

General Description

The MAX44265 op amp features a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for battery-powered applications such as handsets, tablets, notebooks, and portable medical equipment. This CMOS op amp features an ultra-low input-bias current of 1pA, rail-to- rail input and output, low supply current of 4µA, and operates from a single 1.8V to 5.5V supply. For additional power conservation, the IC also features a low-power shutdown mode that reduces supply current to 1nA and puts the amplifier's outputs in a high-impedance state. This device is unity-gain stable with a 200kHz GBW product.

It is available in a space-saving, 0.9mm x 1.3mm, 6-bump WLP package and is specified over the -40°C to +85°C extended operating temperature range.

Applications

Cell Phones Tablet/Notebook Computers Mobile Accessories **Battery-Powered Devices**

Features

- ♦ 200kHz GBW
- ♦ Ultra-Low 4µA Supply Current
- ♦ Single 1.8V to 5.5V Supply Voltage Range
- ♦ Ultra-Low 1pA Input Bias Current
- ♦ Rail-to-Rail Input and Output Voltage Ranges
- ♦ Low ±200µV Input Offset Voltage
- ♦ Low 0.001µA Shutdown Current
- **♦** High-Impedance Output During Shutdown
- ♦ Unity-Gain Stable
- ♦ Available in a Tiny, 0.9mm x 1.3mm, 6-Bump WLP **Package**

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX44265EWT+	-40°C to +85°C	6 WLP	+BY

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage (VDD to VSS)0.3V to +6.0V	Operating Temperature Range40°C to +85°C
IN_+, IN, OUT_, SHDN(Vss - 0.3V) to (Vpp + 0.3V)	Junction Temperature+150°C
Current into IN +, IN±20mA	Storage Temperature Range65°C to +150°C
Output Short-Circuit Duration to VDD or VssContinuous	Soldering Temperature (reflow)+260°C
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	coldoning formporatare (ronow)
6-Bump WLP (derate 10.5mW/°C above +70°C) 840mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L = \infty \text{ connected to } V_{DD}/2, \overline{SHDN} = V_{DD}, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	V _{DD}	Guaranteed by PSRF	Guaranteed by PSRR test			5.5	V
		$V_{DD} = 1.8V$			4		
Supply Current	IDD	$V_{DD} = 5.5V$			4	5.0	μΑ
Shutdown Supply Current	IDD(SHDN_)	SHDN_ = GND			0.001	0.5	μΑ
Input Offset Voltage	Vos				±0.2	±1	mV
Input Bias Current	IB	(Note 2)			±1	±10	рА
Input Offset Current	Ios	(Note 2)			±1	±10	рА
Innut Desistance	Dur	Common mode			1		00
Input Resistance	R _{IN}	Differential mode, -1mV < V _{IN} < +1mV			10		GΩ
Input Common-Mode Range	V _{CM}	Guaranteed by CMRR test		V _{SS} - 0.1		V _{DD} + 0.1	V
Common-Mode Rejection Ratio	CMRR	-0.1V < V _{CM} < V _{DD} + 0.1V, V _{DD} = 5.5V		70	80		dB
Power-Supply Rejection Ratio	PSRR	1.8V < V _{DD} < 5.5V		65	95		dB
		$25\text{mV} < V_{OUT} < V_{DD} - 25\text{mV},$ $R_L = 100\text{k}\Omega, V_{DD} = 5.5\text{V}$		95	120		- dB
Open-Loop Gain	Avol	100mV < V_{OUT} < V_{DD} - 100mV, R _L = 5k Ω , V_{DD} = 5.5V		95	110		
			$R_L = 100k\Omega$		2.5	5	
Output-Voltage-Swing High	Voh	V _{DD} - V _{OUT}	$R_L = 5k\Omega$		50	70	mV
			$R_L = 1k\Omega$		250		
Output-Voltage-Swing Low			$R_L = 100k\Omega$		2.5	5	
	V _{OL}	Vout - Vss	$R_L = 5k\Omega$		50	70	mV
			$R_L = 1k\Omega$		250		
Output Short-Circuit Current	IOUT(SC)				±15		mA

