General Description

The MAX44265 op amp features a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for battery-powered applications such as handsets, tablets, notebooks, and portable medical equipment. This CMOS op amp features an ultra-low input-bias current of 1 pA, rail-to- rail input and output, low supply current of $4 \mu \mathrm{~A}$, and operates from a single 1.8 V to 5.5 V supply. For additional power conservation, the IC also features a low-power shutdown mode that reduces supply current to 1nA and puts the amplifier's outputs in a high-impedance state. This device is unity-gain stable with a 200 kHz GBW product.

It is available in a space-saving, $0.9 \mathrm{~mm} \times 1.3 \mathrm{~mm}$, 6-bump WLP package and is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended operating temperature range.

Applications
Cell Phones
Tablet/Notebook Computers
Mobile Accessories
Battery-Powered Devices
\qquad

- 200kHz GBW
- Ultra-Low 4 4 A Supply Current

Single 1.8 V to 5.5 V Supply Voltage Range

- Ultra-Low 1pA Input Bias Current
- Rail-to-Rail Input and Output Voltage Ranges
- Low $\pm \mathbf{2 0 0 \mu V}$ Input Offset Voltage

Low 0.001~A Shutdown Current

- High-Impedance Output During Shutdown
- Unity-Gain Stable
- Available in a Tiny, $0.9 \mathrm{~mm} \times 1.3 \mathrm{~mm}$, 6-Bump WLP Package

Ordering Information			
PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX44265EWT +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 WLP	+BY

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage (VDD to $\mathrm{V}_{S S}$)......................-0.3V to +6.0 V IN_+, IN_-, OUT, SHDN_.............. (VSS - 0.3V) to (VDD + 0.3V)
Current into IN_+, IN_- ..20mA
Output Short-Circuit Duration to VDD or VSS..............Continuous Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 6-Bump WLP (derate $10.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). \qquad

Operating Temperature Range \qquad
\qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Temperature (reflow)
$+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty$ connected to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{SHDN}_{-}}=\mathrm{V}_{\mathrm{DD}}, \mathbf{T}_{\mathbf{A}}=\boldsymbol{+ 2 5 ^ { \circ }} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VDD	Guaranteed by PSRR test		1.8		5.5	V
Supply Current	IDD	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$			4		$\mu \mathrm{A}$
		$V_{D D}=5.5 \mathrm{~V}$			4	5.0	
Shutdown Supply Current	IDD(SHDN_)	$\overline{\text { SHDN_- }}=$ GND			0.001	0.5	$\mu \mathrm{A}$
Input Offset Voltage	Vos				± 0.2	± 1	mV
Input Bias Current	IB	(Note 2)			± 1	± 10	pA
Input Offset Current	Ios	(Note 2)			± 1	± 10	pA
Input Resistance	RIN	Common mode			1		G Ω
		Differential mode, -1 mV < VIN $<+1 \mathrm{mV}$			10		
Input Common-Mode Range	$V_{\text {CM }}$	Guaranteed by CMRR test		$\begin{gathered} \mathrm{V}_{\mathrm{SS}}- \\ 0.1 \end{gathered}$		$\begin{gathered} V_{D D}+ \\ 0.1 \end{gathered}$	V
Common-Mode Rejection Ratio	CMRR	$-0.1 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{DD}}+0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		70	80		dB
Power-Supply Rejection Ratio	PSRR	1.8 V < $\mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$		65	95		dB
Open-Loop Gain	Avol	$\begin{aligned} & 25 \mathrm{mV}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{DD}}-25 \mathrm{mV}, \\ & R_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$		95	120		
		$\begin{aligned} & 100 \mathrm{mV}<V_{\text {OUT }}<V_{D D}-100 \mathrm{mV}, \\ & R_{L}=5 \mathrm{k} \Omega, V_{D D}=5.5 \mathrm{~V} \end{aligned}$		95	110		
Output-Voltage-Swing High	VOH	VDD - Vout	$\mathrm{RL}=100 \mathrm{k} \Omega$		2.5	5	mV
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		50	70	
			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		250		
Output-Voltage-Swing Low	VoL	Vout - VSS	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		2.5	5	mV
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		50	70	
			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		250		
Output Short-Circuit Current	Iout(SC)				± 15		mA

