

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FOD8314, FOD8314T
 1.0 A Output Current, Gate Drive Optocoupler in Stretched Body SOP 6-Pin

Features

- FOD8314T-8 mm Creepage and Clearance Distance, and 0.4 mm Insulation Distance to Achieve Reliable and High-Voltage Insulation
- 1.0 A Output Current Driving Capability for MediumPower IGBT/MOSFET
- Use of P-Channel MOSFETs at Output Stage Enables Output Voltage Swing Close to Supply Rail
- $20 \mathrm{kV} / \mu \mathrm{s}$ Minimum Common Mode Rejection

■ Wide Supply Voltage Range: 15 V to 30 V

- Fast Switching Speed Over Full Operating Temperature Range
- 500 ns Maximum Propagation Delay
- 300 ns Maximum Pulse Width Distortion
- Under-Voltage Lockout (UVLO) with Hysteresis
- Extended Industrial Temperate Range: $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
- Safety and Regulatory Approvals:
- UL1577, 5,000 $\mathrm{V}_{\text {RMS }}$ for 1 Minute
- DIN EN/IEC60747-5-5, 1,140 V Peak Working Insulation Voltage

Applications

■ AC and Brushless DC Motor Drives
■ Industrial Inverter

- Uninterruptible Power Supply
- Induction Heating

■ Isolated IGBT/Power MOSFET Gate Drive

Related Resources

- FOD3150, High Noise Immunity, 1.0 A Output Current, Gate Drive Optocoupler Datasheet
■ www.fairchildsemi.com/products/optoelectronics/

Description

The FOD8314 series is a 1.0 A output current gate drive optocoupler, capable of driving medium-power IGBT/ MOSFETs. It is ideally suited for fast-switching driving of power IGBT and MOSFET used in motor-control inverter applications, and high-performance power systems.

The FOD8314 series utilizes stretched body package to achieve 8 mm creepage and clearance distances (FOD8314T), and optimized IC design to achieve reliably high-insulation voltage and high-noise immunity.
The FOD8314 series consists of an Aluminum Gallium Arsenide (AIGaAs) Light-Emitting Diode (LED) optically coupled to an integrated circuit with a high-speed driver for push-pull MOSFET output stage. The device is housed in a stretched body, 6-pin, small outline, plastic package.

Functional Schematic

Figure 1. Schematic

Figure 2. Package Outline

Truth Table

LED	$\mathbf{V}_{\mathbf{D D}}-\mathbf{V}_{\text {SS }}$ "Positive Going" (Turn-on)	$\mathbf{V}_{\mathbf{D D}}-\mathbf{V}_{\mathbf{S S}}$ "Negative Going" (Turn-off)	$\mathbf{V}_{\mathbf{O}}$
Off	0 V to 30 V	0 V to 30 V	LOW
On	0 V to 11.5 V	0 V to 10 V	LOW
On	11.5 V to 14.5 V	10 V to 13 V	Transition
On	14.5 V to 30 V	13 V to 30 V	HIGH

Pin Definitions

Pin \#	Name	Description
1	ANODE	LED Anode
2	N.C	Not Connection
3	CATHODE	LED Cathode
4	$\mathrm{~V}_{\mathrm{SS}}$	Negative Supply Voltage
5	$\mathrm{~V}_{\mathrm{O}}$	Output Voltage
6	$\mathrm{~V}_{\mathrm{DD}}$	Positive Supply Voltage

Pin Configuration

Figure 3. Pin Configuration

Safety and Insulation Ratings

As per DIN EN/IEC60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics	
		FOD8314	FOD8314T
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated Mains Voltage	$<150 \mathrm{~V}_{\mathrm{RMS}}$	I-IV	I-IV
	$<300 \mathrm{~V}_{\mathrm{RMS}}$	I-IV	I-IV
	$<450 \mathrm{~V}_{\mathrm{RMS}}$	I-III	I-IV
	$<600 \mathrm{~V}_{\mathrm{RMS}}$	I-III	I-III
Climatic Classification		40/100/21	40/100/21
Pollution Degree (DIN VDE 0110/1.89)		2	2
Comparative Tracking Index		175	175

