IntelliMAX ${ }^{\text {m }}$ Ultra-Small, Slew-Rate-Controlled Load Switch

FPF1203, FPF1203L, FPF1204

Description

The FPF1203 / 03L / 04 are ultra-small integrated IntelliMAX load switches with integrated P -channel switch and analog control features. Integrated slew-rate control prevents inrush current and the resulting excessive voltage drop on the power rail. The input voltage range operates from 1.2 V to 5.5 V to provide power-disconnect capability for post-regulated power rails in portable and consumer products. The low shut-off current allows power designs to meet standby and off-power drain specifications.

The FPF120x are controlled by a logic input (ON pin) compatible with standard CMOS GPIO circuitry found on Field Programmable Gate Array (FPGA) embedded processors. The FPF120x are available in $0.76 \mathrm{~mm} \times 0.76 \mathrm{~mm} 4$-bump WLCSP.

Features

- 1.2 V to 5.5 V Input Voltage Operating Range
- Typical R_{ON} :
- $45 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
- $55 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$
- $90 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$
- $185 \mathrm{~m} \Omega$ at $\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$
- Slew Rate Control with t_{R} :
- 100 us
- Output Discharge Function on FPF1204
- Low <1.5 $\mu \mathrm{A}$ Quiescent Current
- ESD Protected: Above 7 kV HBM, 2 kV CDM
- GPIO / CMOS-Compatible Enable Circuitry
- 4-Bump, WLCSP $0.76 \mathrm{~mm} \times 0.76 \mathrm{~mm}, 0.4 \mathrm{~mm}$ Pitch
- These are Pb -Free Devices

Applications

- Mobile Devices and Smart Phones
- Portable Media Devices
- Tablet PCs
- Advanced Notebook, UMPC, MID
- Portable Medical Devices
- GPS and Navigation Equipment

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

WLCSP4 0.76x0.76x0.586 CASE 567SS

	MARKING DIAGRAM
	$\begin{aligned} & \text { X\&K } \\ & \text { X\&2 } \\ & \& . \& Z \end{aligned}$
$\begin{array}{r} \mathrm{XX}(\mathrm{QL}, \mathrm{QP}, \\ \mathrm{QM}, \mathrm{VS}) \end{array}$	= Specific Device Code
\&K	= 2-Digits Lot Run Traceability Code
\&2	$=2$-Digit Date Code
\&	= Pin One Dot
\&Z	= Assembly Pant Code

ORDERING INFORMATION
See detailed ordering and shipping information on page 8 of this data sheet.

FPF1203, FPF1203L, FPF1204
APPLICATION DIAGRAM

Figure 1. Typical Application

FUNCTIONAL BLOCK DIAGRAM

Figure 2. Functional Block Diagram (Output Discharge for FPF1204)

PIN CONFIGURATIONS

Pin 1

Figure 3. WLCSP Bumps Facing Down (Top View)

Figure 5. Pin Assignments (Top View)

Figure 4. WLCSP Bumps Facing Up (Bottom View)

Figure 6. Pin Assignments (Bottom View)

PIN DEFINITONS

Pin No.	Name	
A1	$V_{\text {OUT }}$	Switch output
A2	$V_{\text {IN }}$	Supply input: input to the power switch
B1	GND	Ground
B2	ON	ON/OFF Control, active HIGH; FPF1203/04
B2	ON	ON/OFF Control, active LOW; FPF1203L

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}, \mathrm{V}_{\text {ON }}$ to GND		-0.3	6.0	V
Isw	Maximum Continuous Switch Current at Ambient Operating Temperature		-	2.2	A
P_{D}	Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-	1.0	W
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
Θ_{JA}	Thermal Resistance, Junction-to-Ambient	1S2P with One Thermal Via (Note 1)	-	110	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		1S2P without Thermal Via (Note 2)	-	95	
ESD	Electrostatic Discharge Capability (Note 1, 2)	Human Body Model, JESD22-A114	7	-	kV
		Charged Device Model, JESD22-C101	2	-	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured using 2S2P JEDEC std. PCB.
2. Measured using 2S2P JEDEC PCB COLD PLATE Method.