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L = \infty \text{ connected to } V_{DD}/2, \overline{SHDN} = V_{DD}, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
CLIDAL Lagia Laur	\/	$V_{DD} = 1.8V \text{ to } 3.6V$				0.4	V	
SHDN_ Logic Low	VIL	$V_{DD} = 3.6V \text{ to } 5$.5V			0.8	V	
CLIDAL Lagia High	\/	$V_{DD} = 1.8V \text{ to } 3$.6V	1.4			V	
SHDN_ Logic High	V _{IH}	$V_{DD} = 3.6V \text{ to } 5$.5V	2				
CUDAL lase of Disa Command	IJĽ	SHDN_ = V _{SS} (1	Note 2)			1	A	
SHDN_ Input Bias Current	l _{IH}	SHDN_ = V _{DD}				500	nA	
Output Leakage in Shutdown	IOUT(SHDN_)	SHDN_ = V _{SS} , \	$V_{OUT} = 0V \text{ to } V_{DD}$		1	500	nA	
Gain-Bandwidth Product					200		kHz	
Slew Rate					0.1		V/µs	
	CLOAD	No sustained oscillations	$A_V = 1V/V$		30			
Capacitive-Load Stability (See			$A_V = 10V/V$		250			
the <i>Driving Capacitive Loads</i> Section)			$R_L = 5k\Omega$, $A_V = 1V/V$		200		pF	
			$R_{ISO} = 1k\Omega$, $A_{V} = 1V/V$		100			
Input Voltage-Noise Density		f = 1kHz			400		nV/√Hz	
Input Current-Noise Density		f = 1kHz			0.001		pA/√Hz	
Settling Time		To 0.1%, V _{OUT} = 2V step, A _V = -1V/V			18		μs	
Delay Time to Shutdown	tsн	I _{DD} = 5% of normal operation, V _{DD} = 5.5V, V _{SHDN} = 5.5V to 0 step			2		μs	
Delay Time to Enable	tEN	V _{OUT} = 2.7V, V _{OUT} settles to 0.1%, V _{DD} = 5.5V, V _{SHDN} = 0 to 5.5V step			30		μs	
Power-Up Time		V _{DD} = 0 to 5.5V step			5		μs	

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L = \infty \text{ connected to } V_{DD}/2, \overline{SHDN} = V_{DD}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	V _{DD}	Guaranteed by PSRR test	1.8		5.5	V
Supply Current	I _{DD}	V _{DD} = 5.5V			5.5	μΑ
Shutdown Supply Current	IDD(SHDN_)	SHDN_ = GND			1	μΑ
Input Offset Voltage	Vos				±5	mV
Input-Offset-Voltage Temperature Coefficient	TC _{VOS}			±5		μV/°C

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L = \infty \text{ connected to } V_{DD}/2, \overline{SHDN} = V_{DD}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Bias Current	IB					±30	рΑ
Input Offset Current	los					±20	рА
Input Common-Mode Range	Vсм	Guaranteed by CMR	Guaranteed by CMRR test			V _{DD} + 0.05	V
Common-Mode Rejection Ratio	CMRR	-0.05V < V _{CM} < V _{DD}	$+ 0.05V, V_{DD} = 5.5V$	60			dB
Power-Supply Rejection Ratio	PSRR	1.8V < V _{DD} < 5.5V		59			dB
	Δνω	25mV < V _{OUT} < V _{DD} - 25 mV, R _L = 100 kΩ, V _{DD} = 5.5 V		85			dB
Open-Loop Gain	Avol	$150\text{mV} < V_{OUT} < V_{DD} - 150\text{mV},$ $R_L = 5k\Omega, V_{DD} = 5.5\text{V}$		80			
Output Voltage Swing High	V _{OH}	V _{DD} - V _{OUT}	$R_L = 100k\Omega$			5	mV
Output-Voltage-Swing High			$R_L = 5k\Omega$			90	
Output-Voltage-Swing Low	V _{OL}	$V_{OUT} - V_{SS}$ $ R_L = 100k\Omega $ $R_L = 5k\Omega $	$R_L = 100k\Omega$			5	mV
Output-voltage-Swilig Low			$R_L = 5k\Omega$			90	
SHDN_ Logic Low	Vu	$V_{DD} = 1.8V \text{ to } 3.6V$				0.4	V
31 IDIV_ LOGIC LOW	VIL	V _{DD} = 3.6V to 5.5V				0.8	v
SHDN_ Logic High	V	$V_{DD} = 1.8V \text{ to } 3.6V$		1.4			V
Si IDIN_ Eogle i ligit	VIH	$V_{DD} = 3.6V \text{ to } 5.5V$		2			V
SHDN_ Input-Bias Current	I _{IL}	SHDN_ = V _{SS}				5	nA
John Input-bids Current	Iн	SHDN_ = V _{DD}				1000	nA
Output Leakage in Shutdown	IOUT(SHDN_)	SHDN_ = V _{SS} , V _{OUT}	= 0V to V _{DD}			1000	nA

Note 1: Specifications are 100% tested at $T_A = +25^{\circ}C$ (exceptions noted). All temperature limits are guaranteed by design.