Symbol	Parameter	Value		Unit
		FOD8314	FOD8314T	
$V_{\text {PR }}$	Input-to-Output Test Voltage, Method $\mathrm{B}, \mathrm{V}_{\mathrm{IORM}} \times 1.875=\mathrm{V}_{\mathrm{PR}}$, 100% Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1,671	2,137	$V_{\text {peak }}$
	Input-to-Output Test Voltage, Method A, $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{t}_{\mathrm{m}}=10 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1,426	1,824	$V_{\text {peak }}$
$\mathrm{V}_{\text {IORM }}$	Maximum Working Insulation Voltage	891	1,140	$\mathrm{V}_{\text {peak }}$
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over-Voltage	6,000	8,000	$\mathrm{V}_{\text {peak }}$
	External Creepage	≥ 8.0	≥ 8.0	mm
	External Clearance	≥ 7.0	≥ 8.0	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	≥ 0.4	mm
T_{S} $I_{\text {S,INPUT }}$ $\mathrm{P}_{\mathrm{S} \text {, OUTPUT }}$	Safety Limit Values - Maximum Values Allowed in the Event of a Failure, Case Temperature Input Current Output Power	$\begin{aligned} & 150 \\ & 200 \\ & 600 \end{aligned}$	$\begin{aligned} & 150 \\ & 200 \\ & 600 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \mathrm{~mA} \\ & \mathrm{~mW} \end{aligned}$
R_{IO}	Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	10^{9}	10^{9}	Ω

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
ToPR	Operating Temperature	-40 to +100	${ }^{\circ} \mathrm{C}$
TJ	Junction Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
TSOL	Lead Solder Temperature (Refer to Reflow Temperature Profile)	260 for 10 sec	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}(\mathrm{AVG})}$	Average Input Current	25	mA
V_{R}	Reverse Input Voltage	5.0	V
$\mathrm{l}_{\mathrm{O} \text { (PEAK) }}$	Peak Output Current ${ }^{(1)}$	1.5	A
$V_{\text {DD }}$	Supply Voltage	0 to 35	V
$\mathrm{V}_{\text {O(PEAK) }}$	Peak Output Voltage	0 to $V_{\text {DD }}$	V
$\mathrm{t}_{\mathrm{R}(\mathrm{IN})}, \mathrm{t}_{\mathrm{F}(\mathrm{IN})}$	Input Signal Rise and Fall Time	500	ns
PD_{1}	Input Power Dissipation ${ }^{(2)(4)}$	45	mW
PD_{O}	Output Power Dissipation ${ }^{(3)(4)}$	500	mW

Notes:

1. Maximum pulse width $=10 \mu \mathrm{~s}$, maximum duty cycle $=0.2 \%$.
2. No derating required across operating temperature range.
3. Derate linearly from $25^{\circ} \mathrm{C}$ at a rate of $5.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
T_{A}	Ambient Operating Temperature	-40	+100	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	Supply Voltage	16	30	V
$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	Input Current (ON)	10	16	mA
$\mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}$	Input Voltage (OFF)	0	0.8	V

Isolation Characteristics

Apply over all recommended conditions, typical value is measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {ISO }}$	Input-Output Isolation Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H} .<50 \%$, $\mathrm{t}=1.0$ minute, $\mathrm{I}_{-\mathrm{O}} \leq 20 \mu \mathrm{~A}^{(5)(6)}$	5000			$\mathrm{VAC}_{\mathrm{RMS}}$
$\mathrm{R}_{\text {ISO }}$	Isolation Resistance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{~V}^{(5)}$		10^{11}		Ω
$\mathrm{C}_{\text {ISO }}$	Isolation Capacitance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}$, Frequency $=1.0 \mathrm{MHz}^{(5)}$		1		pF

Notes:

5. Device is considered a two terminal device: pins 1,2 and 3 are shorted together and pins 4,5 and 6 are shorted together.
6. $5,000 \mathrm{VAC}_{\mathrm{RMS}}$ for 1 minute duration is equivalent to $6,000 \mathrm{VAC}_{\mathrm{RMS}}$ for 1 second duration.