FPF1203, FPF1203L, FPF1204

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{IN}	Input Voltage	1.2	5.5	
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	V	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$ to 5.5 V and $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$. Typical values are at V_{IN} $=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.)

Symbol	Parameter	Condition	Min	Typ	Max	Unit

BASIC OPERATION

V_{IN}	Supply Voltage			1.2	-	5.5	V
$\mathrm{I}_{\mathrm{Q} \text { (OFF) }}$	Off Supply Current	FPF1203/04	$\mathrm{V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=$ Open, $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	-	0.1	1.0	$\mu \mathrm{A}$
		FPF1203L	$\mathrm{V}_{\text {ON }}=\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}=$ Open, $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	-	1.0	2.0	
$I_{\text {SD }}$	Shutdown Current	FPF1203/04	$\mathrm{V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=\mathrm{GND}$	-	0.1	1.0	$\mu \mathrm{A}$
		FPF1203L	$\mathrm{V}_{\text {ON }}=\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}=\mathrm{GND}$	-	1.2	3.0	
I_{Q}	Quiescent Current	FPF1203/04	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {ON }}=\mathrm{V}_{\text {IN }},=5.5 \mathrm{~V}$	-	0.1	1.5	$\mu \mathrm{A}$
		FPF1203L	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {IN, }}=5.5 \mathrm{~V}$				
R_{ON}	On Resistance		$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	45	$\begin{gathered} 55 \\ \text { (Note 3) } \end{gathered}$	$\mathrm{m} \Omega$
			$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	55	$\begin{gathered} 65 \\ \text { (Note 3) } \end{gathered}$	
			$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	-	90	$\begin{gathered} 100 \\ \text { (Note 3) } \end{gathered}$	
			$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	185	$\begin{gathered} 220 \\ \text { (Note 3) } \end{gathered}$	
			$\begin{aligned} & \mathrm{V}_{\text {IN }}=1.8 \mathrm{~V} \text {, IOUT }=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \\ & \text { (Note 3) } \end{aligned}$	-	-	105	
R_{PD}	Output Discharge RPULL Down		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=\mathrm{OFF}, \mathrm{I}_{\text {FORCE }}=20 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{FPF} 1204 \end{aligned}$	-	65	75	Ω
V_{IH}	On Input Logic HIGH Voltage		$\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$ to 5.5 V	1.15	-	-	V
V_{IL}	On Input Logic LOW Voltage		$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$ to 5.5 V	-	-	0.65	V
RON_PD	Pull-Down Resistance at ON Pin		$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$ to 5.5 V	-	8.3	-	$\mathrm{M} \Omega$
IoN	On Input Leakage		$\mathrm{V}_{\text {ON }}=\mathrm{V}_{\text {IN }}$ or GND	-	-	1	$\mu \mathrm{A}$

DYNAMIC CHARACTERISTICS

$\mathrm{t}_{\text {DON }}$	Turn-On Delay (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{FPF} 1204 \end{aligned}$	-	70	-	μs
t_{R}	V ${ }_{\text {Out }}$ Rise Time (Note 4)		-	100	-	
t_{ON}	Turn-On Time (Note 6)		-	170	-	
$\mathrm{t}_{\text {DOFF }}$	Turn-Off Delay (Note 4, 5)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{FPF} 1203 \mathrm{~L} \end{aligned}$	-	0.5	-	$\mu \mathrm{S}$
t_{F}	V ${ }_{\text {OUT }}$ Fall Time (Note 4, 5)		-	2.0	-	
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time (Note 5, 7)		-	2.5	-	
$\mathrm{t}_{\text {DOFF }}$	Turn-Off Delay (Note 4, 5)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{FPF} 1203 \mathrm{~L} \end{aligned}$	-	6	-	$\mu \mathrm{S}$
t_{F}	V ${ }_{\text {OUT }}$ Fall Time (Note 4, 5)		-	115	-	
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time (Note 5, 7)		-	121	-	
$t_{\text {DOFF }}$	Turn-Off Delay (Note 4, 5)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{FPF} 1203 \end{aligned}$	-	4.0	-	$\mu \mathrm{s}$
t_{F}	V ${ }_{\text {OUT }}$ Fall Time (Note 4, 5)		-	2.9	-	
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time (Note 5, 7)		-	7.3	-	

