

STQ3NK50ZR-AP STD3NK50Z - STD3NK50Z-1

N-CHANNEL 500V - 2.8Ω - 2.3A TO-92/DPAK/IPAK Zener-Protected SuperMESH™ MOSFET

Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	I _D	Pw
STQ3NK50ZR-AP	500 V	3.3Ω	0.5 A	3 W
STD3NK50Z	500 V	3.3Ω	2.3 A	45 W
STD3NK50Z-1	500 V	3.3Ω	2.3 A	45 W

- TYPICAL $R_{DS}(on) = 2.8\Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- ESD IMPROVED CAPABILITY)
- 100% AVALANCHE TESTED
- NEW HIGH VOLTAGE BENCHMARK
- GATE CHARGE MINIMIZED

DESCRIPTION

The SuperMESH™ series is obtained through an extreme opyimization of ST's well established strip based PowerMESH™ layout. In addition to pushing on-resistance significatly down, special care is taken to ensure a very good dv/dt capability for the most demanding application. Such series complements ST full range of high voltage MOSFETs icluding revolutionary MDmesh™ products

APPLICATIONS

- AC ADAPTORS AND BATTERY CHARGERS
- SWITH MODE POWER SUPPLIES (SMPS)
- LIGHTING

Figure 1: Package

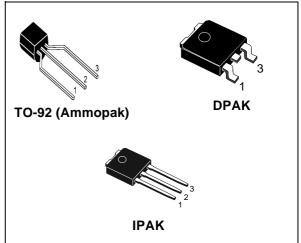


Figure 2: Internal Schematic Diagram

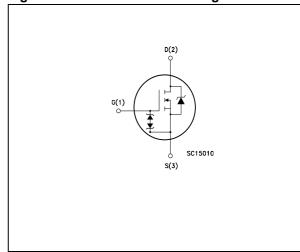


Table 2: Order Coder

SALES TYPE	MARKING	PACKAGE	PACKAGING
STQ3NK50ZR-AP	Q3NK50ZR	TO-92	AMMOPAK
STD3NK50Z	D3NK50Z	DPAK	TAPE & REEL
STD3NK50Z-1	D3NK50Z	IPAK	TUBE

Rev. 2

January 2005 1/14

Table 3: Absolute Maximum ratings

Symbol	Parameter	Valu	ıe	Unit
		DPAK/IPAK	TO-92	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	500	0	V
V _{DGR}	Drain-gate Voltage (R _{GS} = 20 k Ω)	500	0	V
V _{GS}	Gate- source Voltage	±30	0	V
I _D	Drain Current (continuous) at T _C = 25°C	2.3	2.3 0.5	
I _D	Drain Current (continuous) at T _C = 100°C	1.45	0.32	А
I _{DM} (•)	Drain Current (pulsed)	9.2	2	А
P _{TOT}	Total Dissipation at T _C = 25°C	45	3	W
	Derating Factor	0.36	0.025	W/°C
V _{ESD(G-S)}	Gate source ESD (HBM-C=100 pF, R= 1.5KΩ)	200	0	V
dv/dt (1)	Peak Diode Recovery voltage slope	4.5		V/ns
T _j T _{stg}	Operating Junction Temperature Storage Temperature	-55 to 150		°C

^(•) Pulse width limited by safe operating area

Table 4: Thermal Data

		DPAK	IPAK	TO-92	Unit
Rthj-case	Thermal Resistance Junction-case Max	2.	77		°C/W
Rthj-amb	j-amb Thermal Resistance Junction-ambient Max		100	120	°C/W
Rthj-lead	ead Thermal Resistance Junction-lead Max			40	°C/W
T _I	Maximum Lead Temperature For Soldering Purpose	Purpose 275 2		260	°C

^(#) When mounted on 1inch2 FR4, 2 Oz copper board.

Table 5: Avalanche Characteristics

Symbol	Parameter	Max. Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	2.3	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	120	mJ

Table 6: GATE-SOURCE ZENER DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-Source Breakdown Voltage	Igs=± 1mA (Open Drain)	30			V

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in-back-to-back Zener diodes have specifically been designed to enchance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

⁽¹⁾ $I_D \le 2 \text{ di/dt} \le 200\text{A/\mus}, V_{DD} \le V_{(BR)DSS}$

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)

Table 7: On/Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	500			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating V _{DS} = Max Rating, T _C = 125 °C			1 50	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±10	μA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 50 \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 1.15 A		2.8	3.3	Ω

