LTM4613 8A, High Voltage Power μ Module Regulator

DESCRIPTION

Demonstration circuitDC1743A features the LTM ${ }^{\circledR} 4613 E V$, an EN55022 class B certified, high input and outputvoltage, high efficiency, switch mode step-down power μ Module ${ }^{\circledR}$ regulator. The input voltage range is from 5 V to 36 V . The output voltage is jumper programmable from 3.3 V to 12 V with a rated load current of 8 A . Derating is necessary for certain $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$, frequency and thermal conditions: please refer to LTM4613 data sheet for derating curves. Only input and output capacitors are needed externally. The DC1743A offers the TRACK/SS pin allowing the user to program output tracking or soft-start period. Output
voltage margining can also be realized through jumper position selections.

Higher efficiency at low load currents is achieved by setting the MODE pin jumper to DCM. The PLL pin is available to synchronize the LTM4613EV to an external clock. The LTM4613 data sheet must be read in conjunction with this demo manual prior to working on or modifying demo circuit DC1743A.

Design files for this circuit board are available at http://www.linear.com/demo

[^0]
PGRFORMARCE SUMMARY ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	VALUE
Input Voltage Range		5 V to 36 V
Output Voltage $\mathrm{V}_{\text {OUT }}$	Jumper Selectable	$3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V} ; \pm 2 \%$
Maximum Continuous Output Current	Derating Is Necessary for Certain Operating Conditions. See Data Sheet for Details.	$8 \mathrm{~A}_{\text {DC }}$
Default Operating Frequency	$V_{\text {OUT }}=12 \mathrm{~V}$ $V_{\text {OUT }}=5 \mathrm{~V}$ $V_{\text {OUT }}=3.3 \mathrm{~V}$	600 kHz 250 kHz 165 kHz
Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=8 \mathrm{~A}$	93.0% See Figure 3
Load Transient	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	See Figure 4

BOARD PHOTO

DEMO MANUAL DC1743A

PUICK START PROCEDURE

Demonstration circuit DC1743A is an easy way to evaluate the performance of the LTM4613EV. Please refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

1. Place jumpers in the following positions for a typical $3.3 \mathrm{~V}_{\text {OUT }}$ application:

MODE	MARG1	MARGO	V $_{\text {OUT }}$ SELECT	RUN
CCM	LO	LO	3.3 V	ON

2. With power off, connect the input power supply, load and meters as shown in Figure 1. Preset the load to 0 A and $\mathrm{V}_{\text {IN }}$ supply to be OV .
3. Turn on the power at the input. Increase $\mathrm{V}_{\text {IN }}$ to 12 V (do not hot-plug the input supply or apply more than the rated maximum voltage of 36 V to the board or the part may be damaged). The output voltage should be regulated and deliver the selected output voltage $\pm 2 \%$.
4. Vary the input voltage from 5 V to 36 V and adjust the load current from 0A to 8A. Observe the output voltage regulation, ripple voltage, efficiency, and other parameters.
5. To measure input or output ripple, insert the scope probe to J7 or J4.
6. For optional load transient test, apply an adjustable pulse signal between IOSTEP_CLK and GND test points. The pulse amplitude sets the load step current amplitude. The pulse duty cycle should be low ($<5 \%$) to limit the thermal stress on the load transient circuit. The load step current can be monitored with a BNC connected to $\mathrm{J} 3(20 \mathrm{mV} / \mathrm{A})$. The output voltage can be monitored at the probe jack J4.

PUICK START PROCEDURE

Figure 1. Proper Measurement Equipment Setup

DEMO MANUAL DC1743A

PUICK START PROCEDURE

Figure 2. Measuring $V_{I N}$ or $V_{\text {OUT }}$ Ripple

Figure 3. Measured DC1743A Efficiency at Different $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ (DCM Mode Enabled)

PUICK START PROCEDURE

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$
OA TO 4A LOAD STEP
$C_{\text {OUT }}=1 \times 47 \mu \mathrm{~F} / 16 \mathrm{~V} / \mathrm{POSCAP}+3 \times 47 \mu \mathrm{~F} / 16 \mathrm{~V} / \mathrm{X} 5 \mathrm{R}+1 \times 10 \mu \mathrm{~F} / 16 \mathrm{~V} / \mathrm{X} 5 \mathrm{R}$

$\mathrm{V}_{\text {IN }}=24 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}$
OA TO 4A LOAD STEP
$\mathrm{C}_{\text {OUT }}=1 \times 47 \mu \mathrm{~F} / 16 \mathrm{~V} / \mathrm{POSCAP}+3 \times 47 \mu \mathrm{~F} / 16 \mathrm{~V} / \mathrm{X} 5 \mathrm{R}+1 \times 10 \mu \mathrm{~F} / 16 \mathrm{~V} / \mathrm{X} 5 \mathrm{R}$