FPF1203, FPF1203L, FPF1204

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$ to 5.5 V and $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\text {IN }}$ $=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.) (continued)

Symbol	Parameter	Condition	Min	Typ	Max	Unit

DYNAMIC CHARACTERISTICS

$\mathrm{t}_{\text {DOFF }}$	Turn-Off Delay (Note 4, 5)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{FPF} 1203 \end{aligned}$	-	6	-	$\mu \mathrm{s}$
t_{F}	V ${ }_{\text {OUT }}$ Fall Time (Note 4, 5)		-	115	-	
tofF	Turn-Off Time (Note 5, 7)		-	121	-	
$\mathrm{t}_{\text {DOFF }}$	Turn-Off Delay (Note 4, 5)	$\mathrm{V}_{I N}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F},$$\mathrm{T}_{\mathrm{A}}^{\prime \prime}=25^{\circ} \mathrm{C}, \text { FPF1204 (Note 5) }$	-	4.0	-	$\mu \mathrm{S}$
t_{F}	V ${ }_{\text {OUT }}$ Fall Time (Note 4, 5)		-	2.5	-	
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time (Note 5, 7)		-	6.5	-	
$\mathrm{t}_{\text {DOFF }}$	Turn-Off Delay (Note 4, 5)	$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F} \text {, }$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, FPF1204 (Note 5)	-	6	-	$\mu \mathrm{S}$
t_{F}	$\mathrm{V}_{\text {OUT }}$ Fall Time (Note 4, 5)		-	11	-	
toff	Turn-Off Time (Note 5, 7)		-	17	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. This parameter is guaranteed by design and characterization; not production tested.
4. $t_{\text {DON }} / t_{\text {DOFF }} / t_{R} / t_{F}$ are defined in Figure 23.
5. Output discharge enabled during off-state.
6. $\mathrm{t}_{\mathrm{ON}}=\mathrm{t}_{\mathrm{R}}+\mathrm{t}_{\mathrm{DON}}$
7. $\mathrm{t}_{\mathrm{OFF}}=\mathrm{t}_{\mathrm{F}}+\mathrm{t}_{\text {DOFF }}$

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Shutdown Current vs. Temperature

Figure 9. Off Supply Current vs. Temperature (VOUT Floating)

Figure 8. Shutdown Current vs. Supply Voltage

Figure 10. Off Supply Current vs. Supply Voltage (VOUT Floating)

Figure 11. Quiescent Current vs. Temperature

Figure 13. Ron vs. Temperature

Figure 15. ON Pin Threshold vs. VIN

Figure 12. Quiescent Current vs. Supply Voltage

Figure 14. Ron vs. Supply Voltage

Figure 16. Drain Current vs. Drain-Source Voltage Safe Operating Area

FPF1203, FPF1203L, FPF1204

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Figure 17. Turn-On Response - FPF1203 / 04
$\left(\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega\right)$

Figure 18. Turn-Off Response - FPF1203
$\left(\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega\right)$

Figure 20. Turn-Off Response ($\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$, $C_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$, FPF1204)

Figure 19. Turn-Off Response - FPF1203 $\left(\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=500 \Omega\right)$

Figure 21. Turn-Off Response ($\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$, $C_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=500 \Omega$, FPF1204)

FPF1203, FPF1203L, FPF1204

OPERATION AND APPLICATION DESCRIPTION

The FPF1203 / 03L / 04 are low-R $\mathrm{R}_{\mathrm{ON}} \mathrm{P}$-channel load switches with controlled turn-on. The core of each device is a $55 \mathrm{~m} \Omega \mathrm{P}$-channel MOSFET and controller capable of functioning over a wide input operating range of 1.2 to 5.5 V .