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=1.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty$ connected to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathbf{T}_{\mathbf{A}}=\boldsymbol{+ 2 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
$\overline{\text { SHDN_ Logic Low }}$	VIL	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 3.6 V				0.4	V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5 V				0.8	
SHDN_ Logic High	V_{IH}	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 3.6 V		1.4			V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5 V		2			
SHDN_ Input Bias Current	IIL	$\overline{\text { SHDN_ }}=\mathrm{V}_{\text {SS }}$ (Note 2)				1	nA
	IIH	$\overline{\text { SHDN_ }}=\mathrm{V}_{\mathrm{DD}}$				500	
Output Leakage in Shutdown	lout(SHDN_)	$\overline{\text { SHDN_ }}=\mathrm{V}_{\text {SS }}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}$			1	500	nA
Gain-Bandwidth Product					200		kHz
Slew Rate					0.1		V/us
Capacitive-Load Stability (See the Driving Capacitive Loads Section)	Cload	No sustained oscillations	$\mathrm{A}_{\mathrm{V}}=1 \mathrm{~V} / \mathrm{V}$		30		pF
			$\mathrm{A}_{\mathrm{V}}=10 \mathrm{~V} / \mathrm{V}$		250		
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{AV}=1 \mathrm{~V} / \mathrm{V}$		200		
			RISO $=1 \mathrm{k} \Omega, \mathrm{A}^{2}=1 \mathrm{~V} / \mathrm{V}$		100		
Input Voltage-Noise Density		$\mathrm{f}=1 \mathrm{kHz}$			400		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Current-Noise Density		$\mathrm{f}=1 \mathrm{kHz}$			0.001		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Settling Time		To 0.1\%, Vout = 2V step, $\mathrm{A} \mathrm{V}=-1 \mathrm{~V} / \mathrm{V}$			18		$\mu \mathrm{s}$
Delay Time to Shutdown	tsh	IDD $=5 \%$ of normal operation, $V_{D D}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=5.5 \mathrm{~V}$ to 0 step			2		$\mu \mathrm{s}$
Delay Time to Enable	ten	VOUT $=2.7 \mathrm{~V}$, VOUT settles to 0.1%, $V_{D D}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0$ to 5.5 V step			30		$\mu \mathrm{s}$
Power-Up Time		$\mathrm{V}_{\mathrm{DD}}=0$ to 5.5 V step			5		$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=1.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty$ connected to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5} 5^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	VDD	Guaranteed by PSRR test	1.8		5.5	V
Supply Current	IDD	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$			5.5	$\mu \mathrm{A}$
Shutdown Supply Current	IDD(SHDN_)	$\overline{\text { SHDN_- }}=$ GND			1	$\mu \mathrm{A}$
Input Offset Voltage	VOS				± 5	mV
Input-Offset-Voltage Temperature Coefficient	TCvos			± 5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

ELECTRICAL CHARACTERISTICS (continued)
$\left(V_{D D}=1.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty$ connected to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5} 5^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Input Bias Current	IB				± 30	pA
Input Offset Current	Ios				± 20	pA
Input Common-Mode Range	$\mathrm{V}_{\text {CM }}$	Guarantee	test	$\begin{aligned} & \text { VSS - } \\ & 0.05 \end{aligned}$	$\begin{gathered} V_{D D}+ \\ 0.05 \end{gathered}$	V
Common-Mode Rejection Ratio	CMRR	$-0.05 \mathrm{~V}<\mathrm{V}_{C}$	0.05V, $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	60		dB
Power-Supply Rejection Ratio	PSRR	$1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}$		59		dB
Open-Loop Gain	Avol	$\begin{aligned} & 25 \mathrm{mV}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{DD}}-25 \mathrm{mV}, \\ & R_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$		85		dB
		$\begin{aligned} & 150 \mathrm{mV}<V_{\text {OUT }}<V_{D D}-150 \mathrm{mV}, \\ & R_{L}=5 \mathrm{k} \Omega, V_{D D}=5.5 \mathrm{~V} \end{aligned}$		80		
Output-Voltage-Swing High	VOH	VDD - Vout	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		5	mV
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		90	
Output-Voltage-Swing Low	Vol	Vout - VSS	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \boldsymbol{\Omega}$		5	mV
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		90	
$\overline{\text { SHDN_ Logic Low }}$	VIL	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 3.6 V			0.4	V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5 V			0.8	
$\overline{\text { SHDN_ Logic High }}$	V_{IH}	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 3.6 V		1.4		V
		$\mathrm{V}_{\text {DD }}=3.6 \mathrm{~V}$ to 5.5 V		2		
$\overline{\text { SHDN_ Input-Bias Current }}$	IIL	$\overline{\mathrm{SHDN}}=\mathrm{V}_{\text {SS }}$			5	nA
	$\mathrm{IIH}^{\text {H }}$	$\overline{\text { SHDN_ }}=\mathrm{V}_{\text {DD }}$			1000	nA
Output Leakage in Shutdown	Iout(SHDN_)	$\overline{\text { SHDN_ }}=\mathrm{V}_{\text {SS }}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}$			1000	nA

Note 1: Specifications are 100% tested at $T_{A}=+25^{\circ} \mathrm{C}$ (exceptions noted). All temperature limits are guaranteed by design.
Note 2: Guaranteed by design, not production tested.
\qquad

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

$\left(V_{D D}=3 V, V_{S S}=V_{C M}=0 V, R_{L}\right.$ to $V_{D D} / 2, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

INPUT BIAS CURRENT
vs. TEMPERATURE

COMMON-MODE REJECTION RATIO
vs. TEMPERATURE

INPUT OFFSET VOLTAGE
vs. INPUT COMMON-MODE VOLTAGE

INPUT BIAS CURRENT vs. INPUT COMMON-MODE VOLTAGE

COMMON-MODE REJECTION RATIO
vs. FREQUENCY

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

$\left(V_{D D}=3 V, V_{S S}=V_{C M}=0 V, R_{L}\right.$ to $V_{D D} / 2, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