Figure 4. Measured Load Transient Responses

[^1]Figure 5. Thermal Image of LTM4613

DEMO MANUAL DC1743A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	CFF	CAP, NPO 47pF 50V 10\% 0603	AVX 06035A470KAT1A
2	1	CIN1	CAP, ALUM 100 ${ }^{\text {F }} 50 \mathrm{~V}$ 10\%	SUNCON 50CE100FS
3	5	CIN2, CIN3, C8, C9, C10	CAP, X5R 10 ${ }^{\text {F }} 50 \mathrm{~V}$ 20\% 1210	TAIYO YUDEN UMK325BJ106MM-T
4	3	COUT1, COUT2, COUT6	CAP, X5R 47 $\mu \mathrm{F} 16 \mathrm{~V}$ 20\% 1210	TAIYO YUDEN EMK325BJ476MM
5	1	COUT4	CAP, X5R 10 $\mu \mathrm{F} 16 \mathrm{~V}$ 20\% 1210	TDK C3225X5R1C106M
6	1	COUT5	CAP, X7R 1^F 16V 10\% 0603	TDK C1608X7R1C105K
7	1	COUT7	CAP, POSCAP 47 F 16V 20\% 7343	SANYO 16TQC47M
8	1	CSS	CAP, X7R 0.1仿 16V 20\% 0603	AVX 0603YC104MAT2A
9	1	R14	RES, CHIP 22.1k 0.06W 1\% 0603	VISHAY CRCW060322K1FKEA
10	1	R16	RES, CHIP 13.7k 0.06W 1\% 0603	VISHAY CRCW060313K7FKEA
11	1	R17	RES, CHIP 5.23k 0.06W 1\% 0603	YAYEO, RC0603FR-075K23L
12	2	R2, R12	RES, CHIP 51k 0.06W 5\% 0603	VISHAY CRCW060351KOJNEA
13	1	R15	RES, CHIP 10k 0.06W 5\% 0603	VISHAY CRCW060310KOJNEA
14	1	R4	RES, CHIP 392k 0.06W 1\% 0603	VISHAY CRCW0603392KFKEA
15	1	D1	ZENER DIODE, 5.1V SOT23	ON SEMICONDUCTOR MMBZ5231B
16	1	U1	I.C., VOLTAGE REG	LINEAR TECHNOLOGY CORPORATION LTM4613EV

Additional Demo Board Circuit Components

1	1	Q1	MOSFET, N-CHANNEL 30V	VISHAY SILICONIX SUD50N03-09
2	1	C1	CAP, X7R 1 1 F 16V 10\% 0603	TDK C1608X7R1C105K
3	0	COUT3, CIN4, CIN5 (OPT)	CAP, 1210	
4	0	CIN6 (OPT)	CAP, 0805	
5	0	C2, C3, C6, C7, CP (OPT)	CAP, 0603	
6	1	R1	RES, CHIP 10k 0.06W 5\% 0603	VISHAY CRCW060310K0JNEA
7	1	R3	RES, LRC 0.020 1W 5\% 2512	IRC LRF2512-01-R020-J
8	2	R5, R9	RES, CHIP 0 $1 / 16 \mathrm{~W}$ 1A 0603	VISHAY CRCW0603000Z
9	0	R6, R7, R8, R10, R11, R13 (OPT)	RES, 0603	

Hardware

1	4	JP1, JP2, JP3, JP4	HEADERS, 3 PINS 2mm CTRS	SAMTEC TMM-103-02-L-S
2	3	JP5, JP6, JP7	JUMPER, 2 PINS 2mm CTRS	SAMTEC TMM-102-02-L-S
3	4	J1, J2, J5, J6	CONNECTOR, BANANA JACK	KEYSTONE 575-4
4	1	J3	BNC CONNECTOR	CONNEX 112404
5	2	J4, J7	TEST PROBE, CONNECTOR	TEKTRONIC 131-4353-00
6	11	E1 T0 E4, E6 T0 E12	TURRET, TESTPOINT	MILL MAX 2501-2-00-80-00-00-07-0

SCHEMATIC DIAGRAM

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation
dc1743af

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:

[^0]: $\boldsymbol{\mathcal { T }}$, LT, LTC, LTM, μ Module, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

[^1]: $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}$
 $V_{\text {OUT }}=12 \mathrm{~V}$
 $I_{\text {LOAD }}=8 \mathrm{~A}$
 AMBIENT TEMPERATURE $=23.3^{\circ} \mathrm{C}$
 NO FORCED AIR FLOW