Electrical Characteristics

Apply over all recommended conditions, typical value is measured at $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=G$ round, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1.1	1.5	1.8	V
$\Delta\left(\mathrm{V}_{\mathrm{F}} / \mathrm{T}_{\mathrm{A}}\right)$	Temperature Coefficient of Forward Voltage			-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$B V_{R}$	Input Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	5			V
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		20		pF
$\mathrm{IOH}^{\text {a }}$	High Level Output Current ${ }^{(1)}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.75 \mathrm{~V}$	0.2			A
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-4 \mathrm{~V}$	1.0			A
I_{OL}	Low Level Output Current ${ }^{(1)}$	$\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{SS}}+0.75 \mathrm{~V}$	0.2			A
		$\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{SS}}+4 \mathrm{~V}$	1.0			A
V_{OH}	High Level Output Voltage ${ }^{(7)(8)}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=-1.0 \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}-6.0$	$V_{D D}-1.5$		V
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.5$	$V_{D D}-0.1$		
V_{OL}	Low Level Output Voltage ${ }^{(7)(8)}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}$		$\mathrm{V}_{\mathrm{SS}}+1.5$	$\mathrm{V}_{\mathrm{SS}}+6.0$	V
		$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{SS}}+0.1$	$\mathrm{V}_{\mathrm{SS}}+0.5$	
$\mathrm{I}_{\text {DDH }}$	High Level Supply Current	$\mathrm{V}_{\mathrm{O}}=$ Open, $\mathrm{I}_{\mathrm{F}}=7$ to 16 mA		2.9	5.0	mA
$\mathrm{I}_{\text {DDL }}$	Low Level Supply Current	$\mathrm{V}_{\mathrm{O}}=$ Open, $\mathrm{V}_{\mathrm{F}}=0$ to 0.8 V		2.8	5.0	mA
$\mathrm{I}_{\text {FLH }}$	Threshold Input Current Low to High	$\mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$		1.5	7.5	mA
$\mathrm{V}_{\mathrm{FHL}}$	Threshold Input Voltage High to Low	$\mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$	0.8			V
V ${ }_{\text {UVLO+ }}$	UnderVoltage Lockout Threshold	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$	11.5	12.7	14.5	V
$\mathrm{V}_{\text {UVLO- }}$		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$	10.0	11.2	13.0	V
UVLO ${ }_{\text {HYS }}$	UnderVoltage Lockout Threshold Hysteresis			1.5		V

Notes:

7. In this test, V_{OH} is measured with a dc load current of 100 mA . When driving capacitive load V_{OH} will approach V_{DD} as I_{OH} approaches 0 A .
8. Maximum pulse width $=1 \mathrm{~ms}$, maximum duty cycle $=20 \%$.

Switching Characteristics

Apply over all recommended conditions, typical value is measured at $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{Ground}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time to Logic Low Output ${ }^{(9)}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=7 \mathrm{~mA} \text { to } 16 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{g}}=10 \Omega, \mathrm{C}_{\mathrm{g}}=10 \mathrm{nF}, \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \% \end{aligned}$	100	270	500	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time to Logic High Output ${ }^{(10)}$		100	260	500	ns
PWD	$\begin{aligned} & \text { Pulse Width Distortion }{ }^{(11)} \\ & \left\|\mathrm{t}_{\mathrm{PHL}}-\mathrm{t}_{\mathrm{PLH}}\right\| \end{aligned}$			25	300	ns
PDD (Skew)	Propagation Delay Difference Between Any Two Parts ${ }^{(12)}$		-350		350	
t_{R}	Output Rise Time (10\% to 90\%)			60		ns
t_{F}	Output Fall Time (90\% to 10\%)			40		ns
tulvo on	ULVO Turn On Delay	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$		0.8		$\mu \mathrm{s}$
tulvo OfF	ULVO Turn Off Delay	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$		0.2		$\mu \mathrm{s}$
$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	Common Mode Transient Immunity at Output High	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=2000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(13)} \end{aligned}$	20	50		kV/ $\mu \mathrm{s}$
$\mid C M_{L}$ \|	Common Mode Transient Immunity at Output Low	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=2000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(14)} \end{aligned}$	20	50		kV/ $\mu \mathrm{s}$

