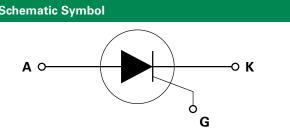


RoHS

EC103xx & SxSx Series

Description


Excellent unidirectional switches for phase control applications such as heating and motor speed controls.

Sensitive gate SCRs are easily triggered with microAmps of current as furnished by sense coils, proximity switches, and microprocessors.

Features & Benefits

- RoHS compliant
- Glass passivated junctions
- Voltage capability up to 600 V
- Surge capability up to 20 Å

Main Features Symbol Value Unit 0.8 А I_{T(RMS)} V V_{DRM}/V_{RRM} 400 to 600 Ι_{gt} 12 to 500 μΑ

Applications

Typical applications are capacitive discharge systems for strobe lights and gas engine ignition. Also controls for power tools, home/brown goods and white goods appliances.

Additional Information

Samples

Absolute Maximum Ratings — Sensitive SCRs Symbol Parameter **Test Conditions** Value Unit $T_c = 75^{\circ}C$ RMS on-state current 0.8 А I_{T(RMS)} $T_c = 75^{\circ}C$ Average on-state current 0.51 А I_{T(AV)} single half cycle; f = 50Hz; 16 T_{i} (initial) = 25°C I_{TSM} Peak non-repetitive surge current А single half cycle; f = 60Hz; 20 T_i (initial) = 25° C l²t I²t Value for fusing t_p = 8.3 ms 1.6 A^2s di/dt Critical rate of rise of on-state current f = 60 Hz ; T = 110°C 50 A/µs 1 А I_{GM} Peak gate current T₁ = 110°C P_{G(AV)} W Average gate power dissipation T₁ = 110°C 0.1 °C -40 to 150 T_{stg} Storage temperature range °C T_ Operating junction temperature range -40 to 110

© 2018 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 01/16/18

Schematic Symbol

Electrical Characteristics (T₁ = 25°C, unless otherwise specified)

				Value					
Symbol	Dol Test Conditions				SxS2 EC103X2	SxS / 2N6565 EC103X	SxS3 EC103X3	Unit	
I _{gt}	$V_{-} = 6V_{+} R_{-} = 100 \Omega_{-}$	MAX.	12	50	200	500	μA		
V _{gt}	$V_{D} = 6V; R_{L} = 100 \Omega$		MAX.		0	.8		V	
V _{GRM}	IRG=10uA	MIN	5						
du (dt	$dv/dt \qquad V_{D} = V_{DRM}; R_{GK} = 1k\Omega \qquad \qquad \frac{400V}{600V}$		400V	- MIN.	20	25	30	40	1///
av/at			IVIIIN.	10	10	15	20	V/µs	
V _{gD}	$V_{\rm D} = V_{\rm DRM}; R_{\rm L} = 3.3 \text{ k}\Omega; T_{\rm J} = 110^{\circ}\text{C}$		MIN.	0.2		0.25		V	
I _H	$I_{_T}$ = 20mA (initial), $R_{_{GK}}$ = 1k Ω		MAX.		5		8	mA	
t _q	(1)	MAX.	6	0	50	45	μs		
t _{gt}	$I_{g} = 2 \times I_{gT}; PW = 15 \mu s; I_{T} = 1.6A$		TYP.	2	5	20	30	μs	

(1) $I_T = 1A$; $t_p = 50 \mu s$; $dv/dt = 5V/\mu s$; $di/dt = -5A/\mu s$

......

Symbol	Test Conditions Value Unit							
V _{TM}	I _T = 1	.2A; t _p = 380 μs	MAX.	1.7	V			
	$V_{_{DRM}} = V_{_{RRM}}$ $R_{_{GK}} = 1k\Omega$	T _J = 25°C		1	μΑ			
I _{drm} / I _{rrm}		$T_J = 100^{\circ}C$	MAX.	50				
	UK I	T _J = 110°C		100				

Thermal Resistances Symbol Parameter Value Unit EC103xy/2N6565 75 $\mathsf{R}_{\theta(J\text{-}C)}$ Junction to case (AC) °C/W SxSy 60* $\mathsf{R}_{\theta(J-A)}$ EC103xy/2N6565 160 °C/W Junction to ambient

