

STD11NM50N STF11NM50N, STP11NM50N

N-channel 500 V, 0.4 Ω, 8.5 A MDmesh™ II Power MOSFET in DPAK, TO-220FP and TO-220

Features

Order codes	V _{DSS} @T _{Jmax}	R _{DS(on)} max	I _D
STD11NM50N			
STF11NM50N	550 V	< 0.47 Ω	8.5 A
STP11NM50N			

- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Application

Switching applications

Description

These devices are made using the second generation of MDmesh™ technology. This revolutionary Power MOSFET associates a new vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

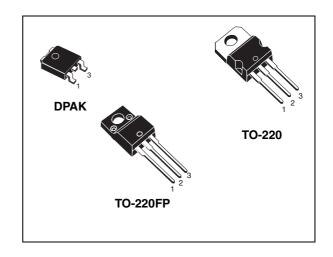


Figure 1. Internal schematic diagram

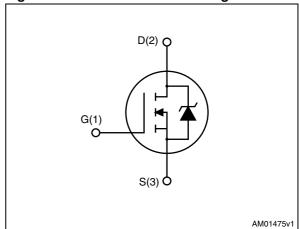


Table 1. Device summary

Order codes	Marking	Package	Packaging
STD11NM50N	11NM50N	DPAK	Tape and reel
STF11NM50N	11NM50N	TO-220FP	Tube
STP11NM50N	11NM50N	TO-220	Tube

November 2010 Doc ID 17156 Rev 3 1/16

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	. 4
	2.1 Electrical characteristics (curves)	. 6
3	Test circuits	. 9
4	Package mechanical data	10
5	Packaging mechanical data	14
6	Revision history	15

1 Electrical ratings

Table 2. Absolute maximum ratings

Cymbol	Parameter		Unit		
Symbol	Farameter	TO-220	DPAK	TO-220FP	Ollit
V_{DS}	Drain-source voltage (V _{GS} = 0)		500		V
V _{GS}	Gate-source voltage		± 25		٧
I _D	Drain current (continuous) at T _C = 25 °C	8	.5	8.5 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100 °C	6 6 (1)		6 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	34 34 ⁽¹⁾		34 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25 °C	70	70	25	W
dv/dt (3)	Peak diode recovery voltage slope		15		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; Tc = 25 °C)	ternal heat sink 2500		V	
T _{stg}	Storage temperature	- 55 to 150		°C	
T _j	Max. operating junction temperature		150		°C

- 1. Limited only by maximum temperature allowed
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \leq 8.5 \text{ A, di/dt} \leq 400 \text{ A/µs, V}_{Peak} < V_{(BR)DSS}, V_{DD} = 80\% V_{(BR)DSS}$

Table 3. Thermal data

Symbol	Parameter		Value		Unit
Symbol	raiailletei	TO-220	DPAK	TO-220FP	Oilit
R _{thj-case}	Thermal resistance junction-case max	1.	79	5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5		62.5	°C/W
R _{thj-pcb}	Thermal resistance junction-pcb max ⁽¹⁾		50		°C/W
T _I	Maximum lead temperature for soldering purpose	300		300	°C

^{1.} When mounted on 1inch² FR-4 board, 2 oz Cu

Table 4. Thermal data

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetetive or not repetetive ⁽¹⁾	3	Α
E _{AS}	Single pulse avalanche energy (2)	150	mJ

- 1. Pulse width limited by T_{JMAX} .
- 2. Starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V.

2 Electrical characteristics

 $(T_C = 25 \, ^{\circ}C \text{ unless otherwise specified})$

Table 5. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	500			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = Max rating V _{DS} = Max rating, T _C =125 °C			1 100	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, I_D = 4.5 \text{ A}$		0.4	0.47	Ω

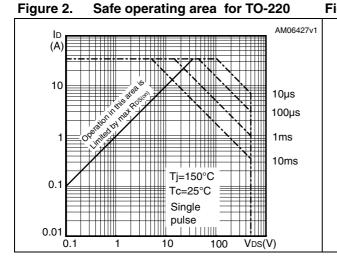
Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	-	547 42 2	-	pF pF pF
Coss eq. (1)	Output equivalent capacitance	V _{DS} = 0 to 400 V, V _{GS} = 0	-	210	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	5.8	-	Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 400 \text{ V}, I_{D} = 8.5 \text{ A},$ $V_{GS} = 10 \text{ V}$ (see <i>Figure 18</i>)	-	19 3.7 10	-	nC nC nC

^{1.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS} .