Notes:

9. Propagation delay $t_{\text {PHL }}$ is measured from the 50% level on the falling edge of the input pulse to the 50% level of the falling edge of the V_{O} signal.
10. Propagation delay $t_{\text {PLH }}$ is measured from the 50% level on the rising edge of the input pulse to the 50% level of the rising edge of the V_{O} signal.
11. PWD is defined as $\left|t_{P H L}-t_{\text {PLH }}\right|$ for any given device.
12. The difference between $t_{\text {PHL }}$ and $t_{\text {PLH }}$ between any two FOD8314 parts under the same operating conditions, with equal loads.
13. Common mode transient immunity at output high is the maximum tolerable negative $\mathrm{dVcm} / \mathrm{dt}$ on the trailing edge of the common mode impulse signal, V_{CM}, to ensure that the output remains high (i.e., $\mathrm{V}_{\mathrm{O}}>15.0 \mathrm{~V}$).
14. Common mode transient immunity at output low is the maximum tolerable positive $\mathrm{dVcm} / \mathrm{dt}$ on the leading edge of the common pulse signal, V_{CM}, to ensure that the output remains low (i.e., $\mathrm{V}_{\mathrm{O}}<1.0 \mathrm{~V}$).

Typical Performance Characteristics

Figure 4. Output High Voltage Drop vs. Output High Current

Figure 6. Output High Current vs. Ambient Temperature

Figure 8. Output Low Voltage vs. Ambient Temperature

Figure 5. Output High Voltage Drop vs. Ambient Temperature

Figure 7. Output Low Voltage vs. Output Low Current

Figure 9. Output Low Current vs. Ambient Temperature

Typical Performance Characteristics (Continued)

Figure 10. Supply Current vs. Ambient Temperature

Figure 12. Low to High Input Current Threshold vs. Ambient Temperature

Figure 14. Propagation Delay vs. LED Forward Current

Figure 11. Supply Current vs. Supply Voltage

Figure 13. Propagation Delay vs. Supply Voltage

Figure 15. Propagation Delay vs. Ambient Temperature

Typical Performance Characteristics (Continued)

Figure 16. Propagation Delay vs. Load Resistance

Figure 18. Transfer Characteristics

Figure 20. Under Voltage Lockout

Figure 15. Propagation Delay vs. Load Capacitance

Figure 19. Input Forward Current vs. Forward Voltage

Test Circuit (Continued)

Figure 23. V_{OH} Test Circuit

Figure 24. V_{OL} Test Circuit

Figure 25. $\mathrm{I}_{\mathrm{DDH}}$ Test Circuit

Figure 26. $\mathrm{I}_{\mathrm{DDL}}$ Test Circuit

Test Circuit (Continued)

Figure 27. $\mathbf{I}_{\text {FLH }}$ Test Circuit

Figure 28. $\mathrm{V}_{\mathrm{FHL}}$ Test Circuit

Figure 29. UVLO Test Circuit

Test Circuit (Continued)

Figure 30. $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{R}}$ and t_{F} Test Circuit and Waveforms

Switch at $A: I_{F}=10 \mathrm{~mA}$

Switch at $\mathrm{B}: \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$
Figure 31. CMR Test Circuit and Waveforms

