FOD410, FOD4108, FOD4116, FOD4118

6-Pin DIP High dv/dt Zero-Cross Triac Drivers

Description

The FOD410, FOD4108, FOD4116 and FOD4118 devices consist of an infrared emitting diode coupled to a hybrid triac formed with two inverse parallel SCRs which form the triac function capable of driving discrete triacs. The FOD4116 and FOD4118 utilize a high efficiency infrared emitting diode which offers an improved trigger sensitivity. These devices are housed in a standard 6-pin dual in-line (DIP) package.

Features

- $300 \mathrm{~mA}_{\text {peak }}$ On-State Current
- Zero-Voltage Crossing
- High Blocking Voltage
- 600 V (FOD410, FOD4116)
- 800 V (FOD4108, FOD4118)
- High Trigger Sensitivity
- 1.3 mA (FOD4116, FOD4118)
- 2 mA (FOD410, FOD4118)
- High Static dv/dt (10,000 V/ $\mu \mathrm{s}$)
- Safety and Regulatory Approvals:
- UL1577, 5.000 VACRMS for 1 Minute
- DIN-EN/IEC60747-5-5
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Applications

- Solid-State Relays
- Industrial Controls
- Lighting Controls
- Static Power Switches
- AC Motor Starters

ON Semiconductor ${ }^{\circledR}$

FUNCTIONAL SCHEMATIC

ORDERING INFORMATION
See detailed ordering and shipping information on page 10 of this data sheet.

SAFETY AND INSULATION RATINGS

Parameter		Characteristics
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated Mains Voltage	$<150 \mathrm{~V}_{\text {RMS }}$	I-IV
	$<300 \mathrm{~V}_{\text {RMS }}$	I-IV
Climatic Classification	$55 / 100 / 21$	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V_{PR}	Input-to-Output Test Voltage, Method $A, \mathrm{~V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{t}_{\mathrm{m}}=10 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1360	$V_{\text {peak }}$
	Input-to-Output Test Voltage, Method B, $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}$, 100% Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1594	$\mathrm{V}_{\text {peak }}$
$\mathrm{V}_{\text {IORM }}$	Maximum Working Insulation Voltage	850	$\mathrm{V}_{\text {peak }}$
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over-Voltage	6000	$\mathrm{V}_{\text {peak }}$
	External Creepage	≥ 7	mm
	External Clearance	≥ 7	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	mm
T_{S}	Case Temperature (Note 1)	175	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {S,INPUT }}$	Input Current (Note 1)	400	mA
Ps,OUTPUT	Output Power (Note 1)	700	mW
$\mathrm{R}_{\text {IO }}$	Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{10}=500 \mathrm{~V}$ (Note 1)	$>10^{9}$	Ω

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

1. Safety limit values - maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Unless otherwise specified)

Symbol	Parameter	Device	Value	Unit
TsTG	Storage Temperature	All	-55 to +150	${ }^{\circ} \mathrm{C}$
Topr	Operating Temperature	All	-55 to +100	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	All	-55 to +125	${ }^{\circ} \mathrm{C}$
TsoL	Lead Solder Temperature	All	260 for 10 sec	${ }^{\circ} \mathrm{C}$
Pd(TOTAL)	Total Device Power Dissipation @ $25^{\circ} \mathrm{C}$	All	500	mW
	Derate Above $25^{\circ} \mathrm{C}$	All	6.6	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

EMITTER

I_{F}	Continuous Forward Current	All	30	mA
$\mathrm{~V}_{\mathrm{R}}$	Reverse Voltage	All	6	V
$\mathrm{P}_{\mathrm{D}(\text { EMITTER })}$	Total Power Dissipation $25^{\circ} \mathrm{C}$ Ambient	All	50	mW
	Derate Above $25^{\circ} \mathrm{C}$	All	0.71	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

DETECTOR

$\mathrm{V}_{\text {DRM }}$	Off-State Output Terminal Voltage	FOD410, FOD4116	600	V
		FOD4108, FOD4118	800	
$\mathrm{I}_{\text {TSM }}$	Peak Non-Repetitive Surge Current (single cycle 60 Hz sine wave)	All	3	$\mathrm{~A}_{\text {peak }}$
	Peak On-State Current	All	300	$\mathrm{~mA}_{\text {peak }}$
$\mathrm{P}_{\mathrm{D} \text { (DETECTOR) }}$	Total Power Dissipation @ $25^{\circ} \mathrm{C}$ Ambient	All	450	mW
	Derate Above $25^{\circ} \mathrm{C}$	All	5.9	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Device	Min	Typ	Max	Unit