Table 8: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} = 15 V _, I _D = 1.15 A		1.5		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$		280 42 8		pF pF pF
C _{oss eq.} (3)	Equivalent Output Capacitance	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 400 \text{ V}$		27.5		pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time	$V_{DD} = 250 \text{ V, } I_{D} = 1.15 \text{ A}$ $R_{G} = 4.7\Omega \text{ V}_{GS} = 10 \text{ V}$ (see Figure 19)		8 13 24 14		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 400 \text{ V}, I_{D} = 2.3 \text{ A},$ $V_{GS} = 10 \text{ V}$ (see Figure 22)		11 2.5 5.6	15	nC nC nC

Table 9: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				2.3 9.2	A A
V _{SD} (1)	Forward On Voltage	$I_{SD} = 2.3 \text{ A}, V_{GS} = 0$			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} =2.3 A, di/dt = 100 A/ μ s V_{DD} = 40V, T_j = 25°C (see Figure 20)		250 745 6		ns µC A
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} =2.3A, di/dt = 100 A/µs V_{DD} = 40V, T_j = 150°C (see Figure 20)		300 960 6.2		ns µC A

Note: 1. Pulsed: Pulse duration = $300 \mu s$, duty cycle 1.5 %.

^{2.} Pulse width limited by safe operating area.

C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.

Figure 3: Safe Operating Area For TO-92

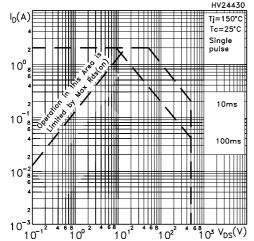
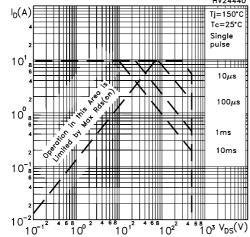



