

MAAL-011181

Rev. V1

Features

Gain: 15 dB

Noise Figure: 2.5 dBOutput IP3: 29 dBm5 V Drain Supply

• 5 mm, 32 lead PQFN Package

• Halogen-Free "Green" Mold Compound

RoHS* Compliant

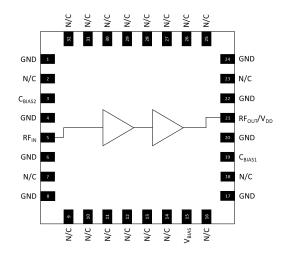
Applications

Multi Market

ISM

Description

The MAAL-011181 is a wideband distributed low noise amplifier with an operating frequency range of 9 kHz to 20 GHz. This LNA typically has a 2.5 dB noise figure, 15 dB gain, 29 dBm output IP3, 19 dBm output P1dB, and 21 dBm P3dB. Only a single bias supply voltage of 5 V is required to bias the LNA. The typical current draw is 125 mA.


No external matching components are required, but external biasing components are needed. Large capacitors for bypassing are required on C_{BIAS1} and C_{BIAS2} for low frequency operation. An RF choke and blocking capacitor should be added to the RF output pin to bias the amplifier. 5 V must be applied to V_{BIAS} while V_{DD} can vary.

The MAAL-011181 is designed for wideband low noise applications such as test equipment. The 5 mm, 32 lead PQFN package is lead free and RoHS compliant. This LNA is also available in die form under part number MAAL-011181-DIE.

Ordering Information

Part Number	Package	
MAAL-011181-TR0500	500 Piece Reel	
MAAL-011181-SMB	Sample Board	

Block Diagram

Pin Configuration^{1,2}

Pin#	Pin Name	Description	
1,4,6,8,17, 20,22,24	GND	Ground	
2,7,9-14,16, 18,23,25-32	N/C	No Connection	
3	C _{BIAS2}	Bypass Capacitor 2	
5	RF _{IN}	RF Input	
15	V _{BIAS}	Bias Voltage	
19	C _{BIAS1}	Bypass Capacitor 1	
21	RF _{OUT} /V _{DD}	RF Output/Voltage Supply	

- 1. It is recommended that all NC (No Connect) pins be grounded.
- 2. The exposed pad centered on the package bottom must be connected to RF, DC, and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAAL-011181 Rev. V1

Electrical Specifications: V_{DD} = +5 V, V_{BIAS} = +5 V, T_A = 25°C, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	1 GHz 10 GHz 20 GHz	dB	13.5 12.5 11.0	15.5 14.5 13.0	_
Gain Flatness	9 kHz - 20 GHz	dB	_	+/-0.5	_
Gain Variation vs. Temperature	10 GHz	dB/°C	_	0.02	_
Noise Figure	10 GHz 20 GHz	dB	_	2.0 4.0	2.8 5.0
Input Return Loss	9 kHz - 20 GHz	dB	_	15	_
Output Return Loss	9 kHz - 20 GHz	dB	_	10	_
P1dB	10 GHz 20 GHz	dBm	15.0 9.5	17.5 12.5	_
P3dB	10 GHz 20 GHz	dBm	_	20 15	_
IP3	10GHz 20 GHz -20 dBm per tone, 10 MHz spacing	dBm	_	30 25	_
Quiescent Current	9 kHz - 20 GHz	mA	_	125	165

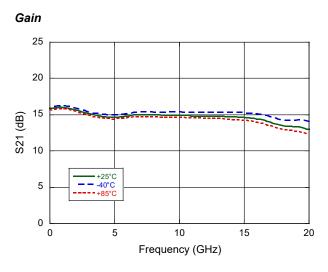
Maximum Operating Conditions

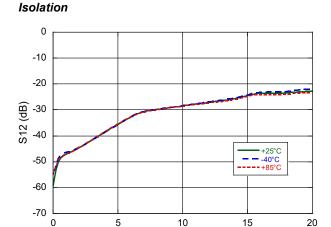
Parameter	Maximum	
Input Power	25 dBm	
Junction Temperature ^{3,4}	+160°C	
Operating Temperature	-40°C to +85°C	

- 3. Operating at nominal conditions with $T_J \le +160^{\circ}C$ will ensure MTTF > 1 x 10^6 hours.
- 4. TX Junction Temp. $(T_J) = T_C + \Theta jc * ((V * I) (P_{OUT} P_{IN}))$. Typical TX thermal resistance $(\Theta jc) = 65^{\circ}C/W$.

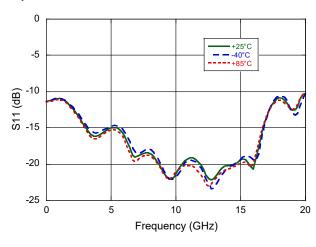
 a) For TC = +85°C, TJ = 125.6°C @ 5 V, 125 mA
 b) For Tc = +25°C, TJ = 65.6°C @ 5 V, 125 mA

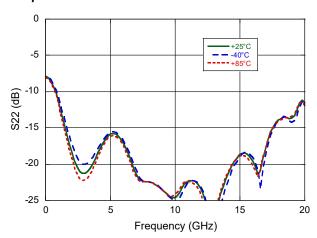
Absolute Maximum Ratings^{5,6}


Parameter	Absolute Maximum	
Input Power	27 dBm	
Junction Temperature ⁷	+180°C	
Storage Temperature	-55°C to +150°C	


- 5. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Junction temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.

