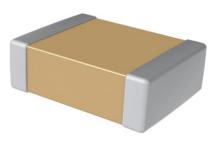


#### **Overview**


The KEMET Automotive Grade Surface Mount Capacitors in X7R dielectric are suited for a variety of applications requiring proven, reliable performance in harsh environments. Whether underhood or in-cabin, these devices emphasize the vital and robust nature of capacitors required for mission and safety of critical automotive circuits. Stricter testing protocol and inspection criteria have been established for automotive grade products in recognition of potentially harsh environmental conditions. KEMET automotive grade capacitors meet the demanding Automotive Electronics Council's AEC-Q200 qualification requirements. X7R dielectric features a 125°C maximum operating temperature and is considered temperature stable. The Electronics Industries Alliance (EIA) characterizes X7R dielectric as a Class II material. Components of this classification are fixed, ceramic dielectric capacitors, suited for bypass and decoupling applications, or for frequency discriminating circuits, where Q and stability of capacitance characteristics are not critical. X7R exhibits a predictable change in capacitance with respect to time and voltage, and boasts a minimal change in capacitance with reference to ambient temperature. Capacitance change is limited to  $\pm 15\%$  from  $-55^{\circ}$ C to  $\pm 125^{\circ}$ C.

#### **Benefits**

- · AEC-Q200 automotive qualified
- -55°C to +125°C operating temperature range
- · Lead (Pb)-free, RoHS and REACH compliant
- Temperature stable dielectric
- EIA 0402, 0603, 0805, 1206, 1210, 1808, 1812, 1825, and 2220 case sizes
- DC voltage ratings of 6.3 V, 10 V, 16 V, 25 V, 50 V, 100 V, 200 V and 250 V
- Capacitance offerings ranging from 10 pF to 22 μF
- Available capacitance tolerances of ±5%, ±10% and ±20%
- · Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated termination finish, allowing for excellent solderability

#### **Applications**

Typical applications include decoupling, bypass, filtering and transient voltage suppression.





# **Ordering Information**

| С       | 0805                                                                 | C                        | 225                                                  | М                               | 4                                                                                | R          | Α                      | C                               | AUTO                                                |
|---------|----------------------------------------------------------------------|--------------------------|------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------|------------|------------------------|---------------------------------|-----------------------------------------------------|
| Ceramic | Case Size<br>(L" x W")                                               | Specification/<br>Series | Capacitance<br>Code (pF)                             | Capacitance<br>Tolerance        | Rated Voltage<br>(VDC)                                                           | Dielectric | Failure<br>Rate/Design | Termination Finish <sup>1</sup> | Packaging/Grade<br>(C-Spec)                         |
|         | 0402<br>0603<br>0805<br>1206<br>1210<br>1808<br>1812<br>1825<br>2220 | C = Standard             | Two significant<br>digits and<br>number of<br>zeros. | J = ±5%<br>K = ±10%<br>M = ±20% | 9 = 6.3<br>8 = 10<br>4 = 16<br>3 = 25<br>5 = 50<br>1 = 100<br>2 = 200<br>A = 250 | R = X7R    | A = N/A                | C = 100% matte Sn               | See "Packaging<br>C-Spec Ordering<br>Options Table" |

<sup>1</sup> Additional termination finish options may be available. Contact KEMET for details.

# Packaging C-Spec Ordering Options Table

| Packaging Type <sup>1</sup>               | Packaging/Grade<br>Ordering Code (C-Spec) <sup>3</sup>                                  |
|-------------------------------------------|-----------------------------------------------------------------------------------------|
| 7" Reel                                   | AUTO                                                                                    |
| 13" Reel/Unmarked                         | AUTO7411 (EIA 0603 and smaller case sizes)<br>AUTO7210 (EIA 0805 and larger case sizes) |
| 7" Reel/Unmarked/2 mm pitch <sup>2</sup>  | 3190                                                                                    |
| 13" Reel/Unmarked/2 mm pitch <sup>2</sup> | 3191                                                                                    |

<sup>1</sup> Reeling tape options (paper or plastic) are dependent on capacitor case size (L" x W") and thickness dimension. See "Chip Thickness/Tape & Reel Packaging Quantities" and "Tape & Reel Packaging Information."

<sup>2</sup> The 2 mm pitch option allows for double the packaging quantity of capacitors on a given reel size. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information."

<sup>3</sup> All automotive packaging C-Specs listed exclude the option to laser mark components. Please contact KEMET if you require a laser marked option. For more information see "Capacitor Marking."

<sup>3</sup> For additional Information regarding "AUTO" C-Spec options, see "Automotive C-Spec Information."

# **Qualification/Certification**

Automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. For additional information regarding the Automotive Electronics Council and AEC-Q200, please visit their website at www.aecouncil.com.

#### **Environmental Compliance**

Lead (Pb)-free, RoHS, and REACH compliant without exemptions.



## **Automotive C-Spec Information**

KEMET automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. These products are supported by a Product Change Notification (PCN) and Production Part Approval Process warrant (PPAP).

Automotive products offered through our distribution channel have been assigned an inclusive ordering code C-Spec, "AUTO." This C-Spec was developed in order to better serve small and medium-sized companies that prefer an automotive grade component without the requirement to submit a customer Source Controlled Drawing (SCD) or specification for review by a KEMET engineering specialist. This C-Spec is therefore not intended for use by KEMET OEM automotive customers and are not granted the same "privileges" as other automotive C-Specs. Customer PCN approval and PPAP request levels are limited (see details below.)

#### **Product Change Notification (PCN)**

The KEMET product change notification system is used to communicate primarily the following types of changes:

- Product/process changes that affect product form, fit, function, and/or reliability
- · Changes in manufacturing site
- Product obsolescence

| KEMET Automotive            | Customer Notifica                | tion Due To:  | Days Prior To    |
|-----------------------------|----------------------------------|---------------|------------------|
| C-Spec                      | Process/Product change           | Obsolescence* | Implementation   |
| KEMET assigned <sup>1</sup> | Yes (with approval and sign off) | Yes           | 180 days minimum |
| AUTO                        | Yes (without approval)           | Yes           | 90 days minimum  |

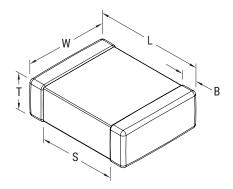
<sup>1</sup> KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

#### **Production Part Approval Process (PPAP)**

The purpose of the Production Part Approval Process is:

- To ensure that supplier can meet the manufacturability and quality requirements for the purchased parts.
- To provide the evidence that all customer engineering design records and specification requirements are properly understood and fulfilled by the manufacturing organization.
- To demonstrate that the established manufacturing process has the potential to produce the part.

| KEMET Automotive            | I | PPAP (Product | Part Approval | Process) Leve | I |
|-----------------------------|---|---------------|---------------|---------------|---|
| C-Spec                      | 1 | 2             | 3             | 4             | 5 |
| KEMET assigned <sup>1</sup> | • | •             | •             | •             | • |
| AUTO                        |   |               | 0             |               |   |


<sup>1</sup> KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

#### • Part number specific PPAP available

• Product family PPAP only



## **Dimensions – Millimeters (Inches)**



| EIA Size<br>Code  | Metric Size<br>Code | L<br>Length                   | W<br>Width                    | T<br>Thickness               | B<br>Bandwidth                | S<br>Separation<br>Minimum | Mounting<br>Technique           |
|-------------------|---------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|----------------------------|---------------------------------|
| 0402              | 1005                | 1.00 (0.040)<br>±0.05 (0.002) | 0.50 (0.020)<br>±0.05 (0.002) |                              | 0.30 (0.012)<br>±0.10 (0.004) | 0.30 (0.012)               | Solder reflow only              |
| 06031             | 1608                | 1.60 (0.063)<br>±0.15 (0.006) | 0.80 (0.032)<br>±0.15 (0.006) |                              | 0.35 (0.014)<br>±0.15 (0.006) | 0.70 (0.028)               |                                 |
| 0805²             | 2012                | 2.00 (0.079)<br>±0.20 (0.008) | 1.25 (0.049)<br>±0.20 (0.008) |                              | 0.50 (0.02)<br>±0.25 (0.010)  | 0.75 (0.030)               | Solder wave or<br>Solder reflow |
| 1206³             | 3216                | 3.20 (0.126)<br>±0.20 (0.008) | 1.60 (0.063)<br>±0.20 (0.008) | See Table 2 for<br>Thickness | 0.50 (0.02)<br>±0.25 (0.010)  |                            |                                 |
| 1210 <sup>4</sup> | 3225                | 3.20 (0.126)<br>±0.20 (0.008) | 2.50 (0.098)<br>±0.20 (0.008) |                              | 0.50 (0.02)<br>±0.25 (0.010)  | NI / A                     |                                 |
| 1812              | 4532                | 4.50 (0.177)<br>±0.30 (0.012) | 3.20 (0.126)<br>±0.30 (0.012) |                              | 0.60 (0.024)<br>±0.35 (0.014) | N/A                        | Solder reflow<br>only           |
| 2220              | 5650                | 5.70 (0.224)<br>±0.40 (0.016) | 5.00 (0.197)<br>±0.40 (0.016) |                              | 0.60 (0.024)<br>±0.35 (0.014) |                            |                                 |

<sup>1</sup> For capacitance values ≥ 0.56  $\mu$ F add 0.05 (0.002) to length tolerance dimension.

<sup>2</sup> For capacitance values 1.0  $\mu$ F or  $\ge$  2.2  $\mu$ F add 0.10 (0.004) to length tolerance dimension.

 $^3$  For capacitance value 1.0  $\mu$ F all voltages and 10  $\mu$ F with 25 V add 0.05 (0.002) to length tolerance dimension.

<sup>4</sup> For capacitance values  $\geq$  4.7  $\mu$ F add 0.02 (0.001) to the width tolerance dimension and 0.10 (0.004) to the length tolerance dimension.

For capacitance value 22 µF, Length is [L] 3.30 (0.130) ± 0.40 (0.016) and Width [W] is 2.60 (0.102) ± 0.30 (0.012).

Downloaded from Arrow.com.

4



## **Electrical Parameters/Characteristics**

| Item                                                                  | Parameters/Characteristics                                                                  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Operating Temperature Range                                           | -55°C to +125°C                                                                             |
| Capacitance Change with Reference to<br>+25°C and 0 VDC Applied (TCC) | ±15%                                                                                        |
| <sup>1</sup> Aging Rate (Maximum % Capacitance Loss/Decade Hour)      | 3.0%                                                                                        |
| <sup>2</sup> Dielectric Withstanding Voltage (DWV)                    | 250% of rated voltage<br>(5 ±1 seconds and charge/discharge not exceeding 50 mA)            |
| <sup>3</sup> Dissipation Factor (DF) Maximum Limit at 25°C            | See Dissipation Factor Limit table                                                          |
| <sup>4</sup> Insulation Resistance (IR) Minimum Limit at 25°C         | See Insulation Resistance Limit table<br>(Rated voltage applied for 120 ±5 seconds at 25°C) |

<sup>1</sup> Regarding Aging Rate: Capacitance measurements (including tolerance) are indexed to a referee time of 48 or 1,000 hours. Please refer to a part number specific datasheet for referee time details

<sup>2</sup>DWV is the voltage a capacitor can withstand (survive) for a short period of time. It exceeds the nominal and continuous working voltage of the capacitor.

<sup>3</sup> Capacitance and dissipation factor (DF) measured under the following conditions:

1 kHz ± 50 Hz and 1.0 ± 0.2  $V_{\rm rms}$  if capacitance  $\leq$  10  $\mu F$ 

120 Hz ± 10 Hz and 0.5 ± 0.1  $V_{rms}$  if capacitance > 10  $\mu$ F

<sup>4</sup> To obtain IR limit, divide  $M\Omega - \mu F$  value by the capacitance and compare to G $\Omega$  limit. Select the lower of the two limits.