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	$V_{DD} = 250 \text{ V}, I_D = 4.25 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see <i>Figure 19</i>)	-	8 10 33 10	-	ns ns ns ns


Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		8.5 34	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 8.5 A, V _{GS} = 0	-		1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 8.5 A, di/dt = 100 A/μs V _{DD} = 60 V (see <i>Figure 22</i>)	-	230 2.1 18		ns μC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 8.5 \text{ A, di/dt} = 100 \text{ A/µs}$ $V_{DD} = 60 \text{ V, T}_j = 150 \text{ °C}$ (see <i>Figure 22</i>)	-	275 2.5 18		ns μC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics (curves) 2.1

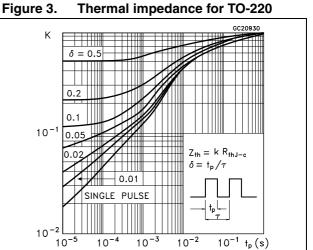
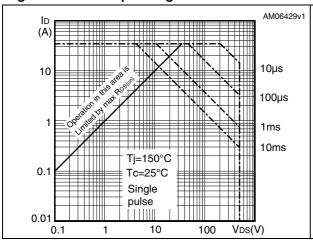



Figure 4. Safe operating area for TO-220FP

Figure 5. Thermal impedance for TO-220FP

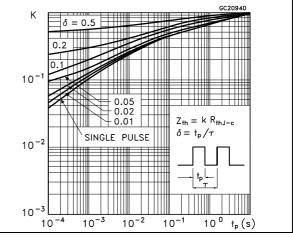
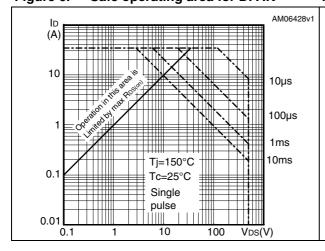
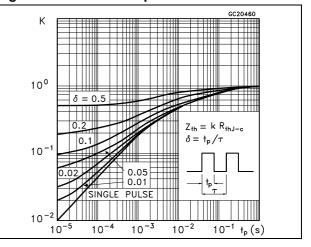




Figure 6. Safe operating area for DPAK

Figure 7. Thermal impedance for DPAK

Doc ID 17156 Rev 3 6/16

Figure 8. Output characteristics

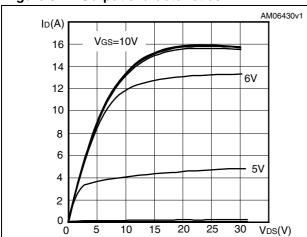


Figure 9. Transfer characteristics

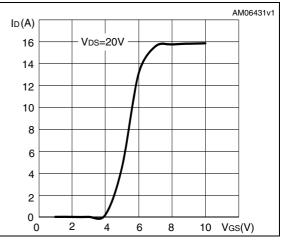
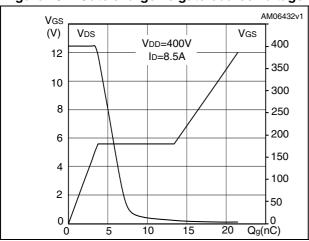



Figure 10. Gate charge vs gate-source voltage Figure 11. Static drain-source on resistance

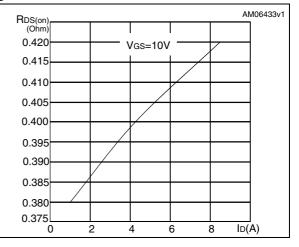
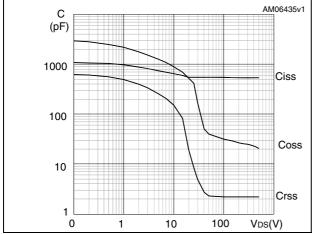
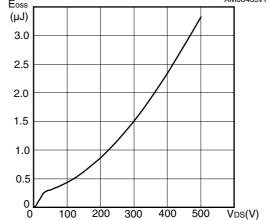
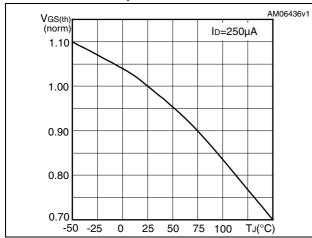




Figure 12. Capacitance variations

Figure 13. Output capacitance stored energy


AM06435

577

Figure 14. Normalized gate threshold voltage Figure 15. Normalized on resistance vs vs temperature temperature

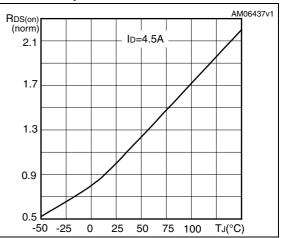
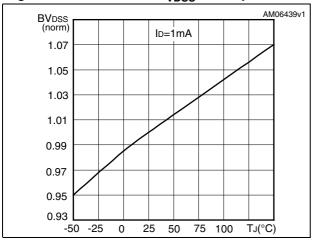