Reflow Profile

Profile Freature	Pb-Free Assembly Profile
Temperature Minimum $\left(T_{\text {smin }}\right)$	$150^{\circ} \mathrm{C}$
Temperature Maximum $\left(T_{\text {smax }}\right)$	$200^{\circ} \mathrm{C}$
Time $\left(\mathrm{t}_{\mathrm{S}}\right)$ from $\left(\mathrm{T}_{\text {smin }}\right.$ to $\left.\mathrm{T}_{\text {smax }}\right)$	60 s to 120 s
Ramp-up Rate $\left(\mathrm{t}_{\mathrm{L}}\right.$ to $\left.\mathrm{t}_{\mathrm{P}}\right)$	$3^{\circ} \mathrm{C} / \mathrm{second}$ maximum
Liquidous Temperature $\left(\mathrm{T}_{\mathrm{L}}\right)$	$217^{\circ} \mathrm{C}$
Time $\left(\mathrm{t}_{\mathrm{L}}\right)$ Maintained Above $\left(\mathrm{T}_{\mathrm{L}}\right)$	60 s to 150 s
Peak Body Package Temperature	$260^{\circ} \mathrm{C}+0^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$
Time $\left(\mathrm{t}_{\mathrm{P}}\right)$ within $5^{\circ} \mathrm{C}$ of $260^{\circ} \mathrm{C}$	30 s
Ramp-Down Rate $\left(\mathrm{T}_{\mathrm{P}}\right.$ to $\left.\mathrm{T}_{\mathrm{L}}\right)$	$6^{\circ} \mathrm{C} / \mathrm{s}$ maximum
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	8 minutes maximum

Figure 32. Reflow Profile

Ordering Information

Part Number	Package	Packing Method
FOD8314	Stretched Body SOP 6-Pin	Tube (100 units per tube)
FOD8314R2	Stretched Body SOP 6-Pin	Tape and Reel (1,000 units per reel)
FOD8314V	Stretched Body SOP 6-Pin, DIN EN/IEC60747-5-5 Option	Tube (100 units per tube)
FOD8314R2V	Stretched Body SOP 6-Pin, DIN EN/IEC60747-5-5 Option	Tape and Reel (1,000 units per reel)
FOD8314T	Stretched Body SOP 6-Pin, Wide Lead	Tube (100 units per tube)
FOD8314TR2	Stretched Body SOP 6-Pin, Wide Lead	Tape and Reel (1,000 units per reel)
FOD8314TV	Stretched Body SOP 6-Pin, Wide Lead, DIN EN/IEC60747-5-5 Option	Tube (100 units per tube)
FOD8314TR2V	Stretched Body SOP 6-Pin, Wide Lead, DIN EN/IEC60747-5-5 Option	Tape and Reel (1,000 units per reel)

All packages are lead free per JEDEC: J-STD-020B standard.

Marking Information

Definitions	
1	Fairchild Logo
2	Device Number, e.g. 8314
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
4	Last Digit Year Code, e.g. ‘5'
5	Two Digit Work Week Ranging from '01' to ‘53'
6	Assembly Package Code

RECOMMENDED LAND PATTERN

NOTES: UNLESS OTHERWISE SPECIFIED
A) NO STANDARD APPLIES TO THIS PACKAGE
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS DO NOT INCLUDE BURRS

OR MOLD FLASH, AND TIE BAR EXTRUSION.
D) DIMENSIONING AND TOLERANCING PER

FAIRCHILD. ASME Y14.5M-2009.
E) DRAWING FILE NAME: MKT-M06BREV1

RECOMMENDED LAND PATTERN

NOTES: UNLESS OTHERWISE SPECIFIED
A) NO STANDARD APPLIES TO THIS PACKAGE
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS DO NOT INCLUDE BURRS

OR MOLD FLASH, AND TIE BAR EXTRUSION.
D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009.
E) DRAWING FILE NAME: MKT-M06CREV1

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:
onsemi:
FOD8314 FOD8314T FOD8314R2 FOD8314TR2 FOD8314TR2V

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