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

| EIA Case Size     | Rated DC Voltage | 1,000 megohm<br>microfarads or 100 GΩ | 500 megohm<br>microfarads or 10 GΩ | 100 megohm<br>microfarads or 10 GΩ |
|-------------------|------------------|---------------------------------------|------------------------------------|------------------------------------|
| 0402              | ALL              | < 0.012 µF                            | ≥ 0.012 µF                         | N/A                                |
| 0603              | ≤ 200 V          | < 0.047 µF                            | ≥ 0.047 µf < 0.47 µf               | ≥ 0.47 µf                          |
| 0003              | 250 V            | N/A                                   | N/A                                | ALL                                |
| 0805 <sup>1</sup> | ≤ 200 V          | < 0.15 µF                             | ≥ 0.15 µF < 2.2 µf                 | ≥ 2.2 µf                           |
| 0805              | 250 V            | < .027 µF                             | N/A                                | ≥ .027 µF                          |
| 1206              | ≤ 200 V          | < 0.47 µF                             | ≥ 0.47 µF < 2.2 µf                 | ≥ 2.2 µf                           |
| 1200              | 250 V            | < 0.12 µF                             | N/A                                | ≥ 0.12 µF                          |
| 1210 <sup>1</sup> | ≤ 200 V          | < 0.39 µF                             | ≥ 0.39 µF < 10 µf                  | ≥ 10 µf                            |
| 1210              | 250 V            | < 0.27 µF                             | N/A                                | ≥ 0.27 µF                          |
| 1808              | ALL              | ALL                                   | N/A                                | N/A                                |
| 1812              | ALL              | < 2.2 µF                              | ≥ 2.2 µF                           | N/A                                |
| 1825              | ALL              | ALL                                   | N/A                                | N/A                                |
| 2220              | ALL              | < 10 µF                               | ≥ 10 µF                            | N/A                                |
| 2225              | ALL              | ALL                                   | N/A                                | N/A                                |

#### **Insulation Resistance Limit Table**

<sup>1</sup> For Capacitance value 1.0  $\mu$ F (50 V) IR should be calculated under 100 megohm microfarads or 10 G $\Omega$ .

 $^2$  For Capacitance value 4.7  $\mu$ F (50 V) IR should be calculated under 100 megohm microfarads or 10 G $\Omega$ .

Downloaded from Arrow.com.



# **Dissipation Factor (DF) Limits Table**

| EIA Case Size     | $ \begin{array}{r} &  \text{Voltage} \\ \hline \text{Voltage} \\ \hline \begin{array}{r} < 16 \\ \hline 16/25 \\ > 25 \\ \hline < 16 \\ \hline 16/25 \\ > 25 \\ \hline \\ All \\ \hline \\ \\ 16 \\ \hline \\ 16 \\ \hline \\ 16 \\ \hline \\ 25 \\ \hline \\ 6^3 \\ \hline$ | Capacitance | Dissipation<br>Factor<br>(Maximum %) |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------|
|                   | < 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 5.0                                  |
| 0402              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All         | 3.5                                  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 2.5                                  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 5.0                                  |
| 06031             | 16/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 1.0 µF    | 3.5                                  |
| 0005              | Ise Size       Voltage $402$ $16/25$ $25$ $<16$ $303^1$ $16/25$ $303^1$ $25$ $All$ $<16$ $305^2$ $25$ $25$ $>25$ $25$ $>25$ $206^3$ $16$ $206^3$ $16/25$ $225$ $<16$ $206^3$ $16/25$ $225$ $<16$ $206^3$ $16/25$ $225$ $<25$ $210^4$ $225$ $50$ $>50$ $>50$ $<50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 2.5                                  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≥ 1.0 µF    | 10.0                                 |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 4.7 µF    | 5.0                                  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≥ 4.7 µF    | 10.0                                 |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 4.7 µF    | 3.5                                  |
| 08052             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≥ 4.7 µF    | 10.0                                 |
| 0000              | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2.2 µF     | 3.5                                  |
|                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≥ 2.2 µF    | 10.0                                 |
|                   | $ \begin{array}{r c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1.0 µF     | 2.5                                  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≥ 1.0 µF    | 10.0                                 |
|                   | < 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All         | 5.0                                  |
| 1206 <sup>3</sup> | 16/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | All         | 3.5                                  |
|                   | > 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All         | 2.5                                  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All         | 5.0                                  |
|                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | All         | 3.5                                  |
|                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 10 µF     | 3.5                                  |
| 1210 <sup>4</sup> | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≥ 10 µF     | 10.0                                 |
|                   | > 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All         | 2.5                                  |
|                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | All         | 2.5                                  |
|                   | > 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All         | 2.5                                  |
|                   | < 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 5.0                                  |
| 1808 - 2225       | 16/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | All         | 3.5                                  |
|                   | > 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 2.5                                  |

 $^{1}$  For Capacitance values 0.22  $\mu F$  (16 and 25 Volts) DF is 5%.

 $^2$  For Capacitance values 2.2  $\mu F$  (6.3, 10, and 16 Volts) DF is 10%.

 $^3$  For Capacitance values 4.7 and 10  $\mu F$  (All Voltages) and 2.2  $\mu F$  (25 and 50 Volts) DF is 10%.

<sup>4</sup> For Capacitance values  $\geq$  10  $\mu$ F ( $\leq$  16 V) DF is 10% and for Capacitance value 4.7  $\mu$ F (50 V) DF is 5%.

6



# Post Environmental Limits

| High              | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                       | Life, Biased | Humidity, Mo                         | oisture Resis        | tance                    |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------|----------------------|--------------------------|
| EIA Case Size     | Rated<br>DC Voltage                                                                                                                                                                                                                                                                                                                                                                                                                               | Capacitance  | Dissipation<br>Factor<br>(Maximum %) | Capacitance<br>Shift | Insulation<br>Resistance |
|                   | < 16                                                                                                                                                                                                                                                                                                                                                                                                                                              | All          | 7.5                                  |                      |                          |
| 0402              | 16/25                                                                                                                                                                                                                                                                                                                                                                                                                                             | All          | 5.0                                  |                      |                          |
|                   | > 25                                                                                                                                                                                                                                                                                                                                                                                                                                              | All          | 3.0                                  |                      |                          |
|                   | < 16                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 7.5                                  |                      |                          |
| 06.021            | 16/25                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1.0 µF     | 5.0                                  |                      |                          |
| 0003              | > 25                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 3.0                                  |                      |                          |
|                   | All                                                                                                                                                                                                                                                                                                                                                                                                                                               | ≥ 1.0 µF     | 20.0                                 |                      |                          |
|                   | . 10                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 4.7 µF     | 7.5                                  |                      |                          |
|                   | < 10                                                                                                                                                                                                                                                                                                                                                                                                                                              | ≥ 4.7 µF     | 20.0                                 |                      |                          |
|                   | $0805^{2} \qquad \boxed{ \begin{array}{c} \geq 4.7 \ \mu F \\ 16 \end{array} \begin{array}{c} \geq 4.7 \ \mu F \\ \geq 4.7 \ \mu F \\ 20.0 \\ \geq 4.7 \ \mu F \\ 20.0 \\ \leq 2.2 \ \mu F \\ 5.0 \end{array} }$                                                                                                                                                                                                                                  | < 4.7 µF     | 5.0                                  |                      |                          |
| 00053             |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.0         |                                      |                      |                          |
| 08052             | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 2.2 µF     | 5.0                                  |                      |                          |
|                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≥ 2.2 µF     | 20.0                                 |                      |                          |
|                   | $<$ $\land$ $\land$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ <td>.00%</td> <td>10% of Initial</td> | .00%         | 10% of Initial                       |                      |                          |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.0         | ±20%                                 | limit                |                          |
|                   | < 16                                                                                                                                                                                                                                                                                                                                                                                                                                              | All          | 7.5                                  |                      |                          |
| 1206³             | 16/25                                                                                                                                                                                                                                                                                                                                                                                                                                             | All          | 5.0                                  |                      |                          |
|                   | > 25                                                                                                                                                                                                                                                                                                                                                                                                                                              | All          | 3.0                                  |                      |                          |
|                   | < 16                                                                                                                                                                                                                                                                                                                                                                                                                                              | All          | 7.5                                  |                      |                          |
|                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                | All          | 5.0                                  |                      |                          |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 10 µF      | 5.0                                  |                      |                          |
| 1210 <sup>4</sup> | 25 < 10 μF 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.0         |                                      |                      |                          |
|                   | > 25                                                                                                                                                                                                                                                                                                                                                                                                                                              | All          | 3.0                                  |                      |                          |
|                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                | All          | 3.0                                  |                      |                          |
|                   | > 50                                                                                                                                                                                                                                                                                                                                                                                                                                              | All          | 3.0                                  |                      |                          |
|                   | < 16                                                                                                                                                                                                                                                                                                                                                                                                                                              | All          | 7.5                                  |                      |                          |
| 1808 - 2225       | 16/25                                                                                                                                                                                                                                                                                                                                                                                                                                             | All          | 5.0                                  |                      |                          |
|                   | > 25                                                                                                                                                                                                                                                                                                                                                                                                                                              | All          | 3.0                                  |                      |                          |

<sup>1</sup> For Capacitance values 0.22 μF (16 and 25 Volts) DF is 7.5%.

 $^2$  For Capacitance values 2.2  $\mu F$  (6.3, 10, and 16 Volts) DF is 20%

 $^3$  For Capacitance values 4.7 and 10  $\mu F$  (All Voltages) and 2.2  $\mu F$  (25 and 50 Volts) DF is 20%

 $^4$  For Capacitance values  $\geq$  10  $\mu F$  ( $\leq$  16 V) DF is 20% and for Capacitance value 4.7  $\mu F$  (50 V) DF is 7.5%



