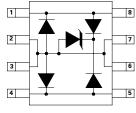
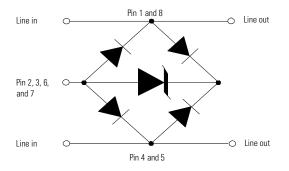

SP03-3.3 Series 3.3V 150A Diode Array



Agency Approvals


Agency	Agency File Number		
<i>91</i> 7	E128662		

Pinout

SOIC-8 (Top View)

Functional Block Diagram

Additional Information

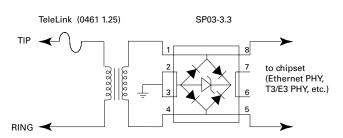
Life Support Note:

Not Intended for Use in Life Support or Life Saving Applications

The products shown herein are not designed for use in life sustaining or life saving applications unless otherwise expressly indicated.

Description

This new broadband protection component from Littelfuse provides overvoltage protection for applications such as 10/100/1000 BaseT Ethernet, T3/E3 DS3 interfaces, ADSL2+, and VDSL2+. This new protector combines the TVS diode element with a diode rectifier bridge to provide both longitudinal and differential protection in one package. This design innovation results in a capacitive loading characteristic that is log-linear with respect to the signal voltage across the device. This reduces intermodulation (IM) distortion caused by a typical solid-state protection solution. The application schematic provides the connection information.


Features

- RoHS compliant
- SOIC-8 surface mount package (JEDEC MS-012)
- · Low insertion loss, loglinear capacitance
- Combined longitudinal and metallic protection
- IEC 61000-4-5, 2nd edition: 8/20 surge, 150A surge immunity
- · Clamping speed of nanoseconds
- UL 94V-0 epoxy molding
- UL Recognized epoxy meeting flammability rating V-0
- Low clamping voltage
- Lead-free

Applications

- T1/E1 Line cards
- T3/E3 and DS3 Interfaces
- STS-1 Interfaces
- 10/100/1000 BaseT Ethernet

Application Example

This schematic shows a high-speed data interface protection solution. The SP03-3.3 provides both metallic (differential) and longitudinal (common mode) protection from lightning induced surge events. Its surge rating is compatible with the intra-building surge requirements of Telcordia's GR-1089-CORE, and the Basic Level Recommendations of ITU K.20 and .21. This component protects against both positive and negative induced surge events. The TeleLink fuse provides overcurrent protection for the long term 50/60 Hz power fault events.

Absolute Maximum Ratings Parameter Rating Units Peak Pulse Current (8/20µs) 150 Α Peak Pulse Power (8/20µs) 3300 W IEC 61000-4-2, Contact Discharge, (Level 4) 30 kV IEC 61000-4-2, Air Discharge, (Level 4) 30 IEC 61000-4-5, 2nd edition (8/20µs) 150 Α Telcordia GR 1089 (Intra-Building) (2/10µs) 100 Α ITU K.20 (5/310μs) 40 Α


CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause
permanent damage to the device. This is a stress only rating and operation of the device
at these or any other conditions above those indicated in the operational sections of this
specification is not implied.

Thermal Information				
Parameter	Rating	Units		
SOIC Package	170	°C/W		
Operating Temperature Range	-40 to 125	°C		
Storage Temperature Range	-55 to 150	°C		
Maximum Junction Temperature	150	°C		
Maximum Lead Temperature (Soldering 20- 40s) (SOIC - Lead Tips Only)	260	°C		

Electrical Characteristics (T_{OP} = 25°C)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Reverse Stand-Off Voltage	V _{RWM}	-	-	-	3.3	V
Reverse Breakdown Voltage	V _{BR}	I _τ = 2μΑ	3.3	-	-	V
Reverse Breakdown Voltage	V _{BR}	I _τ = 50μΑ	3.3	-	-	V
Reverse Leakage Current	I _R	V _{RWM} = 3.3V, T= 25°C	-	-	1	μΑ
Clamping Voltage, Line-Ground	V _c	I _{pp} = 50A, t _p =8/20 μs	-	-	11.5	V
Clamping Voltage, Line-Ground	V _c	I _{pp} = 100A, t _p =8/20 μs	-	-	15	V
Clamping Voltage, Line-Line	V _c	I _{pp} = 50A, t _p =8/20 μs	-	-	13.5	V
Clamping Voltage, Line-Line	V _c	I _{pp} = 100A, t _p =8/20 μs	-	-	18	V
handing Consideration	C _i	Between I/O Pins and Ground $V_R=0V$, $f=1MHz$	-	16	25	pF
Junction Capacitance		Between I/O Pins V _R =0V, f= 1MHz	-	8	12	pF