Note 2: Guaranteed by design, not production tested.

Typical Operating Characteristics

(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L to V_{DD}/2, T_A = +25°C, unless otherwise noted.)

_Typical Operating Characteristics (continued)

 $(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L \text{ to } V_{DD}/2, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

-225

-95

FREQUENCY (Hz)

-100

10

100

1k

FREQUENCY (Hz)

10k

100k

Typical Operating Characteristics (continued)

 $(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L \text{ to } V_{DD}/2, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

_Typical Operating Characteristics (continued)

 $(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L \text{ to } V_{DD}/2, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

Pin Configuration

Pin Description

PIN	NAME	FUNCTION			
A1	IN+	Noninverting Amplifier Input			
A2	V _{SS}	gative Supply Voltage			
B1	IN-	Inverting Amplifier Input			
C1	OUT	mplifier Output			
B2	V_{DD}	ositive Supply Voltage			
C2	SHDN	nutdown			

Detailed Description

Featuring a maximized ratio of GBW to supply current, low operating supply voltage, low input bias current, and rail-to-rail inputs and outputs, the MAX44265 is an excellent choice for precision or general-purpose, low-current, low-voltage, battery-powered applications. This CMOS device consumes an ultra-low 4µA (typ) supply current and has a 200µV (typ) offset voltage. For additional power conservation, the IC features a low-power shutdown mode that reduces supply current to 1nA (typ) and puts the amplifier's output in a high-impedance state. This device is unity-gain stable with a 200kHz GBW product, driving capacitive loads up to 30pF. The capacitive load can be increased to 250pF when the amplifier is configured for a 10V/V gain.

Rail-to-Rail Inputs and Outputs

The IC has a parallel-connected n- and p-channel differential input stage that allows an input common-mode voltage range that extends 100mV beyond the positive and negative supply rails, with excellent common-mode rejection. The IC is capable of driving the output to within 5mV of both supply rails with a 100k Ω load. This device can drive a 5k Ω load with swings to within 60mV of the rails. Figure 1 shows the output voltage swing of the IC configured as a unity-gain buffer powered from a single 3V supply.

Low Input Bias Current

The IC features ultra-low 1pA (typ) input bias current. The variation in the input bias current is minimal with changes in the input voltage due to very high input impedance (in the order of $1G\Omega$).

Applications Information

Driving Capacitive Loads

The IC's amplifier is unity-gain stable for loads up to 30pF. However, the capacitive load can be increased to 250pF when the amplifier is configured for a minimum gain of 10V/V. Applications that require greater capacitive-drive capability should use an isolation resistor between the output and the capacitive load (Figure 2). Also, in unity-gain applications with relatively small R_L (approximately $5k\Omega$), the capacitive load can be increased up to 200pF.

Figure 1. Rail-to-Rail Output Voltage Range

Figure 2. Using a Resistor to Isolate a Capacitive Load from the Op Amp

Power-Supply Considerations

The IC is optimized for single 1.8V to 5.5V supply operation. A high amplifier power-supply rejection ratio of 95dB (typ) allows the devices to be powered directly from a battery, simplifying design and extending battery life.

Power-Up Settling Time

The IC typically requires $5\mu s$ after power-up. Supply settling time depends on the supply voltage, the value of the bypass capacitor, the output impedance of the incoming supply, and any lead resistance or inductance between components. Op-amp settling time depends primarily on the output voltage and is slew-rate limited. Figure 3 shows MAX44265 in a noninverting voltage follower configuration with the input held at midsupply. The output settles in approximately 18 μs for VDD = 3V (see the *Typical Operating Characteristics* for power-up settling time).

Shutdown Mode

The IC features an active-low shutdown input. The device enters shutdown in 2µs (typ) and exit in 30µs (typ). The amplifier's outputs are in a high-impedance state in shutdown mode. Drive SHDN low to enter shutdown. Drive SHDN high to enable the amplifier.

Figure 3. Power-Up Test Configuration

Power-Supply Bypassing and Layout

To minimize noise, bypass V_{DD} with a $0.1\mu F$ capacitor to ground, as close to the pin as possible.

Good layout techniques optimize performance by decreasing the amount of stray capacitance and inductance to the op amps' inputs and outputs. Minimize stray capacitance and inductance by placing external components close to the IC.

_Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 WLP	W61B1+1	<u>21-0217</u>	_

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	12/10	Initial release	_

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated: MAX44265EWT+T