA108BQX	-40 to $85^{\circ} \mathrm{C}$	WQFN20 4.5 x 2.5, 0.5P	
(Pb-Free)	$3000 /$ Tape \& Reel		

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

WQFN2O 4.5x2.5, 0.5P
CASE 510CD
ISSUE O
DATE 31 AUG 2016

| DOCUMENT NUMBER: | 98AON13645G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WQFN20 4.5X2.5, 0.5P | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:
onsemi:
FXMA108BQX

[^0]: 8. Dynamic output characteristics are guaranteed, but not tested in production.
 9. See Figure 8.
 10. See Figure 9.