# Table 1A - Capacitance Range/Selection Waterfall (0402 - 1206 Case Sizes)

|                    |             |      | se S<br>Seri     | Size<br>es               |     | CO | )40 | 2C |     |               |          | (     | C06  | 030  | C     |       |      |          |       | (        | 208   | 050     | 2   |      |     |      |       |      | C12   | 06  | С   |     |     |
|--------------------|-------------|------|------------------|--------------------------|-----|----|-----|----|-----|---------------|----------|-------|------|------|-------|-------|------|----------|-------|----------|-------|---------|-----|------|-----|------|-------|------|-------|-----|-----|-----|-----|
| Capacitance        | Cap         | Volt | tage (           | Code                     | 9   | 8  | 4   | 3  | 5   | 9             | 8        | 4     | 3    | 5    | 1     | 2     | A    | 9        | 8     | 4        | 3     | 5       | 1   | 2    | A   | 9    | 8     | 4    | 3     | 5   | 1   | 2   | A   |
|                    | Code        |      | ed Vo<br>(VDC    | -                        | 6.3 | 10 | 16  | 25 | 50  | 6.3           | 10       | 16    | 25   | 50   | 100   | 200   | 250  | 6.3      | 10    | 16       | 25    | 50      | 100 | 200  | 250 | 6.3  | 10    | 16   | 25    | 50  | 100 | 200 | 250 |
|                    |             |      | pacita<br>olerai |                          |     |    |     | Pr | odu | ct Av         | aila     | bilit | y an | d Ch | ip Tł | nickı | ness | : Cod    | les - | - See    | e Tab | ole 2   | for | Chip | Thi | ckne | ess I | Dime | ensio | ons |     |     |     |
| 10 - 91 pF*        | 100 - 910*  | J    | K                | М                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    |      | DN       | DN    | DN       | DN    | DN      | DN  | DN   |     | EB   | EB    | EB   | EB    | EB  | EB  | EB  |     |
| 100 - 150 pF**     | 101 - 151** | J    | K                | M                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    |      | DN       | DN    | DN       | DN    | DN      | DN  | DN   |     | EB   | EB    | EB   | EB    | EB  | EB  | EB  |     |
| 180 - 820 pF**     | 181 - 820** | J    | K                | M                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    |      | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  |     |
| 1,000 pF           | 102         | J    | K                | M                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    | CF   | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 1,200 pF           | 122         | J    | K                | M                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    | CF   | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 1,500 pF           | 152         | J    | K                | M                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    | CF   | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 1,800 pF           | 182         | J    | K                | M                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    | CF   | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 2,200 pF           | 222         | J    | K                | M                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    | CF   | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 2,700 pF           | 272         | J    | K                | M                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    | CF   | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 3,300 pF           | 332         | J    | K                | М                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    | CF   | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 3,900 pF           | 392         | J    | K                | M                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    | CF   | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 4,700 pF           | 472         | J    | K                | М                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    | CF   | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 5,600 pF           | 562         | J    | K                | M                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    | CF   | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 6,800 pF           | 682         | J    | K                | M                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    | CF   | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 8,200 pF           | 822         | J    | K                | M                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    | CF   | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 10,000 pF          | 103         | J    | K                | M                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    | CF    | CF   | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 12,000 pF          | 123         | J    | K                | M                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    |       |      | DN       | DN    | DN       | DN    | DN      | DN  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 15,000 pF          | 153         | J    | К                | М                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    |       |      | DN       | DN    | DN       | DN    | DN      | DP  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 18,000 pF          | 183         | J    | К                | М                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    |       |      | DN       | DN    | DN       | DN    | DN      | DP  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 22,000 pF          | 223         | J    | к                | м                        | BB  | BB | BB  | BB | BB  | CF            | CF       | CF    | CF   | CF   | CF    |       |      | DN       | DN    | DN       | DN    | DN      | DP  | DN   | DN  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 27,000 pF          | 273         | J    | К                | М                        | BB  | BB | BB  | BB |     | CF            | CF       | CF    | CF   | CF   | CF    |       |      | DN       | DN    | DN       | DN    | DN      | DP  | DE   | DG  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 33,000 pF          | 333         | J    | к                | м                        | BB  | BB | BB  | BB |     | CF            | CF       | CF    | CF   | CF   | CF    |       |      | DN       | DN    | DN       | DN    | DN      | DP  | DE   | DG  | EB   | EB    | EB   | EB    | EB  | EB  | EB  | EB  |
| 39,000 pF          | 393         | J    | K                | M                        | BB  | BB | BB  | BB |     | CF            | CF       | CF    | CF   | CF   | CF    |       |      | DN       | DN    | DN       | DN    | DN      | DP  | DE   | DG  | EB   | EB    | EB   | EB    | EB  | EC  | EB  | EB  |
| 47,000 pF          | 473         | J    | K                | M                        | BB  | BB | BB  | BB |     | CF            | CF       | CF    | CF   | CF   | CF    |       |      | DN       | DN    | DN       | DN    | DN      | DE  | DG   | DG  | EB   | EB    | EB   | EB    | EB  | EC  | ED  | ED  |
| 56,000 pF          | 563         | J    | ĸ                | M                        | BB  | BB | BB  |    |     | CF            | CF       | CF    | CF   | CF   | 0.    |       |      | DP       | DP    | DP       | DP    | DP      | DE  | DG   | DG  | EB   | EB    | EB   | EB    | EB  | EB  | ED  | ED  |
| 68,000 pF          | 683         | J    | K                | M                        | BB  | BB | BB  |    |     | CF            | CF       | CF    | CF   | CF   |       |       |      | DP.      | DP.   | DP.      | DP    | DP.     | DE  | DG   |     | EB   | EB    | EB   | EB    | EB  | EB  | ED  | ED  |
| 82,000 pF          | 823         | J    | K                | M                        | BB  | BB | BB  |    |     | CF            | CF       | CF    | CF   | CF   |       |       |      | DP       | DP    | DP       | DP    | DP      | DE  |      | 00  | EB   | EB    | EB   | EB    | EB  | EB  | ED  | ED  |
| 0.10 µF            | 104         | J    | K                | M                        | BB  | BB | BB  |    |     | CF            | CF       | CF    | CF   | CF   |       |       |      | DN       | DN    | DN       | DN    | DN      | DE  |      |     | EB   | EB    | EB   | EB    | EB  | EB  | EM  | EM  |
| 0.12 μF            | 124         | J    | K                | M                        | 00  |    |     |    |     | CF            | CF       | CF    | CF   | CF   |       |       |      | DN       | DN    | DN       | DN    | DP      | DG  |      |     | EC   | EC    | EC   | EC    | EC  | EC  | EG  | EM  |
| 0.12 μF<br>0.15 μF | 124         | J    | K                | M                        |     |    |     |    |     | CF            | CF       | CF    | CF   | CF   |       |       |      | DN       | DN    | DN       | DN    | DP      | DG  |      |     | EC   | EC    | EC   | EC    | EC  | EC  | EG  | EG  |
| 0.13 µF            | 184         |      | K                | M                        |     |    |     |    |     | CF            | CF       | CF    | CF   | GF   |       |       |      | DN       | DN    | DN       | DN    | DP      | DG  |      |     | EC   | EC    | EC   | EC    | EC  | EC  | EM  | EM  |
| 0.18 μF            | 224         | J    | K                | M                        |     |    |     |    |     | CF            | CF       | CF    | CF   |      |       |       |      | DN       | DN    | DN       | DN    | DP      | DG  |      |     | EC   | EC    | EC   | EC    | EC  | EC  | EG  | EG  |
| 0.22 μF<br>0.27 μF | 274         |      | K                |                          |     |    |     |    |     | CF            | CF       | CF    | UF   |      |       |       |      | DP       | DP    | DP       | DP    | DP      | DG  |      |     | EB   | EB    | EB   | EB    | EC  | EM  | EG  | EG  |
|                    |             | J    |                  | M                        |     |    |     |    |     |               |          | CF    |      |      |       |       |      |          |       |          |       |         |     |      |     |      |       |      |       |     |     |     |     |
| 0.33 µF            | 334         | J    | K                | M                        |     |    |     |    |     | CF            | CF       | CF    |      |      |       |       |      | DP       | DP    | DP       | DP    | DP      |     |      |     | EB   | EB    | EB   | EB    | EC  | EG  |     |     |
| 0.39 µF            | 394         | J    | K                | M                        |     |    |     |    |     | CF<br>CF      | CF<br>CF | CF    |      |      |       |       |      | DG<br>DP | DG    | DG<br>DP | DG    | DE      |     |      |     | EB   | EB    | EB   | EB    | EC  | EG  |     |     |
| 0.47 µF            | 474         | J    | K                | M                        |     |    |     |    |     |               | UF       |       |      |      |       |       |      |          | DP    |          | DP    | DE      |     |      |     | EC   | EC    | EC   | EC    | EC  | EG  |     |     |
| 0.56 µF            | 564         | J    | K                | M                        |     |    |     |    |     |               |          |       |      |      |       |       |      | DP       | DP    | DP       | DG    | DH      |     |      |     | ED   | ED    | ED   | ED    | EC  | EM  |     |     |
| 0.68 µF            | 684         | J    | K                | M                        |     |    |     |    |     |               |          |       |      |      |       |       |      | DP       | DP    | DP       | DG    | DH      |     |      |     | EE   | EE    | EE   | EE    | ED  | EM  |     |     |
| 0.82 µF            | 824         | J    | K                | M                        |     |    |     |    |     |               |          |       |      |      |       |       |      | DP       | DP    | DP       | DG    | <b></b> |     |      |     | EF   | EF    | EF   | EF    | ED  | EH  |     |     |
| 1.0 µF             | 105         | J    | K                | M                        |     |    |     |    |     | CJ1           | CJ       | CJ    |      |      |       |       |      | DP       | DP    | DP       | DG    | DH      |     |      |     | EF   | EF    | EF   | EG    | ED  | EH  |     |     |
| 1.2 µF             | 125         | J    | K                | M                        |     |    |     |    |     |               |          |       |      |      |       |       |      |          | DE    |          |       |         |     |      |     | ED   | ED    | ED   | EG    | EH  |     |     |     |
| 1.5 µF             | 155         | J    | K                | M                        |     |    |     |    |     |               |          |       |      |      |       |       |      | DG       | DG    | DG       |       |         |     |      |     | EF   | EF    | EF   | EG    | EH  |     |     |     |
| 1.8 µF             | 185         | J    | K                | M                        |     |    |     |    |     |               |          |       |      |      |       |       |      |          | DG    |          |       |         |     |      |     | ED   | ED    | ED   | EF    | EH  |     |     |     |
| 2.2 µF             | 225         | J    | K                | M                        |     |    |     |    |     |               |          |       |      |      |       |       |      | DG       | DG    | DG       | DG    | DH      |     |      |     | EH   | EH    | EH   | EH    | EH  |     |     |     |
| 2.7 µF             | 275         | J    | K                | M                        |     |    |     |    |     |               |          |       |      |      |       |       |      |          |       |          |       |         |     |      |     | EN   | EN    | EN   | EH    |     |     |     |     |
| 3.3 µF             | 335         | J    | K                | M                        |     |    |     |    |     |               |          |       |      |      |       |       |      |          |       |          |       |         |     |      |     | ED   | ED    | ED   |       |     |     |     |     |
| 3.9 µF             | 395         | J    | K                | M                        |     |    |     |    |     |               |          |       |      |      |       |       |      |          |       |          |       |         |     |      |     | EF   | EF    | EF   | EH    |     |     |     |     |
|                    |             |      | ed Vo<br>(VDC    | ltage<br>:)              | 6.3 | 9  | 16  | 25 | 20  | 6.3           | 9        | 16    | 25   | 20   | 100   | 200   | 250  | 6.3      | 9     | 16       | 25    | 20      | 100 | 200  | 250 | 6.3  | 5     | 16   | 25    | 20  | 100 | 200 | 250 |
| Capacitance        | Cap Code    | Volt | tage (           | Code                     | 9   | 8  | 4   | 3  | 5   | 9             | 8        | 4     | 3    | 5    | 1     | 2     | A    | 9        | 8     | 4        | 3     | 5       | 1   | 2    | A   | 9    | 8     | 4    | 3     | 5   | 1   | 2   | A   |
|                    |             |      |                  | se Size<br>Geries C0402C |     |    |     |    |     | C0402C C0603C |          |       |      |      |       |       |      |          | C08   | 05C      |       |         |     |      |     |      | C12   | 06C  |       |     |     |     |     |

\*Capacitance range includes E24 decade values only (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, and 91.) \*\*Capacitance range includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, and 82.) xx<sup>1</sup> Available only in K and M tolerances.

© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com



## Table 1A - Capacitance Range/Selection Waterfall (0402 - 1206 Case Sizes) cont.

|             |          |    |                      | e S<br>eri    | Size<br>es  |     | CC  | )40 | 2C |     |       |      | (      | :06   | 03(  | 2     |      |      |     |       | C   | :08   | 05(   | C   |      |       |      |       | (    | C12  | 060 | 0   |     |     |
|-------------|----------|----|----------------------|---------------|-------------|-----|-----|-----|----|-----|-------|------|--------|-------|------|-------|------|------|-----|-------|-----|-------|-------|-----|------|-------|------|-------|------|------|-----|-----|-----|-----|
| Capacitance | Сар      | V  | olta                 | ige (         | Code        | 9   | 8   | 4   | 3  | 5   | 9     | 8    | 4      | 3     | 5    | 1     | 2    | Α    | 9   | 8     | 4   | 3     | 5     | 1   | 2    | A     | 9    | 8     | 4    | 3    | 5   | 1   | 2   | Α   |
| Capacitance | Code     | R  |                      | l Vo<br>VDC   | ltage<br>)  | 6.3 | 1   | 16  | 25 | 50  | 6.3   | 10   | 16     | 25    | 50   | 100   | 200  | 250  | 6.3 | 10    | 16  | 25    | 50    | 100 | 200  | 250   | 6.3  | 10    | 16   | 25   | 20  | 100 | 200 | 250 |
|             | -        | C  |                      | acita<br>erar | ince<br>ice |     |     |     | Pr | odu | ct Av | aila | bility | / and | d Ch | ip Tł | ickr | ness | Cod | les - | See | e Tak | ole 2 | for | Chip | o Thi | ckne | ess I | Dime | nsio | ns  |     |     |     |
| 4.7 μF      | 475      | Ι, | J                    | Κ             | М           |     |     |     |    |     |       |      |        |       |      |       |      |      | DG  | DG    | DG  | DH    |       |     |      |       | EF   | EH    | EH   | EH   | EH  |     |     |     |
| 5.6 µF      | 565      |    | JKM<br>JKM           |               |             |     |     |     |    |     |       |      |        |       |      |       |      |      |     |       |     |       |       |     |      |       | EH   | EH    | EH   |      |     |     |     |     |
| 6.8 µF      | 685      |    | J                    | Κ             | M           |     |     |     |    |     |       |      |        |       |      |       |      |      |     |       |     |       |       |     |      |       | EH   | EH    | EH   |      |     |     |     |     |
| 8.2 μF      | 825      | .  | J                    | Κ             | M           |     |     |     |    |     |       |      |        |       |      |       |      |      |     |       |     |       |       |     |      |       | EH   | EH    | EH   |      |     |     |     |     |
| 10 µF       | 106      |    | J                    | Κ             | M           |     |     |     |    |     |       |      |        |       |      |       |      |      | DH  | DH    |     |       |       |     |      |       | EH   | EH    | EH   | EH   |     |     |     |     |
|             |          | R  |                      | l Vo<br>VDC   | ltage<br>)  | 6.3 | 10  | 16  | 25 | 50  | 6.3   | 10   | 16     | 25    | 50   | 100   | 200  | 250  | 6.3 | 10    | 16  | 25    | 50    | 100 | 200  | 250   | 6.3  | 10    | 16   | 25   | 50  | 100 | 200 | 250 |
| Capacitance | Cap Code | v  | olta                 | oltage Code   |             | 9   | 8   | 4   | 3  | 5   | 9     | 8    | 4      | 3     | 5    | 1     | 2    | Α    | 9   | 8     | 4   | 3     | 5     | 1   | 2    | A     | 9    | 8     | 4    | 3    | 5   | 1   | 2   | A   |
|             | · · · F  |    | Case Size<br>/Series |               |             | C   | 040 | 20  |    |     |       |      | C06    | 03C   |      |       |      |      | ·   |       | C08 | 05C   | ~     |     |      |       |      | ·     | C12  | 06C  | ·   | ~   |     |     |

\*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91) \*\*Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82) xx<sup>1</sup> Available only in K and M tolerance.

## Table 1B – Capacitance Range/Selection Waterfall (1210 – 2220 Case Sizes)

|                |             |      | se S<br>Serio    |      |     |    | (  | C12  | 100   | ;     |        |     | <b>C</b> 1 | 808  | BC   |      | C1    | 812  | 2 <b>C</b> <sup>2</sup> |        |       | C18   | 250   | )   |      | C2    | 2220 | DC  |     |
|----------------|-------------|------|------------------|------|-----|----|----|------|-------|-------|--------|-----|------------|------|------|------|-------|------|-------------------------|--------|-------|-------|-------|-----|------|-------|------|-----|-----|
| Capacitance    | Сар         | Volt | tage (           | Code | 9   | 8  | 4  | 3    | 5     | 1     | 2      | A   | 5          | 1    | 2    | 3    | 5     | 1    | 2                       | A      | 5     | 1     | 2     | A   | 3    | 5     | 1    | 2   | A   |
| Capacitance    | Code        |      | ed Vol<br>(VDC   |      | 6.3 | 10 | 16 | 25   | 50    | 100   | 200    | 250 | 50         | 100  | 200  | 25   | 50    | 100  | 200                     | 250    | 50    | 100   | 200   | 250 | 25   | 50    | 100  | 200 | 250 |
|                |             |      | oacita<br>oleran |      |     |    | Р  | rodu | ct Av | ailat | oility | and | Chip       | Thic | knes | s Co | des - | See  | Tabl                    | e 2 fo | or Ch | ip Tł | nickn | ess | Dime | nsior | ıs   |     |     |
| 10 - 91 pF*    | 100 - 910*  | J    | K                | М    | FB  | FB | FB | FB   | FB    | FB    | FB     |     |            |      |      |      |       |      |                         |        |       |       |       |     |      |       |      |     |     |
| 100 - 270 pF** | 101 - 271** | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     |     |            |      |      |      |       |      |                         |        |       |       |       |     |      |       |      |     |     |
| 330 pF         | 331         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     |     | LF         | LF   | LF   |      |       |      |                         |        |       |       |       |     |      |       |      |     |     |
| 390 pF         | 391         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     |     | LF         | LF   | LF   |      |       |      |                         |        |       |       |       |     |      |       |      |     |     |
| 470 - 820 pF** | 471 - 821** | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     |     | LF         | LF   | LF   | GB   | GB    | GB   | GB                      |        |       |       |       |     |      |       |      |     |     |
| 1,000 pF       | 102         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     |     | LF         | LF   | LF   | GB   | GB    | GB   | GB                      |        |       |       |       |     |      |       |      |     |     |
| 1,200 pF       | 122         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     |     | LF         | LF   | LF   | GB   | GB    | GB   | GB                      |        |       |       |       |     |      |       |      |     |     |
| 1,500 pF       | 152         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FE     |     | LF         | LF   | LF   | GB   | GB    | GB   | GB                      |        |       |       |       |     |      |       |      |     |     |
| 1,800 pF       | 182         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FE     |     | LF         | LF   | LF   | GB   | GB    | GB   | GB                      |        |       |       |       |     |      |       |      |     |     |
| 2,200 pF       | 222         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LF         | LF   | LF   | GB   | GB    | GB   | GB                      |        |       |       |       |     |      |       |      |     |     |
| 2,700 pF       | 272         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LF         | LF   | LF   | GB   | GB    | GB   | GB                      |        |       |       |       |     |      |       |      |     |     |
| 3,300 pF       | 332         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LF         | LF   |      | GB   | GB    | GB   | GB                      |        |       |       |       |     |      |       |      |     |     |
| 3,900 pF       | 392         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LF         | LF   |      | GB   | GB    | GB   | GB                      |        |       |       |       |     |      |       |      |     |     |
| 4,700 pF       | 472         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LD         | LD   |      | GB   | GB    | GB   | GD                      |        |       |       |       |     |      |       |      |     |     |
| 5,600 pF       | 562         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LD         | LD   |      | GB   | GB    | GB   | GH                      |        |       |       |       |     |      |       |      |     |     |
| 6,800 pF       | 682         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LD         | LD   |      | GB   | GB    | GB   | GB                      | GB     |       |       |       |     | JE   | JE    | JE   |     |     |
| 8,200 pF       | 822         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LD         | LD   |      | GB   | GB    | GB   | GB                      | GB     |       |       |       |     | JE   | JE    | JE   |     |     |
| 10,000 pF      | 103         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LD         | LD   |      | GB   | GB    | GB   | GB                      | GB     |       |       |       |     | JE   | JE    | JE   |     |     |
| 12,000 pF      | 123         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LD         | LD   |      | GB   | GB    | GB   | GB                      | GB     |       |       |       |     | JE   | JE    | JE   |     |     |
| 15,000 pF      | 153         | J    | K                | M    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LD         | LD   |      | GB   | GB    | GB   | GB                      | GB     |       |       |       |     | JE   | JE    | JE   |     |     |
|                |             |      | ed Vol<br>(VDC   |      | 6.3 | 10 | 16 | 25   | 50    | 100   | 200    | 250 | 50         | 100  | 200  | 25   | 50    | 100  | 200                     | 250    | 50    | 100   | 200   | 250 | 25   | 50    | 100  | 200 | 0   |
| Capacitance    | Cap Code    | Volt | tage (           | Code | 9   | 8  | 4  | 3    | 5     | 1     | 2      | A   | 5          | 1    | 2    | 3    | 5     | 1    | 2                       | A      | 5     | 1     | 2     | A   | 3    | 5     | 1    | 2   |     |
|                |             |      | ise S<br>Serie   |      |     |    |    | C12  | 10C   |       |        |     | С          | 1808 | C    |      | C     | 1812 | C <sup>2</sup>          |        |       | C18   | 25C   |     |      | C     | 2220 | C   |     |

\*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91) \*\*Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82) <sup>2</sup> Available capacitance values available in <u>X7R with KONNEKT Technology</u>.

© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com



# Table 1B – Capacitance Range/Selection Waterfall (1210 – 2220 Case Sizes) cont.

|                  |          |      | se S<br>Serio            |      |     |    |    | C12  | 100   | ;     |        |     | <b>C</b> 1 | 180  | BC   |      | C1    | 812  | 2 <b>C</b> <sup>2</sup> |       |       | C18    | 250   | 2    |      | C        | 222  | OC  |     |
|------------------|----------|------|--------------------------|------|-----|----|----|------|-------|-------|--------|-----|------------|------|------|------|-------|------|-------------------------|-------|-------|--------|-------|------|------|----------|------|-----|-----|
| Capacitance      | Сар      | Volt | tage (                   | Code | 9   | 8  | 4  | 3    | 5     | 1     | 2      | A   | 5          | 1    | 2    | 3    | 5     | 1    | 2                       | A     | 5     | 1      | 2     | A    | 3    | 5        | 1    | 2   | A   |
| oupuonunou       | Code     |      | ed Vol<br>(VDC<br>pacita | )    | 6.3 | 10 | 16 | 25   | 50    | 100   | 200    | 250 | 50         | 100  | 200  | 25   | 50    | 100  | 200                     | 250   | 50    | 100    | 200   | 250  | 25   | 50       | 100  | 200 | 250 |
|                  |          |      | leran                    |      |     |    | P  | rodu | ct Av | ailal | oility | and | Chip       | Thic | knes | s Co | des - | See  | Tabl                    | e 2 f | or Ch | nip Tl | nickr | less | Dime | nsio     | ns   |     |     |
| 18,000 pF        | 183      | J    | K                        | М    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LD         | LD   |      | GB   | GB    | GB   | GB                      | GB    |       |        |       |      | JE   | JE       | JE   |     |     |
| 22,000 pF        | 223      | J    | K                        | M    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LD         | LD   |      | GB   | GB    | GB   | GB                      | GB    | HB    | HB     | HB    | HB   | JE   | JE       | JE   |     |     |
| 27,000 pF        | 273      | J    | K                        | Μ    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LD         | LD   |      | GB   | GB    | GB   | GB                      | GB    | HB    | HB     | HB    | HB   | JE   | JE       | JE   |     |     |
| 33,000 pF        | 333      | J    | K                        | M    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LD         | LD   |      | GB   | GB    | GB   | GB                      | GB    | HB    | HB     | HB    | HB   | JB   | JB       | JB   |     |     |
| 39,000 pF        | 393      | J    | K                        | M    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LD         | LD   |      | GB   | GB    | GB   | GB                      | GB    | HB    | HB     | HB    | HB   | JB   | JB       | JB   |     |     |
| 47,000 pF        | 473      | J    | K                        | Μ    | FB  | FB | FB | FB   | FB    | FB    | FB     | FB  | LD         | LD   |      | GB   | GB    | GB   | GB                      | GB    | HB    | HB     | HB    | HB   | JB   | JB       | JB   |     |     |
| 56,000 pF        | 563      | J    | к                        | м    | FB  | FB | FB | FB   | FB    | FB    | FC     | FC  | LD         | LD   |      | GB   | GB    | GB   | GB                      | GB    | НВ    | НВ     | НВ    | НВ   | JB   | JB       | JB   |     |     |
| 68,000 pF        | 683      | Ĵ    | ĸ                        | M    | FB  | FB | FB | FB   | FB    | FB    | FC     | FC  | LD         |      |      | GB   | GB    | GB   | GB                      | GB    | НВ    | HB     | HB    | HB   | JB   | JB       | JB   |     |     |
| 82,000 pF        | 823      | J    | ĸ                        | M    | FB  | FB | FB | FB   | FB    | FC    | FF     | FF  | LD         |      |      | GB   | GB    | GB   | GB                      | GB    | НВ    | HB     | HB    | HB   | JB   | JB       | JC   | JC  | JC  |
| 0.10 µF          | 104      | J    | K                        | M    | FB  | FB | FB | FB   | FB    | FD    | FG     | FG  | LD         |      |      | GB   | GB    | GB   | GB                      | GB    | НВ    | HB     | HB    | HB   | JB   | JB       | JC   | JC  | JC  |
|                  |          |      |                          | _    |     |    |    | _    |       | _     |        | -   |            |      |      |      |       |      | -                       | -     |       | _      |       |      |      |          |      |     |     |
| 0.12 µF          | 124      | J    | K                        | M    | FB  | FB | FB | FB   | FB    | FD    | FH     | FH  | LD         |      |      | GB   | GB    | GB   | GB                      | GB    | HB    | HB     | HB    | HB   | JB   | JB       | JC   | JC  | JC  |
| 0.15 µF          | 154      | J    | K                        | M    | FC  | FC | FC | FC   | FC    | FD    | FM     | FM  | LD         |      |      | GB   | GB    | GB   | GE                      | GE    | HB    | HB     | HB    | HB   | JB   | JB       | JC   | JC  | JC  |
| 0.18 µF          | 184      | J    | K                        | M    | FC  | FC | FC | FC   | FC    | FD    | FK     | FK  | LD         |      |      | GB   | GB    | GB   | GG                      | GG    | HB    | HB     | HB    | HB   | JB   | JB       | JC   | JC  | JC  |
| 0.22 µF          | 224      | J    | K                        | M    | FC  | FC | FC | FC   | FC    | FD    | FK     | FK  |            |      |      | GB   | GB    | GB   | GG                      | GG    | HB    | HB     | HB    | HB   | JB   | JB       | JC   | JC  | JC  |
| 0.27 µF          | 274      | J    | K                        | M    | FC  | FC | FC | FC   | FC    | FD    | FP     | FP  |            |      |      | GB   | GB    | GG   | GG                      | GG    | HB    | HB     | HB    | HB   | JC   | JC       | JC   | JC  | JC  |
| 0.33 µF          | 334      | J    | K                        | M    | FD  | FD | FD | FD   | FD    | FD    | FM     | FM  |            |      |      | GB   | GB    | GG   | GG                      | GG    | HB    | HB     | HB    | HB   | JC   | JC       | JC   | JC  | JC  |
| 0.39 µF          | 394      | J    | ĸ                        | м    | FD  | FD | FD | FD   | FD    | FD    | FK     | FK  |            |      |      | GB   | GB    | GG   | GG                      | GG    | HD    | HD     | HD    | HD   | JC   | JC       | JC   | JC  | JC  |
| 0.47 µF          | 474      | J    | K                        | M    | FD  | FD | FD | FD   | FD    | FD    | FS     | FS  |            |      |      | GB   | GB    | GG   | GJ                      | GJ    | HD    | HD     | HD    | HD   | JC   | JC       | JC   | JC  | JC  |
| 0.56 µF          | 564      | Ĵ    | ĸ                        | м    | FD  | FD | FD | FD   | FD    | FF    | 10     | 10  |            |      |      | GC   | GC    | GG   |                         |       | HD    | HD     | HD    | HD   | JC   | JD       | JD   | JD  | JD  |
| 0.68 µF          | 684      | J    | K                        | M    | FD  | FD | FD | FD   | FD    | FG    |        |     |            |      |      | GC   | GC    | GG   |                         |       | HD    | HD     | HD    | HD   | JC   | JD       | JD   | JD  | JD  |
|                  |          | -    | _                        | _    | -   |    |    |      |       |       |        |     |            |      |      |      |       |      |                         |       |       | _      |       | HF   |      |          |      |     |     |
| 0.82 µF          | 824      | J    | K                        | M    | FF  | FF | FF | FF   | FF    | FL    |        |     |            |      |      | GE   | GE    | GG   |                         |       | HF    | HF     | HF    |      | JC   | JF       | JF   | JF  | JF  |
| 1.0 µF           | 105      | J    | K                        | M    | FH  | FH | FH | FH   | FH    | FM    |        |     |            |      |      | GE   | GE    | GG   |                         |       | HF    | HF     | HF    | HF   | JC   | JF       | JF   | JF  | JF  |
| 1.2 µF           | 125      | J    | K                        | M    | FH  | FH | FH | FH   | FG    | FH    |        |     |            |      |      | GB   | GB    | GB   |                         |       |       |        |       |      | JC   | JC       |      |     |     |
| 1.5 µF           | 155      | J    | K                        | M    | FH  | FH | FH | FH   | FG    | FM    |        |     |            |      |      | GC   | GC    | GC   |                         |       |       |        |       |      | JC   | JC       |      |     |     |
| 1.8 µF           | 185      | J    | K                        | M    | FH  | FH | FH | FH   | FG    | FJ    |        |     |            |      |      | GE   | GE    | GE   |                         |       |       |        |       |      | JD   | JD       |      |     |     |
| 2.2 µF           | 225      | J    | K                        | М    | FJ  | FJ | FJ | FJ   | FG    | FK    |        |     |            |      |      | GO   | GO    | GG   |                         |       |       |        |       |      | JF   | JF       |      |     |     |
| 2.7 µF           | 275      | J    | К                        | М    | FE  | FE | FE | FG   | FH    |       |        |     | l I        |      |      | GJ   | GJ    | GJ   |                         |       |       |        |       |      |      |          |      |     |     |
| 3.3 µF           | 335      | J    | K                        | M    | FF  | FF | FF | FM   | FM    |       |        |     | I I        |      |      | GL   | GL    | GL   |                         |       |       |        |       |      | 1    |          |      |     |     |
| 3.9 µF           | 395      | Ĵ    | ĸ                        | M    | FG  | FG | FG | FG   | FK    |       |        |     | I I        |      |      | GK   | GK    |      |                         |       |       |        |       |      | I    |          |      |     |     |
| 4.7 μF           | 475      | J    | K                        | M    | FC  | FC | FC | FG   | FS    |       |        |     | I          |      |      | GK   | GK    |      |                         |       |       |        |       |      | JF   | JF       |      |     |     |
| 4.7 μF<br>5.6 μF | 565      | J    | K                        | M    | FF  | FF | FF | FH   | 13    |       |        |     |            |      |      | UK   | UK    |      |                         |       |       |        |       |      | JF   | JF       |      |     |     |
|                  |          |      |                          |      |     |    |    |      |       |       |        |     |            |      |      |      |       |      |                         |       |       |        |       |      |      |          |      |     |     |
| 6.8 µF           | 685      | J    | K                        | M    | FG  | FG | FG | FM   |       |       |        |     |            |      |      |      |       |      |                         |       |       |        |       |      |      |          |      |     |     |
| 8.2 µF           | 825      | J    | K                        | M    | FH  | FH | FH | FK   |       |       |        |     |            |      |      |      |       |      |                         |       |       |        |       |      |      |          |      |     |     |
| 10 µF            | 106      | J    | K                        | M    | FS  | FS | FS | FS   |       |       |        |     |            |      |      | GK   |       |      |                         |       |       |        |       |      | JF   | JO       |      |     |     |
| 15 µF            | 156      | J    | K                        | M    |     |    |    |      |       |       |        |     |            |      |      |      |       |      |                         |       |       |        |       |      | JO   |          |      |     |     |
| 22 µF            | 226      | J    | K                        | M    | FS  | FS |    |      |       |       |        |     |            |      |      |      |       |      |                         |       |       |        |       |      | JO   | <u> </u> |      |     |     |
|                  |          |      | ed Vol<br>(VDC           |      | 6.3 | 9  | 16 | 25   | 20    | 100   | 200    | 250 | 50         | 100  | 200  | 25   | 50    | 100  | 200                     | 250   | 50    | 100    | 200   | 250  | 25   | 50       | 100  | 200 | 250 |
| Capacitance      | Cap Code | Volt | tage (                   | Code | 9   | 8  | 4  | 3    | 5     | 1     | 2      | A   | 5          | 1    | 2    | 3    | 5     | 1    | 2                       | A     | 5     | 1      | 2     | A    | 3    | 5        | 1    | 2   | A   |
|                  |          |      | ise S<br>Serie           |      |     |    |    | C12  | 10C   |       |        |     | c          | 1808 | C    |      | C     | 1812 | C <sup>2</sup>          |       |       | C18    | 25C   |      |      | C        | 2220 | C   |     |

\*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91) \*\*Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82)

<sup>2</sup> Available capacitance values available in X7R with KONNEKT Technology.



| Thickness | Case              | Thickness ±  | Paper Q | uantity <sup>1</sup> | Plastic (        | Quantity |  |
|-----------|-------------------|--------------|---------|----------------------|------------------|----------|--|
| Code      | Size <sup>1</sup> | Range (mm)   | 7" Reel | 13" Reel             | 7" Reel          | 13" Reel |  |
| BB        | 0402              | 0.50 ± 0.05  | 10,000  | 50,000               | 0                | 0        |  |
| CF        | 0603              | 0.80 ± 0.07* | 4,000   | 15,000               | 0                | 0        |  |
| CJ        | 0603              | 0.80 ± 0.15* | 4,000   | 15,000               | 0                | 0        |  |
| DN        | 0805              | 0.78 ± 0.10* | 4,000   | 15,000               | 0                | 0        |  |
| DP        | 0805              | 0.90 ± 0.10* | 4,000   | 15,000               | 0                | 0        |  |
| DE        | 0805              | 1.00 ± 0.10  | 0       | 0                    | 2,500            | 10,000   |  |
| DG        | 0805              | 1.25 ± 0.15  | 0       | 0                    | 2,500            | 10,000   |  |
| DH        | 0805              | 1.25 ± 0.20  | 0       | 0                    | 2,500            | 10,000   |  |
| EB        | 1206              | 0.78 ± 0.10  | 0       | 0                    | 4,000            | 10,000   |  |
| EC        | 1206              | 0.90 ± 0.10  | 0       | 0                    | 4,000            | 10,000   |  |
| EN        | 1206              | 0.95 ± 0.10  | 0       | 0                    | 4,000            | 10,000   |  |
| ED        | 1206              | 1.00 ± 0.10  | 0       | 0                    | 2,500            | 10,000   |  |
| EE        | 1206              | 1.10 ± 0.10  | 0       | 0                    | 2,500            | 10,000   |  |
| EF        | 1206              | 1.20 ± 0.15  | 0       | 0                    | 2,500            | 10,000   |  |
| EM        | 1206              | 1.25 ± 0.15  | 0       | 0                    | 2,500            | 10,000   |  |
| EG        | 1206              | 1.60 ± 0.15  | 0       | 0                    | 2,000            | 8,000    |  |
| EH        | 1206              | 1.60 ± 0.20  | 0       | 0                    | 2,000            | 8,000    |  |
| FB        | 1210              | 0.78 ± 0.10  | 0       | 0                    | 4,000            | 10,000   |  |
| FC        | 1210              | 0.90 ± 0.10  | 0       | 0                    | 4,000            | 10,000   |  |
| FD        | 1210              | 0.95 ± 0.10  | 0       | 0                    | 4,000            | 10,000   |  |
| FE        | 1210              | 1.00 ± 0.10  | 0       | 0                    | 2,500            | 10,000   |  |
| FF        | 1210              | 1.10 ± 0.10  | 0       | 0                    | 2,500            | 10,000   |  |
| FG        | 1210              | 1.25 ± 0.15  | 0       | 0                    | 2,500            | 10,000   |  |
| FL        | 1210              | 1.40 ± 0.15  | 0       | 0                    | 2,000            | 8,000    |  |
| FH        | 1210              | 1.55 ± 0.15  | 0       | 0                    | 2,000            | 8,000    |  |
| FP        | 1210              | 1.60 ± 0.20  | 0       | 0                    | 2,000            | 8,000    |  |
| FM        | 1210              | 1.70 ± 0.20  | 0       | 0                    | 2,000            | 8,000    |  |
| FJ        | 1210              | 1.85 ± 0.20  | 0       | 0                    | 2,000            | 8,000    |  |
| FK        | 1210              | 2.10 ± 0.20  | 0       | 0                    | 2,000            | 8,000    |  |
| FS        | 1210              | 2.50 ± 0.30  | 0       | 0                    | 1,000            | 4,000    |  |
| Thickness | Case              | Thickness ±  | 7" Reel | 13" Reel             | 7" Reel          | 13" Reel |  |
| Code      | Size1             | Range (mm)   | Paper Q | uantity <sup>1</sup> | Plastic Quantity |          |  |