Figure 4: Safe Operating Area For DPAK/IPAK

Figure 5: Output Characteristics

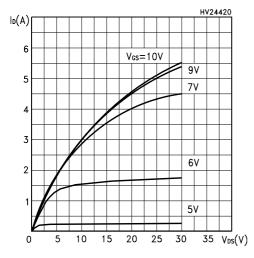


Figure 6: Thermal Impedance TO-92

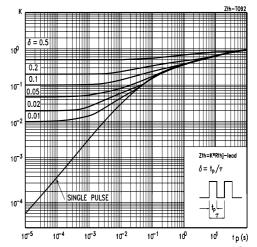


Figure 7: Thermal Impedance For DPAK / IPAK

Figure 8: Transfer Characteristics

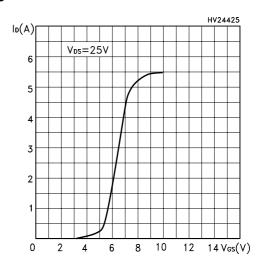


Figure 9: Transconductance

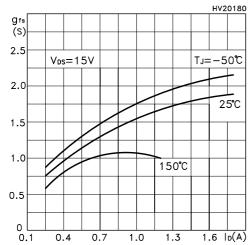


Figure 10: Gate Charge vs Gate-source Voltage

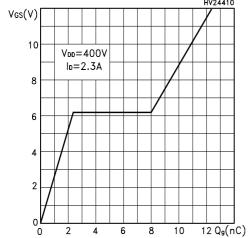


Figure 11: Static Drain-Source On Resistance

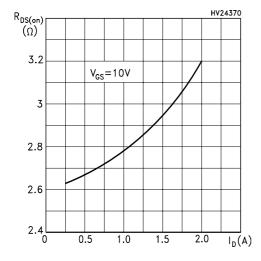


Figure 12: Capacitance Variations

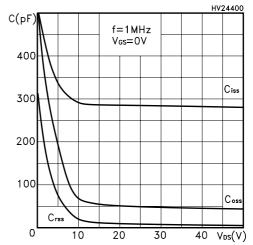


Figure 13: Normalized Gate Threshold Voltage vs Temperature

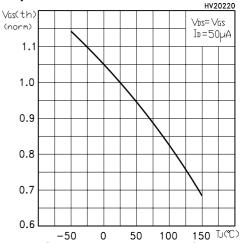


Figure 14: Source-Drain Forward Characteristics

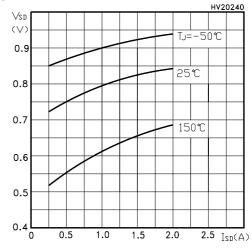


Figure 15: Maximum Avalanche Energy vs Temperature

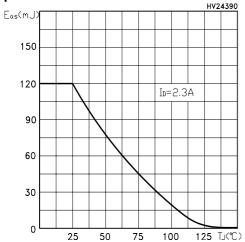


Figure 16: Normalized On Resistance vs Temperature

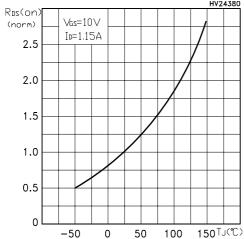


Figure 17: Normalized BV_{DSS} vs Temperature

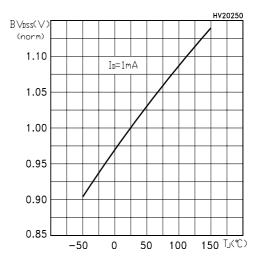


Figure 21: Unclamped Inductive Wafeform

Figure 18: Unclamped Inductive Load Test Circuit

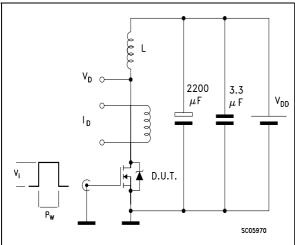
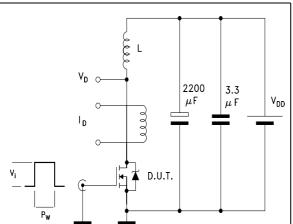



Figure 19: Switching Times Test Circuit For

Resistive Load

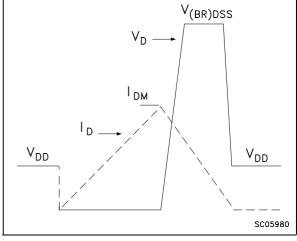


Figure 22: Gate Charge Test Circuit

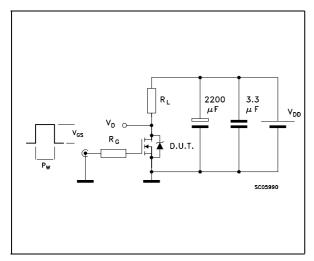
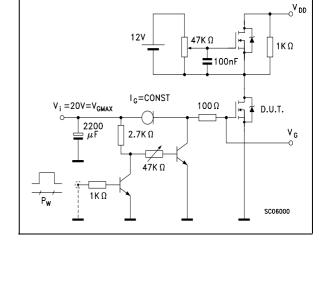
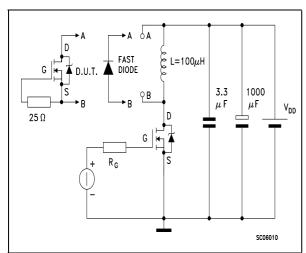
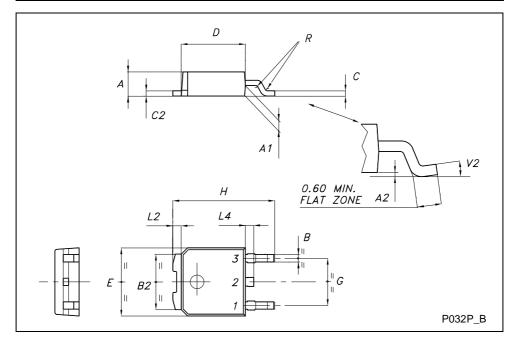
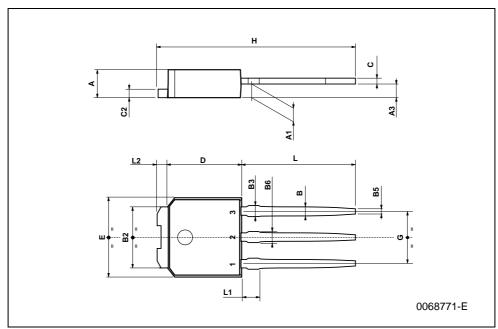




Figure 20: Test Circuit For Inductive Load **Switching and Diode Recovery Times**

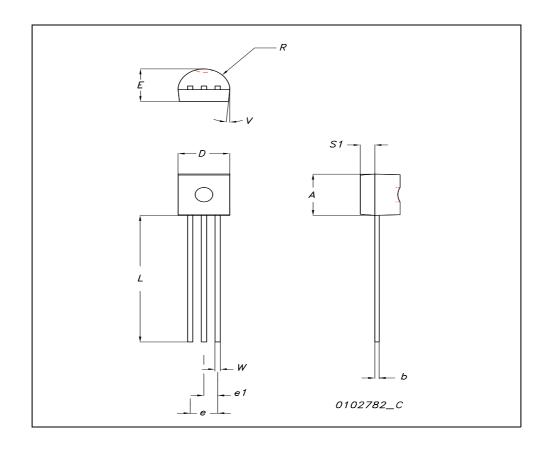


47/ 7/14

Downloaded from Arrow.com.