Notes: x = voltage, y = sensitivity * = Mounted on 1 cm² copper (two-ounce) foil surface

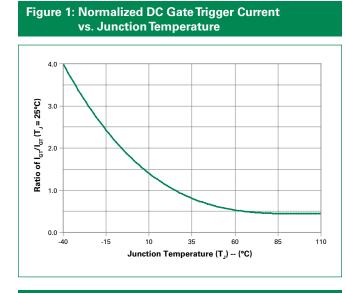
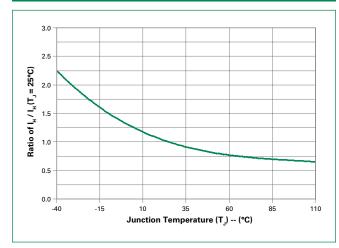
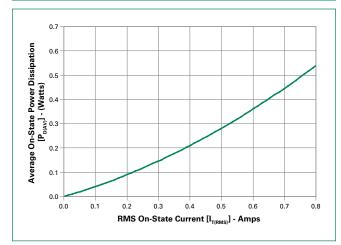
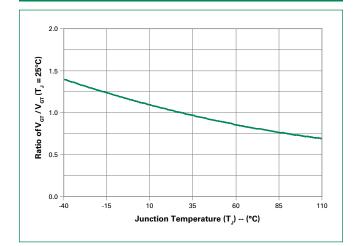
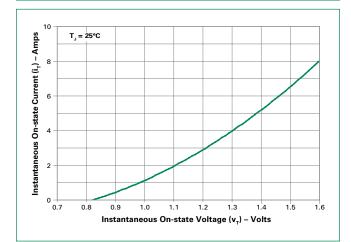
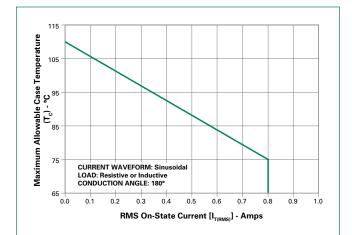




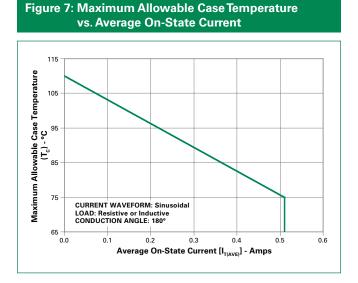
Figure 3: Normalized DC Holding Current vs. Junction Temperature





© 2018 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 01/16/18


Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature


Figure 4: On-State Current vs. On-State Voltage (Typical)

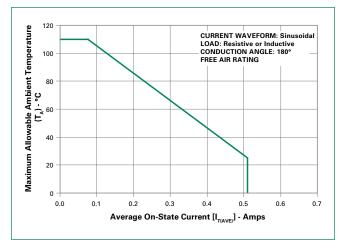

Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

Figure 9: Maximum Allowable Ambient Temperature vs. Average On-State Current

Figure 11: Peak Repetitive Sinusoidal Pulse Current

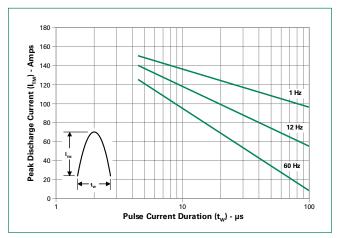
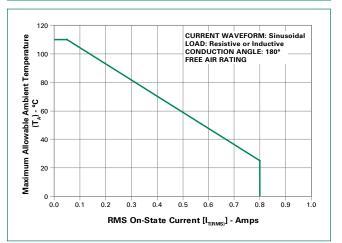
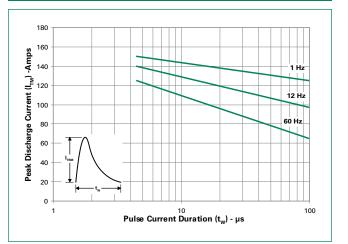