Package quantity based on finished chip thickness specifications.

<sup>1</sup> If ordering using the 2 mm Tape & Reel pitch option, the packaging quantity outlined in the table above will be doubled. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information."



| Thickness | Case              | Thickness ± | Paper Q | uantity <sup>1</sup> | Plastic ( | Quantity |
|-----------|-------------------|-------------|---------|----------------------|-----------|----------|
| Code      | Size <sup>1</sup> | Range (mm)  | 7" Reel | 13" Reel             | 7" Reel   | 13" Reel |
| NA        | 1706              | 0.90 ± 0.10 | 0       | 0                    | 4,000     | 10,000   |
| NC        | 1706              | 1.00 ± 0.15 | 0       | 0                    | 4,000     | 10,000   |
| LD        | 1808              | 0.90 ± 0.10 | 0       | 0                    | 2,500     | 10,000   |
| LF        | 1808              | 1.00 ± 0.15 | 0       | 0                    | 2,500     | 10,000   |
| GB        | 1812              | 1.00 ± 0.10 | 0       | 0                    | 1,000     | 4,000    |
| GC        | 1812              | 1.10 ± 0.10 | 0       | 0                    | 1,000     | 4,000    |
| GD        | 1812              | 1.25 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| GE        | 1812              | 1.30 ± 0.10 | 0       | 0                    | 1,000     | 4,000    |
| GH        | 1812              | 1.40 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| GG        | 1812              | 1.55 ± 0.10 | 0       | 0                    | 1,000     | 4,000    |
| GK        | 1812              | 1.60 ± 0.20 | 0       | 0                    | 1,000     | 4,000    |
| GJ        | 1812              | 1.70 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| GL        | 1812              | 1.90 ± 0.20 | 0       | 0                    | 500       | 2,000    |
| GO        | 1812              | 2.50 ± 0.20 | 0       | 0                    | 500       | 2,000    |
| HB        | 1825              | 1.10 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| HD        | 1825              | 1.30 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| HF        | 1825              | 1.50 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| JB        | 2220              | 1.00 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| JC        | 2220              | 1.10 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| JD        | 2220              | 1.30 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| JE        | 2220              | 1.40 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| JF        | 2220              | 1.50 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| JO        | 2220              | 2.40 ± 0.15 | 0       | 0                    | 500       | 2,000    |
| Thickness | Case              | Thickness ± | 7" Reel | 13" Reel             | 7" Reel   | 13" Reel |
| Code      | Size1             | Range (mm)  | Paper Q | uantity <sup>1</sup> | Plastic ( | Quantity |

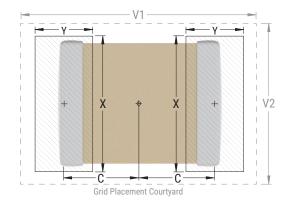
# Table 2 - Chip Thickness/Tape & Reel Packaging Quantities cont.

Package quantity based on finished chip thickness specifications.

<sup>1</sup> If ordering using the 2 mm Tape & Reel pitch option, the packaging quantity outlined in the table above will be doubled. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information."



### Table 3 – Chip Capacitor Land Pattern Design Recommendations per IPC-7351


| EIA<br>Size<br>Code | Metric<br>Size<br>Code | Density Level A:<br>Maximum (Most)<br>Land Protrusion (mm) |             |      |      |      | Density Level B:<br>Median (Nominal)<br>Land Protrusion (mm) |      |      |      |      | Density Level C:<br>Minimum (Least)<br>Land Protrusion (mm) |      |      |      |      |
|---------------------|------------------------|------------------------------------------------------------|-------------|------|------|------|--------------------------------------------------------------|------|------|------|------|-------------------------------------------------------------|------|------|------|------|
| Coue                | Coue                   | C                                                          | C Y X V1 V2 |      |      |      |                                                              | Y    | X    | V1   | V2   | C                                                           | Y    | X    | V1   | V2   |
| 0402                | 1005                   | 0.50                                                       | 0.72        | 0.72 | 2.20 | 1.20 | 0.45                                                         | 0.62 | 0.62 | 1.90 | 1.00 | 0.40                                                        | 0.52 | 0.52 | 1.60 | 0.80 |
| 0603                | 1608                   | 0.90                                                       | 1.15        | 1.10 | 4.00 | 2.10 | 0.80                                                         | 0.95 | 1.00 | 3.10 | 1.50 | 0.60                                                        | 0.75 | 0.90 | 2.40 | 1.20 |
| 0805                | 2012                   | 1.00                                                       | 1.35        | 1.55 | 4.40 | 2.60 | 0.90                                                         | 1.15 | 1.45 | 3.50 | 2.00 | 0.75                                                        | 0.95 | 1.35 | 2.80 | 1.70 |
| 1206                | 3216                   | 1.60                                                       | 1.35        | 1.90 | 5.60 | 2.90 | 1.50                                                         | 1.15 | 1.80 | 4.70 | 2.30 | 1.40                                                        | 0.95 | 1.70 | 4.00 | 2.00 |
| 1210                | 3225                   | 1.60                                                       | 1.35        | 2.80 | 5.65 | 3.80 | 1.50                                                         | 1.15 | 2.70 | 4.70 | 3.20 | 1.40                                                        | 0.95 | 2.60 | 4.00 | 2.90 |
| 1210 <sup>1</sup>   | 3225                   | 1.50                                                       | 1.60        | 2.90 | 5.60 | 3.90 | 1.40                                                         | 1.40 | 2.80 | 4.70 | 3.30 | 1.30                                                        | 1.20 | 2.70 | 4.00 | 3.00 |
| 1812                | 4532                   | 2.15                                                       | 1.60        | 3.60 | 6.90 | 4.60 | 2.05                                                         | 1.40 | 3.50 | 6.00 | 4.00 | 1.95                                                        | 1.20 | 3.40 | 5.30 | 3.70 |
| 2220                | 5650                   | 2.75                                                       | 1.70        | 5.50 | 8.20 | 6.50 | 2.65                                                         | 1.50 | 5.40 | 7.30 | 5.90 | 2.55                                                        | 1.30 | 5.30 | 6.60 | 5.60 |

#### <sup>1</sup> Only for capacitance values $\ge 22 \ \mu F$

**Density Level A:** For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805, and 1206 case sizes.

**Density Level B:** For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. **Density Level C:** For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC-7351).

Image below based on Density Level B for an EIA 1210 case size.

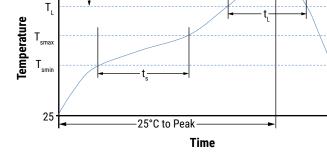


Downloaded from Arrow.com.



### **Soldering Process**

#### **Recommended Soldering Technique:**


- Solder wave or solder reflow for EIA case sizes 0603, 0805 and 1206
- · All other EIA case sizes are limited to solder reflow only

#### **Recommended Reflow Soldering Profile:**

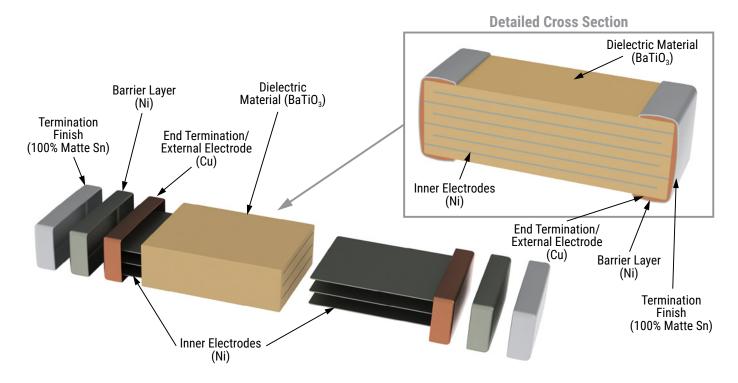
The KEMET families of surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with wave (single or dual), convection, IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. The KEMET recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020 standard for moisture sensitivity testing. These devices can safely withstand a maximum of three reflow passes at these conditions.

T<sub>D</sub>

| Profile Feature                                                  | Terminati             | ion Finish            |
|------------------------------------------------------------------|-----------------------|-----------------------|
| Tomereature                                                      | SnPb                  | 100% Matte Sn         |
| Preheat/Soak                                                     |                       |                       |
| Temperature Minimum (T <sub>smin</sub> )                         | 100°C                 | 150°C                 |
| Temperature Maximum (T <sub>Smax</sub> )                         | 150°C                 | 200°C                 |
| Time ( $t_s$ ) from $T_{smin}$ to $T_{smax}$                     | 60 – 120 seconds      | 60 – 120 seconds      |
| Ramp-Up Rate ( $T_L$ to $T_P$ )                                  | 3°C/second<br>maximum | 3°C/second<br>maximum |
| Liquidous Temperature $(T_L)$                                    | 183°C                 | 217°C                 |
| Time Above Liquidous ( $t_L$ )                                   | 60 – 150 seconds      | 60 – 150 seconds      |
| Peak Temperature (T <sub>P</sub> )                               | 235°C                 | 260°C                 |
| Time Within 5°C of Maximum<br>Peak Temperature (t <sub>P</sub> ) | 20 seconds<br>maximum | 30 seconds<br>maximum |
| Ramp-Down Rate $(T_{P} to T_{L})$                                | 6°C/second<br>maximum | 6°C/second<br>maximum |
| Time 25°C to Peak<br>Temperature                                 | 6 minutes<br>maximum  | 8 minutes<br>maximum  |



Maximum Ramp-up Rate = 3°C/second Maximum Ramp-down Rate = 6°C/second


Note: All temperatures refer to the center of the package, measured on the capacitor body surface that is facing up during assembly reflow.

# **Storage & Handling**

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature – reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt.



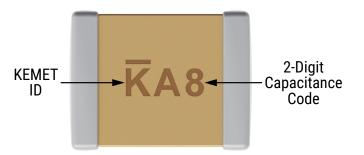
# **Construction (Typical)**



Downloaded from Arrow.com.