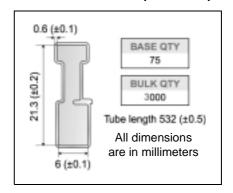

TO-252 (DPAK) MECHANICAL DATA

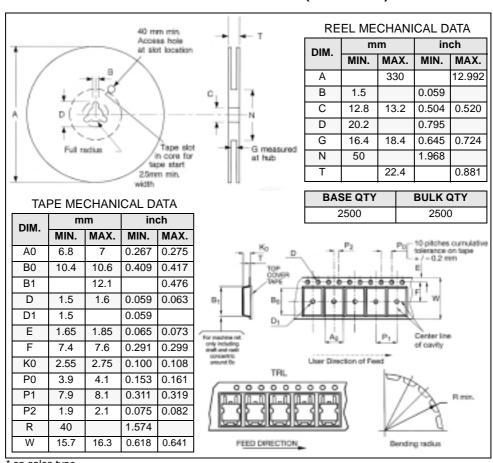
DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.90	0.025		0.035
B2	5.20		5.40	0.204		0.213
С	0.45		0.60	0.018		0.024
C2	0.48		0.60	0.019		0.024
D	6.00		6.20	0.236		0.244
Е	6.40		6.60	0.252		0.260
G	4.40		4.60	0.173		0.181
Н	9.35		10.10	0.368		0.398
L2		0.8			0.031	
L4	0.60		1.00	0.024		0.039
V2	0°		8°	0°		0°


TO-251 (IPAK) MECHANICAL DATA

DIM.	mm			inch		
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A3	0.7		1.3	0.027		0.051
В	0.64		0.9	0.025		0.031
B2	5.2		5.4	0.204		0.212
В3			0.85			0.033
B5		0.3			0.012	
B6			0.95			0.037
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
Е	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	15.9		16.3	0.626		0.641
L	9		9.4	0.354		0.370
L1	0.8		1.2	0.031		0.047
L2		0.8	1		0.031	0.039

TO-92 MECHANICAL DATA

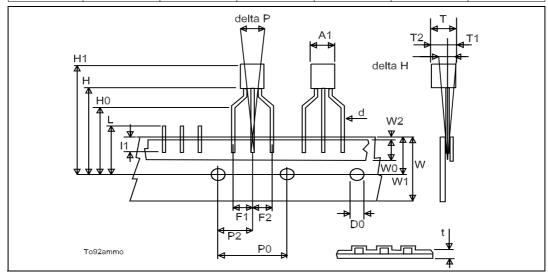

DIM.		mm.			inch	
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.32		4.95	0.170		0.194
b	0.36		0.51	0.014		0.020
D	4.45		4.95	0.175		0.194
E	3.30		3.94	0.130		0.155
е	2.41		2.67	0.094		0.105
e1	1.14		1.40	0.044		0.055
L	12.70		15.49	0.50		0.610
R	2.16		2.41	0.085		0.094
S1	0.92		1.52	0.036		0.060
W	0.41		0.56	0.016		0.022
V		5°			5°	


DPAK FOOTPRINT

6.7 1.8 3.0 1.6 2.3 2.3 All dimensions are in millimeters

TUBE SHIPMENT (no suffix)*

TAPE AND REEL SHIPMENT (suffix "T4")*



* on sales type

47/°

TO-92 AMMOPACK

DIM.	mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A1	4.45		4.95	0.170		0.194
Т	3.30		3.94	0.130		0.155
T1			1.6			0.06
T2			2.3			0.09
d	0.41		0.56	0.016		0.022
P0	12.5	12.7	12.9	0.49	0.5	0.51
P2	5.65	6.35	7.05	0.22	0.25	0.27
F1, F2	2.44	2.54	2.94	0.09	0.1	0.11
delta H	-2		2	-0.08		0.08
W	17.5	18	19	0.69	0.71	0.74
W0	5.7	6	6.3	0.22	0.23	0.24
W1	8.5	9	9.25	0.33	0.35	0.36
W2			0.5			0.02
Н	18.5		20.5	0.72		0.80
H0	15.5	16	16.5	0.61	0.63	0.65
H1			25			0.98
D0	3.8	4	4.2	0.15	0.157	0.16
t			0.9			0.035
L			11			0.43
I1	3			0.11		
delta P	-1		1	-0.04		0.04

STD3NK50Z - STD3NK50Z-1 - STQ3NK50ZR-AP

Table 10: Revision History

Date	Revision	Description of Changes
09-Jul-2004	1	First Release.
17-Jan-2005	2	Complete Version

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America