Figure 1: Non-repetitive Peak Pulse Current vs. Pulse Time

Figure 2: Current Derating Curve

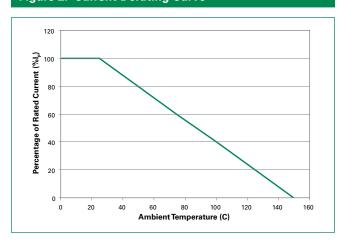


Figure 3: Pulse Waveform

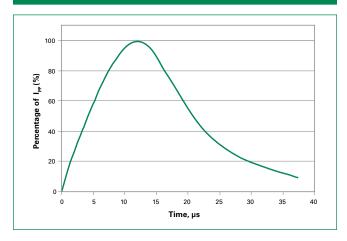


Figure 4: Clamping Voltage vs. Peak Pulse Current

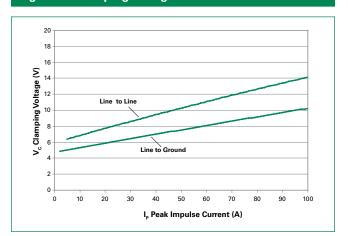


Figure 5: Capacitance vs. Reverse Voltage

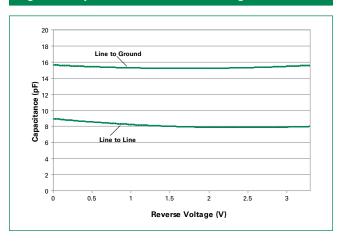
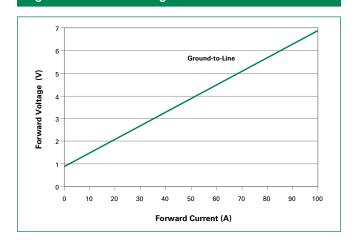
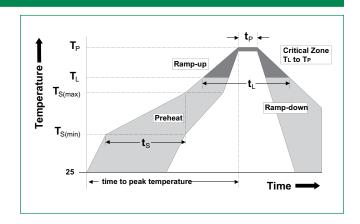
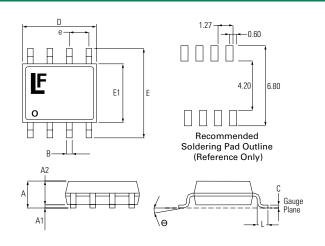
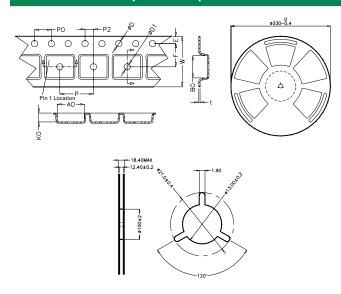




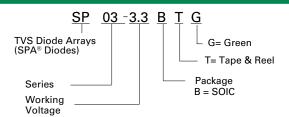
Figure 6: Forward Voltage vs. Forward Current


Soldering Parameters

Reflow Condition		Pb – Free assembly
Pre Heat	-Temperature Min (T _{s(min)})	150°C
	- Temperature Max (T _{s(max)})	200°C
	-Time (min to max) (t _s)	60 - 180 secs
Average ran	3°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		3°C/second max
Reflow	- Temperature (T _L) (Liquidus)	217°C
nellow	- Temperature (t _L)	60 - 150 seconds
Peak Tempe	260 ^{+0/-5} °C	
Time within	20 - 40 seconds	
Ramp-down	6°C/second max	
Time 25°C t	8 minutes Max.	
Do not exce	260°C	



Package Dimensions — Mechanical Drawings and Recommended Solder Pad Outline


Package	SOIC-8				
Pins	8				
JEDEC	MS-012				
	Millin	netres	Inc	hes	
	Min	Max	Min	Max	
Α	1.35	1.75	0.053	0.069	
A1	0.10	0.25	0.004	0.010	
A2	1.25	1.65	0.050	0.065	
В	0.31	0.51	0.012	0.020	
C	0.17	0.25	0.007	0.010	
D	4.80	5.00	0.189	0.197	
E	5.80	6.20	0.228	0.244	
E1	3.80	4.00	0.150	0.157	
е	1.27	BSC	0.050 BSC		
L	0.40	1.27	0.016	0.050	

Embossed Carrier Tape & Reel Specification — SOIC Package

	Millimetres		Inches		
	Min	Max	Min	Max	
Е	1.65	1.85	0.065	0.073	
F	5.4	5.6	0.213	0.22	
P2	1.95	2.05	0.077	0.081	
D	1.5	1.6	0.059	0.063	
D1	1.50 Min		0.059 Min		
P0	3.9	4.1	0.154	0.161	
10P0	40.0 ±	± 0.20	1.574 ± 0.008		
W	11.9	12.1	0.468	0.476	
Р	7.9	8.1	0.311	0.319	
A0	6.3	6.5	0.248	0.256	
В0	5.1	5.3	0.2	0.209	
K0	2	2.2	0.079	0.087	
t	0.30 ±	± 0.05	0.012 ± 0.002		

Part Numbering System

Part Marking System

Ordering Information

Part Number	Package	Marking	Min. Order Qty.
SP03-3.3BTG	SOIC-8 Tape & Reel	SP03-3.3	2500

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littlefuse.com/disclaimer-electronics.