# **Capacitor Marking (Optional)**


These surface mount multilayer ceramic capacitors are normally supplied unmarked. If required, they can be marked as an extra cost option. Marking is available on most KEMET devices, but must be requested using the correct ordering code identifier(s). If this option is requested, two sides of the ceramic body will be laser marked with a "K" to identify KEMET, followed by two characters (per EIA–198 - see table below) to identify the capacitance value. EIA 0603 case size devices are limited to the "K" character only.

Laser marking option is not available on:

- COG, ultra stable X8R and Y5V dielectric devices.
- EIA 0402 case size devices.
- EIA 0603 case size devices with flexible termination option.
- KPS commercial and automotive grade stacked devices.
- X7R dielectric products in capacitance values outlined below.

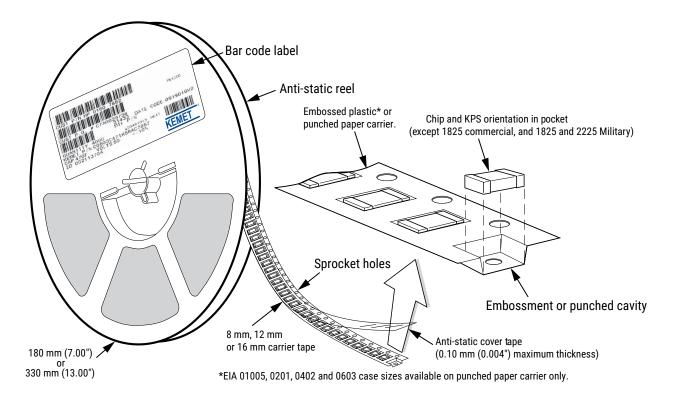
| EIA Case Size | Metric Size Code | Capacitance |
|---------------|------------------|-------------|
| 0603          | 1608             | ≤ 170 pF    |
| 0805          | 2012             | ≤ 150 pF    |
| 1206          | 3216             | ≤ 910 pF    |
| 1210          | 3225             | ≤ 2,000 pF  |
| 1808          | 4520             | ≤ 3,900 pF  |
| 1812          | 4532             | ≤ 6,700 pF  |
| 1825          | 4564             | ≤ 0.018 µF  |
| 2220          | 5650             | ≤ 0.027 µF  |
| 2225          | 5664             | ≤ 0.033 µF  |

Marking appears in legible contrast. Illustrated below is an example of an MLCC with laser marking of "KA8", which designates a KEMET device with rated capacitance of 100  $\mu$ F. Orientation of marking is vendor optional.





# Capacitor Marking (Optional) cont.


|           | Capacitance (pF) For Various Alpha/Numeral Identifiers |     |    |     |       |         |         |           |            |             |  |  |  |
|-----------|--------------------------------------------------------|-----|----|-----|-------|---------|---------|-----------|------------|-------------|--|--|--|
| Alaba     |                                                        |     |    |     |       | Numera  | al      |           |            |             |  |  |  |
| Alpha     | 9                                                      | 0   | 1  | 2   | 3     | 4       | 5       | 6         | 7          | 8           |  |  |  |
| Character |                                                        |     |    |     | Сара  | citance | e (pF)  |           |            |             |  |  |  |
| A         | 0.10                                                   | 1.0 | 10 | 100 | 1,000 | 10,000  | 100,000 | 1,000,000 | 10,000,000 | 100,000,000 |  |  |  |
| В         | 0.11                                                   | 1.1 | 11 | 110 | 1,100 | 11,000  | 110,000 | 1,100,000 | 11,000,000 | 110,000,000 |  |  |  |
| С         | 0.12                                                   | 1.2 | 12 | 120 | 1,200 | 12,000  | 120,000 | 1,200,000 | 12,000,000 | 120,000,000 |  |  |  |
| D         | 0.13                                                   | 1.3 | 13 | 130 | 1,300 | 13,000  | 130,000 | 1,300,000 | 13,000,000 | 130,000,000 |  |  |  |
| E         | 0.15                                                   | 1.5 | 15 | 150 | 1,500 | 15,000  | 150,000 | 1,500,000 | 15,000,000 | 150,000,000 |  |  |  |
| F         | 0.16                                                   | 1.6 | 16 | 160 | 1,600 | 16,000  | 160,000 | 1,600,000 | 16,000,000 | 160,000,000 |  |  |  |
| G         | 0.18                                                   | 1.8 | 18 | 180 | 1,800 | 18,000  | 180,000 | 1,800,000 | 18,000,000 | 180,000,000 |  |  |  |
| Н         | 0.20                                                   | 2.0 | 20 | 200 | 2,000 | 20,000  | 200,000 | 2,000,000 | 20,000,000 | 200,000,000 |  |  |  |
| J         | 0.22                                                   | 2.2 | 22 | 220 | 2,200 | 22,000  | 220,000 | 2,200,000 | 22,000,000 | 220,000,000 |  |  |  |
| К         | 0.24                                                   | 2.4 | 24 | 240 | 2,400 | 24,000  | 240,000 | 2,400,000 | 24,000,000 | 240,000,000 |  |  |  |
| L         | 0.27                                                   | 2.7 | 27 | 270 | 2,700 | 27,000  | 270,000 | 2,700,000 | 27,000,000 | 270,000,000 |  |  |  |
| М         | 0.30                                                   | 3.0 | 30 | 300 | 3,000 | 30,000  | 300,000 | 3,000,000 | 30,000,000 | 300,000,000 |  |  |  |
| N         | 0.33                                                   | 3.3 | 33 | 330 | 3,300 | 33,000  | 330,000 | 3,300,000 | 33,000,000 | 330,000,000 |  |  |  |
| Р         | 0.36                                                   | 3.6 | 36 | 360 | 3,600 | 36,000  | 360,000 | 3,600,000 | 36,000,000 | 360,000,000 |  |  |  |
| Q         | 0.39                                                   | 3.9 | 39 | 390 | 3,900 | 39,000  | 390,000 | 3,900,000 | 39,000,000 | 390,000,000 |  |  |  |
| R         | 0.43                                                   | 4.3 | 43 | 430 | 4,300 | 43,000  | 430,000 | 4,300,000 | 43,000,000 | 430,000,000 |  |  |  |
| S         | 0.47                                                   | 4.7 | 47 | 470 | 4,700 | 47,000  | 470,000 | 4,700,000 | 47,000,000 | 470,000,000 |  |  |  |
| Т         | 0.51                                                   | 5.1 | 51 | 510 | 5,100 | 51,000  | 510,000 | 5,100,000 | 51,000,000 | 510,000,000 |  |  |  |
| U         | 0.56                                                   | 5.6 | 56 | 560 | 5,600 | 56,000  | 560,000 | 5,600,000 | 56,000,000 | 560,000,000 |  |  |  |
| V         | 0.62                                                   | 6.2 | 62 | 620 | 6,200 | 62,000  | 620,000 | 6,200,000 | 62,000,000 | 620,000,000 |  |  |  |
| W         | 0.68                                                   | 6.8 | 68 | 680 | 6,800 | 68,000  | 680,000 | 6,800,000 | 68,000,000 | 680,000,000 |  |  |  |
| Х         | 0.75                                                   | 7.5 | 75 | 750 | 7,500 | 75,000  | 750,000 | 7,500,000 | 75,000,000 | 750,000,000 |  |  |  |
| Y         | 0.82                                                   | 8.2 | 82 | 820 | 8,200 | 82,000  | 820,000 | 8,200,000 | 82,000,000 | 820,000,000 |  |  |  |
| Z         | 0.91                                                   | 9.1 | 91 | 910 | 9,100 | 91,000  | 910,000 | 9,100,000 | 91,000,000 | 910,000,000 |  |  |  |
| а         | 0.25                                                   | 2.5 | 25 | 250 | 2,500 | 25,000  | 250,000 | 2,500,000 | 25,000,000 | 250,000,000 |  |  |  |
| b         | 0.35                                                   | 3.5 | 35 | 350 | 3,500 | 35,000  | 350,000 | 3,500,000 | 35,000,000 | 350,000,000 |  |  |  |
| d         | 0.40                                                   | 4.0 | 40 | 400 | 4,000 | 40,000  | 400,000 | 4,000,000 | 40,000,000 | 400,000,000 |  |  |  |
| e         | 0.45                                                   | 4.5 | 45 | 450 | 4,500 | 45,000  | 450,000 | 4,500,000 | 45,000,000 | 450,000,000 |  |  |  |
| f         | 0.50                                                   | 5.0 | 50 | 500 | 5,000 | 50,000  | 500,000 | 5,000,000 | 50,000,000 | 500,000,000 |  |  |  |
| m         | 0.60                                                   | 6.0 | 60 | 600 | 6,000 | 60,000  | 600,000 | 6,000,000 | 60,000,000 | 600,000,000 |  |  |  |
| n         | 0.70                                                   | 7.0 | 70 | 700 | 7,000 | 70,000  | 700,000 | 7,000,000 | 70,000,000 | 700,000,000 |  |  |  |
| t         | 0.80                                                   | 8.0 | 80 | 800 | 8,000 | 80,000  | 800,000 | 8,000,000 | 80,000,000 | 800,000,000 |  |  |  |
| y         | 0.90                                                   | 9.0 | 90 | 900 | 9,000 | 90,000  | 900,000 | 9,000,000 | 90,000,000 | 900,000,000 |  |  |  |

Downloaded from Arrow.com.



### **Tape & Reel Packaging Information**

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.



# Table 5 – Carrier Tape Configuration, Embossed Plastic & Punched Paper (mm)

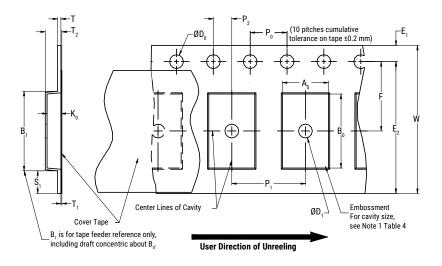
|                      | Таре | Embosse | d Plastic          | Punche  | d Paper            |
|----------------------|------|---------|--------------------|---------|--------------------|
| EIA Case Size        | Size | 7" Reel | 13" Reel           | 7" Reel | 13" Reel           |
|                      | (W)* | Pitch   | (P <sub>1</sub> )* | Pitch   | (P <sub>1</sub> )* |
| 01005 - 0402         | 8    |         |                    | 2       | 2                  |
| 0603                 | 8    |         |                    | 2/4     | 2/4                |
| 0805                 | 8    | 4       | 4                  | 4       | 4                  |
| 1206 - 1210          | 8    | 4       | 4                  | 4       | 4                  |
| 1805 - 1808          | 12   | 4       | 4                  |         |                    |
| ≥ 1812               | 12   | 8       | 8                  |         |                    |
| KPS 1210             | 12   | 8       | 8                  |         |                    |
| KPS 1812<br>and 2220 | 16   | 12      | 12                 |         |                    |
| Array 0612           | 8    | 4       | 4                  |         |                    |

\*Refer to Figures 1 and 2 for W and P<sub>1</sub> carrier tape reference locations. \*Refer to Tables 6 and 7 for tolerance specifications.

#### © KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com

#### New 2 mm Pitch Reel Options\*

| Packaging<br>Ordering Code<br>(C-Spec) | Packaging Type/Options             |
|----------------------------------------|------------------------------------|
| C-3190                                 | Automotive grade 7" reel unmarked  |
| C-3191                                 | Automotive grade 13" reel unmarked |
| C-7081                                 | Commercial grade 7" reel unmarked  |
| C-7082                                 | Commercial grade 13" reel unmarked |


\* 2 mm pitch reel only available for 0603 EIA case size. 2 mm pitch reel for 0805 EIA case size under development.