The FPF1204 contain a 65Ω on-chip load resistor for quick output discharge when the switch is turned off.

Figure 22. Typical Application

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor must be placed between the $\mathrm{V}_{\text {IN }}$ and GND pins. A $1 \mu \mathrm{~F}$ ceramic capacitor, C_{IN}, placed close to the pins is usually sufficient. Higher-value $\mathrm{C}_{\text {IN }}$ can be used to reduce the voltage drop in higher-current applications.

Output Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor, Cout, should be placed between the $V_{\text {OUT }}$ and GND pins. This capacitor prevents parasitic board inductance from forcing V VUT below GND when the switch is on. $\mathrm{C}_{\text {IN }}$ greater than COUT is highly recommended.

Cout greater than $\mathrm{C}_{\text {IN }}$ can cause $\mathrm{V}_{\text {OUT }}$ to exceed $\mathrm{V}_{\text {IN }}$ when the system supply is removed. This could result in current flow through the body diode from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$.

Figure 23. Timing Diagram for FPF1203/4

Board Layout

For best performance, traces should be as short as possible. To be most effective, input and output capacitors should be placed close to the device to minimize the effect of parasitic trace inductance on normal and short-circuit operation. Using wide traces or large copper planes for all pins (VIN, VOUT, ON, and GND) minimizes the parasitic electrical effects and the case-ambient thermal impedance. However, the VOUT pin should not connect directly to the battery source due to the discharge mechanism of the load switch.

ORDERING INFORMATION

Part Number	Top Mark	Switch (Typical) at $3.3 \mathrm{~V}_{\mathrm{IN}}$	Output Discharge	ON Pin Activity	t_{R}	Package	Shipping ${ }^{\dagger}$
FPF1203UCX	QL	$55 \mathrm{~m} \Omega$	NA	Active HIGH	$100 \mu \mathrm{~s}$	4-Bump, Wafer-Level Chip-Scale Package (WLCSP), $0.76 \mathrm{~mm} \times$ $0.76 \mathrm{~mm}, 0.4 \mathrm{~mm}$ Pitch	3000 / Tape \& Reel
FPF1203LUCX	QP	$55 \mathrm{~m} \Omega$	NA	Active LOW	$100 \mu \mathrm{~s}$		3000 / Tape \& Reel
FPF1204UCX	QM	$55 \mathrm{~m} \Omega$	65Ω	Active HIGH	$100 \mu \mathrm{~s}$		3000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

The table below pertains to the Packaging information on the following page.

PRODUCT DIMENSIONS

\mathbf{D}	\mathbf{E}	\mathbf{X}	\mathbf{Y}
$760 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$760 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$0.180 \mathrm{~mm} \pm 0.018 \mu \mathrm{~m}$	$0.180 \mathrm{~mm} \pm 0.018 \mu \mathrm{~m}$

WLCSP4 0.76x0.76x0.586

CASE 567SS
ISSUE O
DATE 30 NOV 2016

TOP VIEW

SIDE VIEWS

NOTES:
A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCE PER ASME Y14.5M, 1994.
d. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
e. PACKAGE NOMINAL HEIGHT IS 500 MICRONS ± 39 MICRONS (461-539 MICRONS).

RECOMMENDED LAND PATTERN
(NSMD PAD TYPE)

BOTTOM VIEW

FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.

DOCUMENT NUMBER:	98AON16616G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red
DESCRIPTION:	WLCSP4 $0.76 \times 0.76 \times 0.586$	PAGE $10 F 1$

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:
onsemi:
FPF1204BUCX FPF12045UCX FPF1203UCX FPF1204UCX FPF1203LUCX FPF1204UCX-Z006