Figure 8: Maximum Allowable Ambient Temperature vs. RMS On-State Current

Figure 10: Peak Capacitor Discharge Current

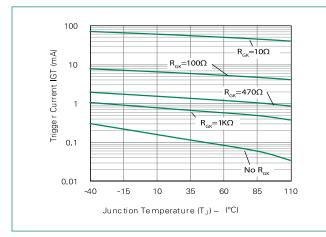
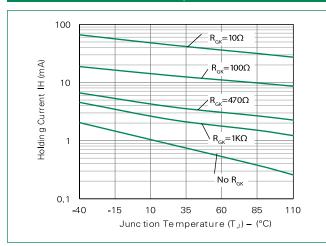
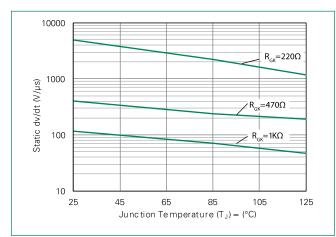




Figure 13-1: Typical DC Holding Current with R_{gk} vs. Junction Temprature for EC103M

Figure 14-1: Typical static dv/dt with $\rm R_{_{GK}}\,$ vs. Junction Temprature for EC103M

© 2018 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 01/16/18

 $R_{GK} = 10\Omega$ 10 R_{GK}=100Ω R_{GK}=470Ω

100

Figure 12-2: Typical DC Gate Trigger Current with R_{GK}

vs. Junction Temprature for EC103M1

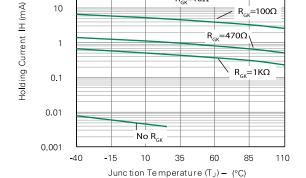
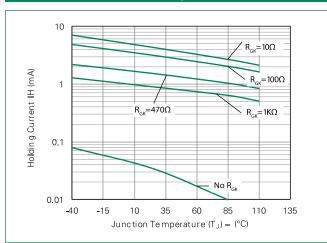
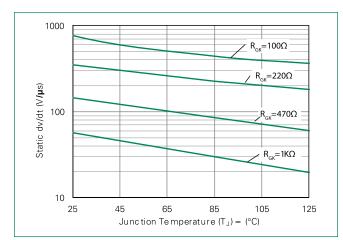




Figure 13-2: Typical DC Holding Current with RGK vs. Junction Temprature for EC103M1

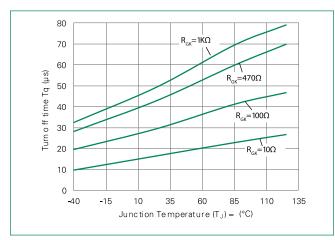


Figure 14-2: Typical static dv/dt with $\rm R_{_{GK}}\,$ vs. Junction Temprature for EC103M1

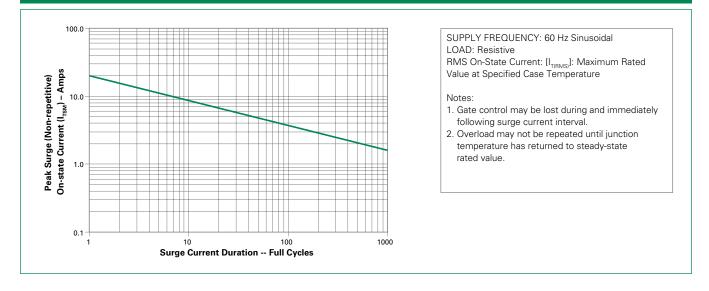


Figure 15-1: Typical turn off time with R_{GK} vs. Junction Temprature for EC103M

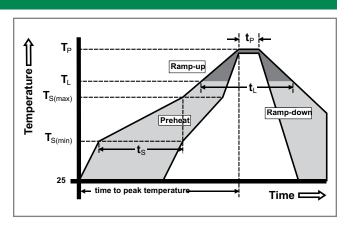

Figure 15-2: Typical turn off time with R_{GK} vs. Junction Temprature for EC103M1 65 60 $R_{GK} = 1K\Omega$ 55 50 Turn of f time Tq (µs) 45 R_{GK}=470Ω 40 $R_{cr} = 100\Omega$ 35 30 25 $R_{GK} = 10\Omega$ 20 15 10 -40 -15 10 35 60 85 110 135 Junction Temperature $(T_J) - (^{\circ}C)$