#### Benefits of Changing from 4 mm to 2 mm Pitching Spacing

- Lower placement costs.
- Double the parts on each reel results in fewer reel changes and increased efficiency.
- Fewer reels result in lower packaging, shipping and storage costs, reducing waste.



# Figure 1 – Embossed (Plastic) Carrier Tape Dimensions



# Table 6 – Embossed (Plastic) Carrier Tape Dimensions

Metric will govern

|           |                                       | (                                | Constant Dime                | ensions — Mil               | limeters (Inc                | hes)                      |                                  |                                |                           |
|-----------|---------------------------------------|----------------------------------|------------------------------|-----------------------------|------------------------------|---------------------------|----------------------------------|--------------------------------|---------------------------|
| Tape Size | D <sub>0</sub>                        | D <sub>1</sub> Minimum<br>Note 1 | E <sub>1</sub>               | P <sub>0</sub>              | P <sub>2</sub>               | R Reference<br>Note 2     | S <sub>1</sub> Minimum<br>Note 3 | T<br>Maximum                   | T <sub>1</sub><br>Maximum |
| 8 mm      |                                       | 1.0<br>(0.039)                   |                              |                             |                              | 25.0<br>(0.984)           |                                  |                                |                           |
| 12 mm     | 1.5 +0.10/-0.0<br>(0.059 +0.004/-0.0) | 1.5                              | 1.75 ±0.10<br>(0.069 ±0.004) | 4.0 ±0.10<br>(0.157 ±0.004) | 2.0 ±0.05<br>(0.079 ±0.002)  | 30                        | 0.600<br>(0.024)                 | 0.600<br>(0.024)               | 0.100<br>(0.004)          |
| 16 mm     |                                       | (0.059)                          |                              |                             |                              | (1.181)                   |                                  |                                |                           |
|           |                                       | ,                                | Variable Dime                | ensions — Mill              | limeters (Inch               | nes)                      |                                  |                                |                           |
| Tape Size | Pitch                                 | B <sub>1</sub> Maximum<br>Note 4 | E <sub>2</sub><br>Minimum    | F                           | P <sub>1</sub>               | T <sub>2</sub><br>Maximum | W<br>Maximum                     | A <sub>0</sub> ,B <sub>0</sub> | & K <sub>0</sub>          |
| 8 mm      | Single (4 mm)                         | 4.35<br>(0.171)                  | 6.25<br>(0.246)              | 3.5 ±0.05<br>(0.138 ±0.002) | 4.0 ±0.10<br>(0.157 ±0.004)  | 2.5<br>(0.098)            | 8.3<br>(0.327)                   |                                |                           |
| 12 mm     | Single (4 mm)<br>and double (8 mm)    | 8.2<br>(0.323)                   | 10.25<br>(0.404)             | 5.5 ±0.05<br>(0.217 ±0.002) | 8.0 ±0.10<br>(0.315 ±0.004)  | 4.6<br>(0.181)            | 12.3<br>(0.484)                  | Note 5                         |                           |
| 16 mm     | Triple (12 mm)                        | 12.1<br>(0.476)                  | 14.25<br>(0.561)             | 7.5 ±0.05<br>(0.138 ±0.002) | 12.0 ±0.10<br>(0.157 ±0.004) | 4.6<br>(0.181)            | 16.3<br>(0.642)                  |                                |                           |

1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of the embossment location and the hole location shall be applied independently of each other.

2. The tape with or without components shall pass around R without damage (see Figure 6.)

3. If S<sub>1</sub> < 1.0 mm, there may not be enough area for a cover tape to be properly applied (see EIA Standard 481, paragraph 4.3, section b.)

4. B, dimension is a reference dimension for tape feeder clearance only.

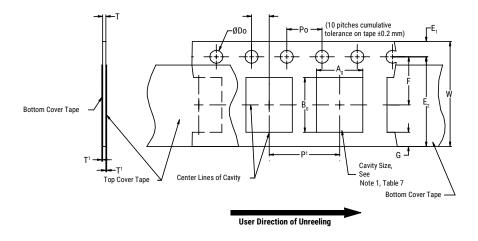
5. The cavity defined by  $A_{\mu}$ ,  $B_{\mu}$  and  $K_{\mu}$  shall surround the component with sufficient clearance that:

(a) the component does not protrude above the top surface of the carrier tape.

(b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

(c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3.)

(d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4.)


(e) for KPS product,  $A_{0}$  and  $B_{0}$  are measured on a plane 0.3 mm above the bottom of the pocket.

(f) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.

© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com



# Figure 2 – Punched (Paper) Carrier Tape Dimensions



# Table 7 – Punched (Paper) Carrier Tape Dimensions

Metric will govern

|           | Constant Dimensions – Millimeters (Inches) |                              |                             |                             |                            |                 |                       |  |  |  |  |  |  |
|-----------|--------------------------------------------|------------------------------|-----------------------------|-----------------------------|----------------------------|-----------------|-----------------------|--|--|--|--|--|--|
| Tape Size | D <sub>0</sub>                             | E <sub>1</sub>               | P <sub>0</sub>              | P <sub>2</sub>              | T <sub>1</sub> Maximum     | G Minimum       | R Reference<br>Note 2 |  |  |  |  |  |  |
| 8 mm      | 1.5 +0.10 -0.0<br>(0.059 +0.004 -0.0)      | 1.75 ±0.10<br>(0.069 ±0.004) | 4.0 ±0.10<br>(0.157 ±0.004) | 2.0 ±0.05<br>(0.079 ±0.002) | 0.10<br>(0.004)<br>maximum | 0.75<br>(0.030) | 25<br>(0.984)         |  |  |  |  |  |  |
|           | Variable Dimensions – Millimeters (Inches) |                              |                             |                             |                            |                 |                       |  |  |  |  |  |  |
| Tape Size | Pitch                                      | E2 Minimum                   | F                           | P <sub>1</sub>              | T Maximum                  | W Maximum       | $A_0B_0$              |  |  |  |  |  |  |
| 8 mm      | Half (2 mm)                                | 6.25                         | 3.5 ±0.05                   | 2.0 ±0.05<br>(0.079 ±0.002) | 1.1                        | 8.3<br>(0.327)  | Note 1                |  |  |  |  |  |  |
| 8 mm      | Single (4 mm)                              | (0.246)                      | (0.138 ±0.002)              | 4.0 ±0.10<br>(0.157 ±0.004) | (0.098)                    | 8.3<br>(0.327)  | NOLE I                |  |  |  |  |  |  |

1. The cavity defined by  $A_{\alpha}$ ,  $B_{\alpha}$  and T shall surround the component with sufficient clearance that:

a) the component does not protrude beyond either surface of the carrier tape.

b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

c) rotation of the component is limited to 20° maximum (see Figure 3.)

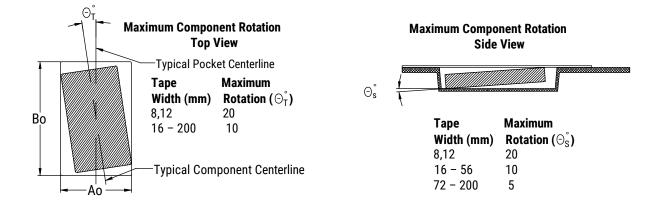
d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4.)

e) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.

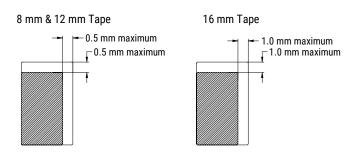
2. The tape with or without components shall pass around R without damage (see Figure 6.)



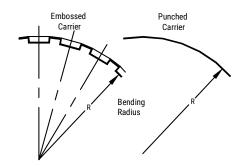
#### **Packaging Information Performance Notes**


- 1. Cover Tape Break Force: 1.0 kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

| Tape Width   | Peel Strength                    |  |
|--------------|----------------------------------|--|
| 8 mm         | 0.1 to 1.0 newton (10 to 100 gf) |  |
| 12 and 16 mm | 0.1 to 1.3 newton (10 to 130 gf) |  |

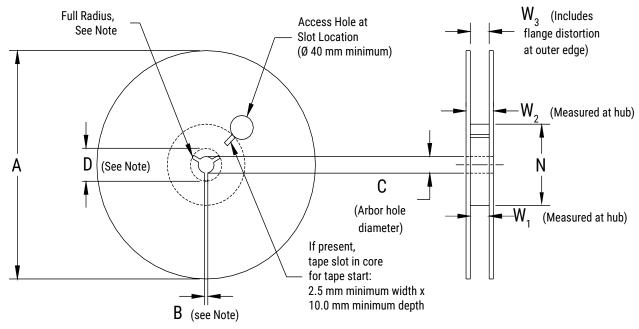

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be  $165^{\circ}$  to  $180^{\circ}$  from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of  $300 \pm 10 \text{ mm/minute}$ .

**3. Labeling:** Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards 556 and 624*.


#### Figure 3 – Maximum Component Rotation



#### Figure 4 – Maximum Lateral Movement




# Figure 5 – Bending Radius

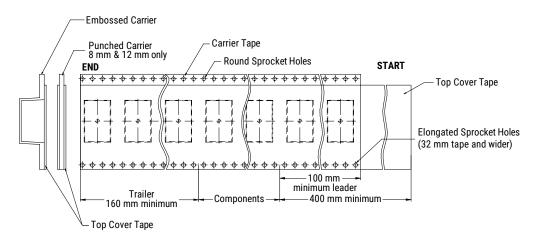




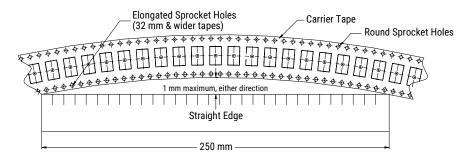
## **Figure 6 – Reel Dimensions**



Note: Drive spokes optional; if used, dimensions B and D shall apply.


### Table 8 – Reel Dimensions

Metric will govern


| Constant Dimensions – Millimeters (Inches) |                                                                   |                                       |                                        |                                                   |  |
|--------------------------------------------|-------------------------------------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------------------|--|
| Tape Size                                  | A                                                                 | B Minimum                             | С                                      | D Minimum                                         |  |
| 8 mm                                       | 178 ±0.20<br>(7.008 ±0.008)<br>or<br>330 ±0.20<br>(13.000 ±0.008) | 1.5<br>(0.059)                        | 13.0 +0.5/-0.2<br>(0.521 +0.02/-0.008) | 20.2<br>(0.795)                                   |  |
| 12 mm                                      |                                                                   |                                       |                                        |                                                   |  |
| 16 mm                                      |                                                                   |                                       |                                        |                                                   |  |
| Variable Dimensions – Millimeters (Inches) |                                                                   |                                       |                                        |                                                   |  |
| Tape Size                                  | N Minimum                                                         | W <sub>1</sub>                        | W <sub>2</sub> Maximum                 | W <sub>3</sub>                                    |  |
| 8 mm                                       | 50<br>(1.969)                                                     | 8.4 +1.5/-0.0<br>(0.331 +0.059/-0.0)  | 14.4<br>(0.567)                        | Shall accommodate tape width without interference |  |
| 12 mm                                      |                                                                   | 12.4 +2.0/-0.0<br>(0.488 +0.078/-0.0) | 18.4<br>(0.724)                        |                                                   |  |
| 16 mm                                      |                                                                   | 16.4 +2.0/-0.0<br>(0.646 +0.078/-0.0) | 22.4<br>(0.882)                        |                                                   |  |



# Figure 7 – Tape Leader & Trailer Dimensions



# Figure 8 – Maximum Camber





### **KEMET Electronics Corporation Sales Offices**

For a complete list of our global sales offices, please visit www.kemet.com/sales.

#### Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

KEMET is a registered trademark of KEMET Electronics Corporation.