INDIVIDUAL COMPONENT CHARACTERISTICS

Emitter								
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		All	-	1.25	1.50	V
I_{R}	Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$		All	-	0.0001	10	$\mu \mathrm{A}$
Detector								
I (RMS)	Peak Blocking Current Either Direction	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0, \\ & \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \\ & \text { (Note 2) } \end{aligned}$	$\mathrm{V}_{\mathrm{D}}=600 \mathrm{~V}$	$\begin{aligned} & \text { FOD410, } \\ & \text { FOD4116 } \end{aligned}$	-	3	100	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{D}}=800 \mathrm{~V}$	FOD4108, FOD4118				
I R(RMS)	Reverse Current	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{D}}=600 \mathrm{~V}$	$\begin{aligned} & \text { FOD410, } \\ & \text { FOD4116 } \end{aligned}$	-	3	100	$\mu \mathrm{A}$
			$V_{D}=800 \mathrm{~V}$	$\begin{aligned} & \text { FOD4108, } \\ & \text { FOD4118 } \end{aligned}$				
dv/dt	Critical Rate of Rise of Off-State Voltage	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~A}($ Note 3)	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM }}$	All	10,000	-	-	V/us

TRANSFER CHARACTERISTICS

I_{FT}	LED Trigger Current	Main Terminal Voltage $=5 \mathrm{~V}$ (Note 4)		$\begin{aligned} & \text { FOD410, } \\ & \text { FOD4108 } \end{aligned}$	-	0.65	2.0	mA
				FOD4116, FOD4118	-	0.65	1.3	
$\mathrm{V}_{\text {TM }}$	Peak On-State Voltage, Either Direction	$\mathrm{I}_{\text {TM }}=300 \mathrm{~mA}$ peak, $\mathrm{I}_{\mathrm{F}}=$ Rated $\mathrm{I}_{\text {FT }}$		All	-	2.2	3	V
I_{H}	Holding Current, Either Direction	$\mathrm{V}_{\mathrm{T}}=3 \mathrm{~V}$		All	-	200	500	$\mu \mathrm{A}$
I_{L}	Latching Current	$\mathrm{V}_{\mathrm{T}}=2.2 \mathrm{~V}$		All	-	5	-	mA
t_{ON}	Turn-On Time	$\begin{aligned} & \mathrm{PF}=1.0, \\ & \mathrm{I}_{\mathrm{T}}=300 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{RM}}=\mathrm{V}_{\mathrm{DM}}=424 \mathrm{VAC}$	FOD410, FOD4116, FOD4118	-	60	-	$\mu \mathrm{S}$
			$\mathrm{V}_{\mathrm{RM}}=\mathrm{V}_{\mathrm{DM}}=565 \mathrm{VAC}$	FOD4108				
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time		$\mathrm{V}_{\mathrm{RM}}=\mathrm{V}_{\mathrm{DM}}=424 \mathrm{VAC}$	$\begin{aligned} & \text { FOD410, } \\ & \text { FOD4116, } \\ & \text { FOD4118 } \end{aligned}$	-	52	-	$\mu \mathrm{s}$
			$\mathrm{V}_{\mathrm{RM}}=\mathrm{V}_{\mathrm{DM}}=565 \mathrm{VAC}$	FOD4108				
dv/dtc	Critical Rate of Rise of Voltage at Current Commutation	$\mathrm{V}_{\mathrm{D}}=230 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{I}_{\mathrm{D}}=300 \mathrm{mAPK}$		All	-	10	-	V/us
$\mathrm{di} / \mathrm{dt} \mathrm{C}$	Critical Rate of Rise of On-State Current Commutation	$\mathrm{V}_{\mathrm{D}}=230 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{I}_{\mathrm{D}}=300 \mathrm{~mA} \mathrm{PK}$		All	-	9	-	A/ms
dv (ı0)/dt	Critical Rate of Rise of Coupled Input / Output Voltage	$\mathrm{I}_{\mathrm{T}}=0 \mathrm{~A}, \mathrm{~V}_{\mathrm{RM}}=\mathrm{V}_{\mathrm{DM}}=424 \mathrm{VAC}$		All	10,000	-	-	V/us

2. Test voltage must be applied within dv/dt rating.
3. This is static $\mathrm{dv} / \mathrm{dt}$. Commutating $\mathrm{dv} / \mathrm{dt}$ is a function of the load-driving thyristor(s) only.
4. All devices are guaranteed to trigger at an I_{F} value less than or equal to $m a x I_{F T}$. Therefore, recommended operating I_{F} lies between $m a x$ I_{FT} (2 mA for FOD410 and FOD4108 and 1.3 mA for FOD4116 and FOD4118) and the absolute max $\mathrm{I}_{\mathrm{F}}(30 \mathrm{~mA})$.