Typical Operating Characteristics (continued)

$\left(V_{D D}=3 V, V_{S S}=V_{C M}=0 V, R_{L}\right.$ to $V_{D D} / 2, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

$100 \mu \mathrm{~s} / \mathrm{div}$

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

Typical Operating Characteristics (continued)
$\left(V_{D D}=3 \mathrm{~V}, \mathrm{~V}_{S S}=\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, R_{\mathrm{L}}\right.$ to $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

Pin Configuration

TOP VIEW

ЛИЛXI/V
MAX44265

WLP BUMP SIDE DOWN

Pin Description

PIN	NAME	FUNCTION
A1	IN+	Noninverting Amplifier Input
A2	VSS	Negative Supply Voltage
B1	IN-	Inverting Amplifier Input
C1	OUT	Amplifier Output
B2	VDD	Positive Supply Voltage
C2	SHDN	Shutdown

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

Featuring a maximized ratio of GBW to supply current, low operating supply voltage, low input bias current, and rail-to-rail inputs and outputs, the MAX44265 is an excellent choice for precision or general-purpose, lowcurrent, low-voltage, battery-powered applications. This CMOS device consumes an ultra-low $4 \mu \mathrm{~A}$ (typ) supply current and has a $200 \mu \mathrm{~V}$ (typ) offset voltage. For additional power conservation, the IC features a low-power shutdown mode that reduces supply current to 1 nA (typ) and puts the amplifier's output in a high-impedance state. This device is unity-gain stable with a 200 kHz GBW product, driving capacitive loads up to 30 pF . The capacitive load can be increased to 250 pF when the amplifier is configured for a $10 \mathrm{~V} / \mathrm{V}$ gain.

Rail-to-Rail Inputs and Outputs The IC has a parallel-connected n - and p -channel differential input stage that allows an input common-mode voltage range that extends 100 mV beyond the positive and negative supply rails, with excellent common-mode rejection. The IC is capable of driving the output to within 5 mV of both supply rails with a $100 \mathrm{k} \Omega$ load. This device can drive a $5 \mathrm{k} \Omega$ load with swings to within 60 mV of the rails. Figure 1 shows the output voltage swing of the IC configured as a unity-gain buffer powered from a single $3 V$ supply.

Low Input Bias Current

The IC features ultra-low 1pA (typ) input bias current. The variation in the input bias current is minimal with changes in the input voltage due to very high input impedance (in the order of $1 \mathrm{G} \Omega$).

Applications Information

Driving Capacitive Loads

The IC's amplifier is unity-gain stable for loads up to 30 pF . However, the capacitive load can be increased to 250 pF when the amplifier is configured for a minimum gain of $10 \mathrm{~V} / \mathrm{V}$. Applications that require greater capacitive-drive capability should use an isolation resistor between the output and the capacitive load (Figure 2). Also, in unity-gain applications with relatively small RL (approximately $5 k \Omega$), the capacitive load can be increased up to 200pF.

RAIL-TO-RAIL OUTPUT VOLTAGE RANGE

Figure 1. Rail-to-Rail Output Voltage Range

$$
A_{V}=\frac{R_{L}}{R_{L}+R_{I S O}} \approx 1 V / V
$$

Figure 2. Using a Resistor to Isolate a Capacitive Load from the Op Amp

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

Power-Supply Considerations

The IC is optimized for single 1.8 V to 5.5 V supply operation. A high amplifier power-supply rejection ratio of 95dB (typ) allows the devices to be powered directly from a battery, simplifying design and extending battery life.

Power-Up Settling Time

The IC typically requires $5 \mu \mathrm{~s}$ after power-up. Supply settling time depends on the supply voltage, the value of the bypass capacitor, the output impedance of the incoming supply, and any lead resistance or inductance between components. Op-amp settling time depends primarily on the output voltage and is slewrate limited. Figure 3 shows MAX44265 in a noninverting voltage follower configuration with the input held at midsupply. The output settles in approximately $18 \mu \mathrm{~s}$ for VDD $=3 \mathrm{~V}$ (see the Typical Operating Characteristics for power-up settling time).

Shutdown Mode

The IC features an active-low shutdown input. The device enters shutdown in $2 \mu \mathrm{~s}$ (typ) and exit in $30 \mu \mathrm{~s}$ (typ). The amplifier's outputs are in a high-impedance state in shutdown mode. Drive $\overline{\text { SHDN }}$ low to enter shutdown. Drive SHDN high to enable the amplifier.

Figure 3. Power-Up Test Configuration

Power-Supply Bypassing and Layout
To minimize noise, bypass VDD with a $0.1 \mu \mathrm{~F}$ capacitor to ground, as close to the pin as possible.
Good layout techniques optimize performance by decreasing the amount of stray capacitance and inductance to the op amps' inputs and outputs. Minimize stray capacitance and inductance by placing external components close to the IC.

PROCESS: BiCMOS

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or " - " in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 WLP	W61B1+1	$\underline{\mathbf{2 1 - 0 2 1 7}}$	-

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$12 / 10$	Initial release	-

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
MAX44265EWT+T