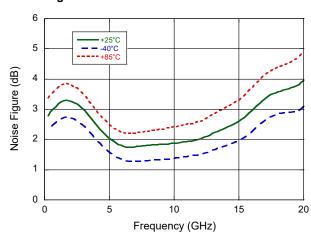
MAAL-011181 Rev. V1


Typical Performance Curves

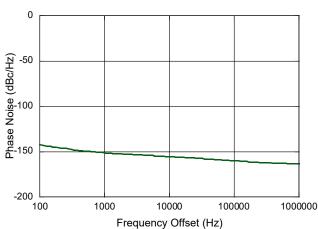


Frequency (GHz)

Input Return Loss



Output Return Loss

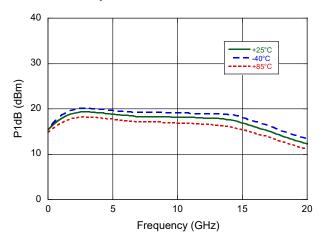


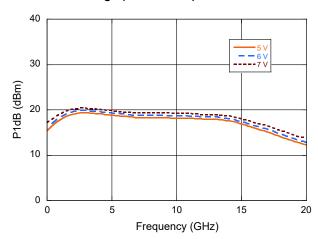
Noise Figure

3

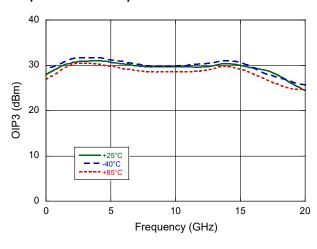
Phase Noise (Pin = -10 dBm @ 12 GHz)

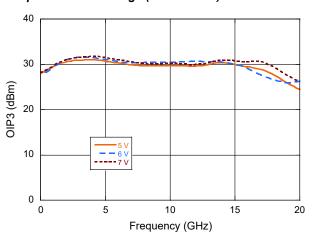
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

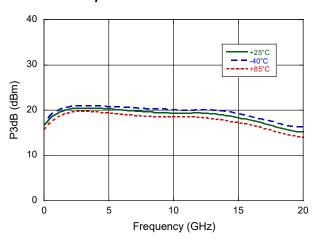

Visit www.macom.com for additional data sheets and product information.

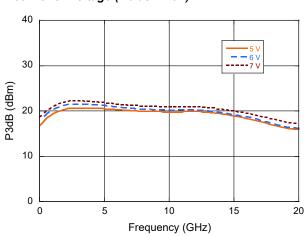

MAAL-011181 Rev. V1

Typical Performance Curves


P1dB over Temperature


P1dB over Voltage (Vbias = +5V)

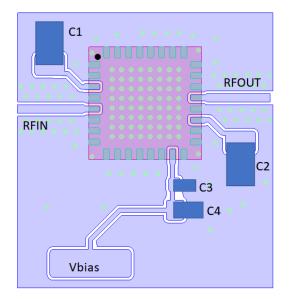

Output IP3 over Temperature

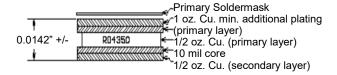

Output IP3 over Voltage (Vbias = +5V)

P3dB over Temperature

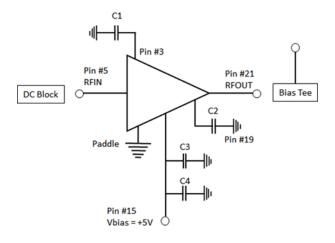
P3dB over Voltage (Vbias = +5V)

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


Visit www.macom.com for additional data sheets and product information.


MAAL-011181

Rev. V1


Recommended PCB Layout⁸

 The DC blocking capacitor on RF_{IN} and Bias Tee on RF_{OUT} were connected externally on the MACOM Evaluation board and are not shown in this layout.

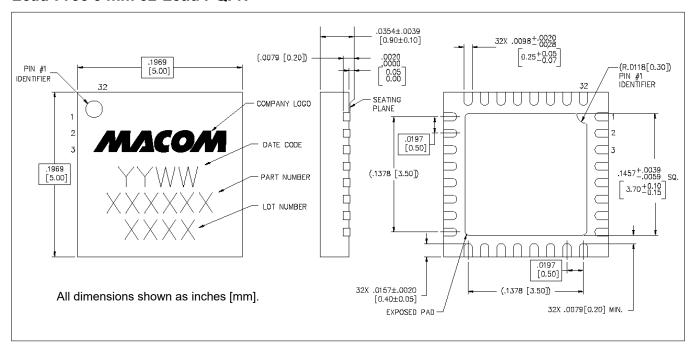
Application Schematic

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM class 1B devices.


Parts List

Part	Value	Case Style	Manufacturer	Manufacturer's Part Number
C1,C2	1 µF	0805	TDK	C2012X5R1C106M085AC
C3	100 pF	0402	Murata	GCM1555C1H101JA16
C4	1000 pF	0603	Murata	GCM188R72A102KA37

MAAL-011181 Rev. V1

Lead-Free 5 mm 32-Lead PQFN[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is NiPdAuAg.

MAAL-011181

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM:

MAAL-011181-TR0500