FOD410, FOD4108, FOD4116, FOD4118

ZERO CROSSING CHARACTERISTICS

Symbol	Parameter	Test Conditions	Device	Min	Typ	Max	Unit
$\mathrm{V}_{\text {INH }}$	Inhibit Voltage (MT1-MT2 Voltage above which device will not trigger)	$\mathrm{I}_{\mathrm{F}}=$ Rated I_{FT}	All	-	8	25	$\mathrm{V}_{\text {peak }}$
IDRM2	Leakage in Inhibit State	$\mathrm{I}_{\mathrm{F}}=$ Rated I_{FT}, Rated $\mathrm{V}_{\mathrm{DRM}}$, Off-State	All	-	20	200	$\mu \mathrm{A}$
ISOLATION CHARACTERISTICS							
$\mathrm{V}_{\text {ISO }}$	Steady State Isolation Voltage	$\mathrm{f}=60 \mathrm{~Hz}, \mathrm{t}=1$ Minute (Note 5)	All	5,000	-	-	$\mathrm{VAC}_{\text {RMS }}$

5. Isolation voltage, $\mathrm{V}_{\text {ISO }}$, is an internal device dielectric breakdown rating. For this test, pins 1,2 and 3 are common, and pins 4,5 and 6 are common. 5,000 VAC $_{\text {RMS }}$ for 1 minute duration is equivalent to $6,000 \mathrm{VAC}_{\text {RMS }}$ for 1 second duration.

FOD410, FOD4108, FOD4116, FOD4118

TYPICAL APPLICATION

Figure 1 shows a typical circuit for when hot line switching is required. In this circuit the "hot" side of the line is switched and the load connected to the cold or neutral side. The load may be connected to either the neutral or hot line.

Rin is calculated so that IF is equal to the rated IFT of the
part, 2 mA for FOD410 and FOD4108, 1.3 mA for FOD4116 and FOD4118. The 39Ω resistor and $0.01 \mu \mathrm{~F}$ capacitor are for snubbing of the triac and may or may not be necessary depending upon the particular triac and load use.

*For highly inductive loads (power factor < 0.5), change this value to 360Ω.
Figure 1. Hot-Line Switching Application Circuit

Figure 2. Inverse-Parallel SCR Driver Circuit

Suggested method of firing two, back-to-back SCR's with a ON Semiconductor triac driver. Diodes can be 1N4001; resistors, R1 and R2, are optional 330Ω.

NOTE: This optoisolator should not be used to drive a load directly. It is intended to be a discrete triac driver device only.

FOD410, FOD4108, FOD4116, FOD4118

TYPICAL CHARACTERISTICS

Figure 3. Forward Voltage
$\left(\mathrm{V}_{\mathrm{F}}\right)$ vs. Forward Current (I_{F})

Figure 5. Peak LED Current vs. Duty Factor, Tau

Figure 7. Pulse Trigger Current

Figure 4. Normalized LED Trigger Current (I_{FT}) vs. Ambient Temperature (T_{A})

Figure 6. Trigger Delay Time

Figure 8. On-State Voltage (V_{TM}) vs. On-State Current (Iтм)

Figure 9. Normalized Holding Current (I_{H}) vs. Ambient Temperature (T_{A})

Figure 11. Normalized Inhibit Voltage ($\mathrm{V}_{\mathrm{INH}}$) vs. Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$

Figure 10. Normalized Off-State Current (IDRM) vs. Ambient Temperature (T_{A})

Figure 12. Normalized Leakage in Inhibit State ($\mathrm{I}_{\mathrm{DRM} 2}$) vs. Ambient Temperature (T_{A})

Figure 13. Current Reduction

REFLOW PROFILE

-Peak reflow temperature: $262^{\circ} \mathrm{C}$ (package surface temperature)
-Time of temperature higher than $185^{\circ} \mathrm{C}$ for 160 seconds or less
-One time soldering reflow is recommended
Figure 14. Reflow Profile

ORDERING INFORMATION

Part Number	Package	Shipping †
FOD410	DIP 6-Pin	Tube (50 Units)
FOD410S	SMT 6-Pin (Lead Bend)	Tube (50 Units)
FOD410SD	SMT 6-Pin (Lead Bend)	Tape and Reel (1000 Units)
FOD410V	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	Tube (50 Units)
FOD410SV	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tube (50 Units)
FOD410SDV	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tape and Reel (1000 Units)
FOD410TV	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	Tube (50 Units)

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
6. The product orderable part number system listed in this table also applies to the FOD4108, FOD4116, and FOD4118 product families.

PDIP6 7.3x6.5, 2.54P
 CASE 646CE ISSUE O

A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

| DOCUMENT NUMBER: | 98AON13456G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP6 7.3X6.5, 2.54P | PAGE 1 OF 1 |

PDIP6 7.3x6.5, 2.54P
 CASE 646CF ISSUE O

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

| DOCUMENT NUMBER: | 98AON13457G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP6 7.3X6.5, 2.54P | PAGE 1 OF 1 |

DOCUMENT NUMBER:	98AON13455G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red
DESCRIPTION:	PDIP6 GW	PAGE 1 OF

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

onsemi:
FOD410S FOD410T FOD410TV FOD410V FOD4108S FOD4108SD FOD4108SDV FOD4108SV FOD4108T
FOD4108TV FOD4108V FOD410 FOD4118 FOD4108 FOD4116 FOD4118V FOD4118T FOD4116T
FOD4116SD FOD4118SD FOD410SV FOD410SDV FOD4116V FOD4118SV FOD4116SDV FOD4118TV
FOD4118SDV FOD410SD FOD4116S FOD4118S FOD4116TV FOD4116SV