Figure 16. Normalized B_{VDSS} vs temperature

8/16 Doc ID 17156 Rev 3

3 Test circuits

Figure 17. Switching times test circuit for resistive load

Figure 18. Gate charge test circuit

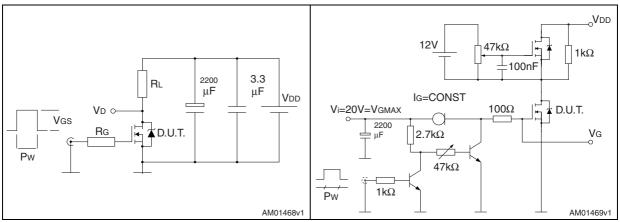


Figure 19. Test circuit for inductive load switching and diode recovery times

Figure 20. Unclamped inductive load test circuit

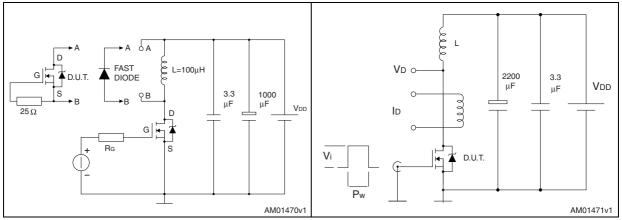


Figure 21. Unclamped inductive waveform

Figure 22. Switching time waveform

577

4 Package mechanical data

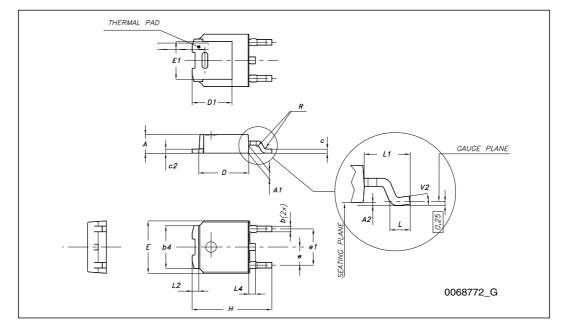
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Ay/

Table 9. TO-220FP mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

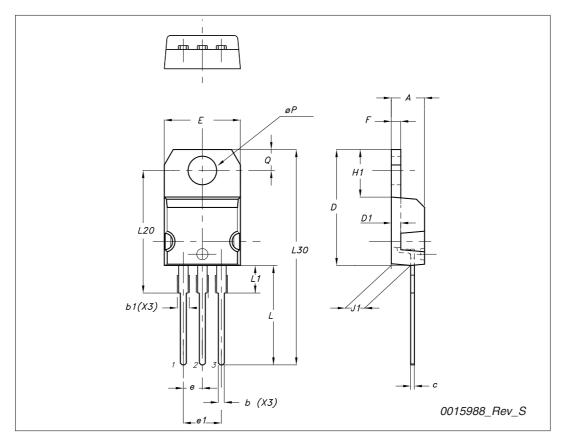
Figure 23. TO-220FP drawing


577

Doc ID 17156 Rev 3

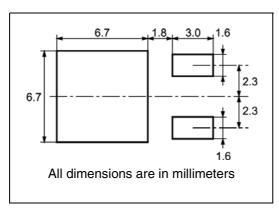
11/16

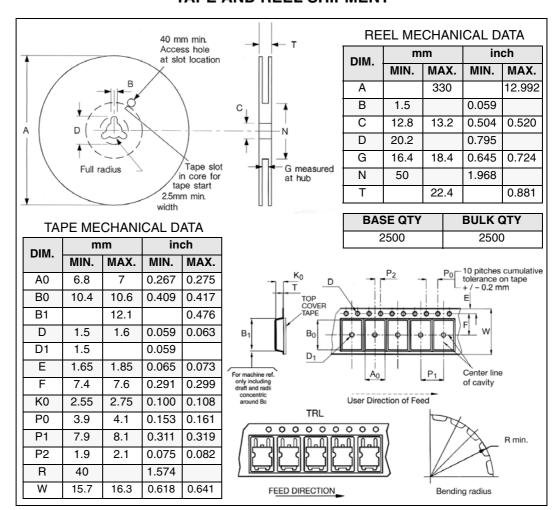
TO-252 (DPAK) mechanical data


DIM.	mm.			
	min.	typ	max.	
Α	2.20		2.40	
A1	0.90		1.10	
A2	0.03		0.23	
b	0.64		0.90	
b4	5.20		5.40	
С	0.45		0.60	
c2	0.48		0.60	
D	6.00		6.20	
D1		5.10		
E	6.40		6.60	
E1		4.70		
е		2.28		
e1	4.40		4.60	
Н	9.35		10.10	
L	1			
L1		2.80		
L2		0.80		
L4	0.60		1	
R		0.20		
V2	0 °		8 °	

577

TO-220 type A mechanical data


Dim	mm		
	Min	Тур	Max
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95



5 Packaging mechanical data

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

14/16 Doc ID 17156 Rev 3

6 Revision history

Table 10. Document revision history

Date	Revision	Changes	
22-Feb-2010	1	First release.	
26-Apr-2010	2	Updated Table 8: Source drain diode.	
24-Nov-2010	3	New value inserted in <i>Table 6: Dynamic</i> .	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16 Doc ID 17156 Rev 3