Figure 16: Surge Peak On-State Current vs. Number of Cycles

Soldering Parameters

Reflow Co	ndition	Pb – Free assembly		
	-Temperature Min (T _{s(min)})	150°C		
Pre Heat	-Temperature Max (T _{s(max)})	200°C		
	-Time (min to max) (t _s)	60 – 180 secs		
	Average ramp up rate (LiquidusTemp) 5°C/second max			
$T_{S(max)}$ to T_{L}	- Ramp-up Rate	5°C/second max		
Reflow	-Temperature (T _L) (Liquidus)	217°C		
nellow	-Temperature (t _L)	60 – 150 seconds		
PeakTemp	erature (T _P)	260 ^{+0/-5} °C		
Time with Temperatu	in 5°C of actual peak ıre (t _p)	20 – 40 seconds		
Ramp-dov	vn Rate	5°C/second max		
Time 25°C	to peakTemperature (T _P)	8 minutes Max.		
Do not exc	ceed	280°C		

Environmental Specifications

Test	Specifications and Conditions			
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 110°C for 1008 hours			
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time			
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity			
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C			
Low-Temp Storage	1008 hours; -40°C			
Resistance to Solder Heat	MIL-STD-750 Method 2031			
Solderability	ANSI/J-STD-002, category 3, Test A			
Lead Bend	MIL-STD-750, M-2036 Cond E			

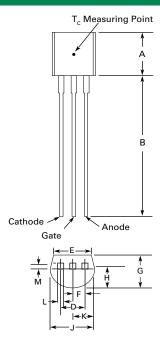
Physical Specifications						
Terminal Finish	100% Matte Tin-plated/Pb-free Solder Dipped					
Body Material	UL recognized epoxy meeting flammability					

rating 94V-0

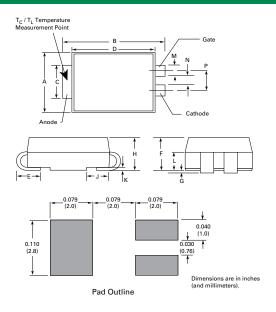
Copper Alloy

Design Considerations

Lead Material


ical Specificati

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.


Dimensions – TO-92 (E Package)

Dimension	Inches	Millimeters		
Dimension	Min	Max	Min	Max
А	0.176	0.196	4.47	4.98
В	0.500	-	12.70	-
D	0.095	0.105	2.41	2.67
E	0.150	-	3.81	-
F	0.046	0.054	1.16	1.37
G	0.135	0.145	3.43	3.68
Н	0.088	0.096	2.23	2.44
J	0.176	0.186	4.47	4.73
К	0.088	0.096	2.23	2.44
L	0.013	0.019	0.33	0.48
М	0.013	0.017	0.33	0.43

All leads insulated from case. Case is electrically nonconductive.

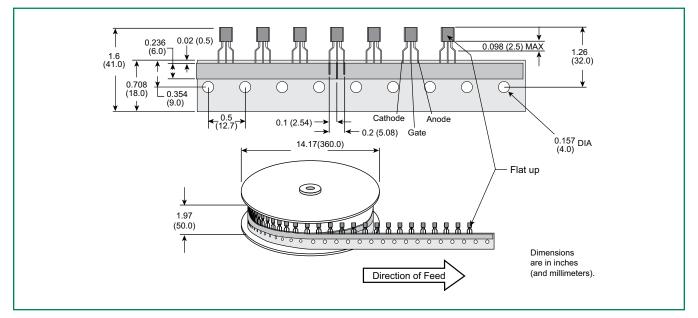
Dimensions — Compak (C Package)

Dimension	Inc	hes	Millimeters				
Dimension	Min	Max	Min	Max			
А	0.130	0.156	3.30	3.95			
В	0.201	0.220	5.10	5.60			
С	0.077	0.087	1.95	2.20			
D	0.159	0.181	4.05	4.60			
E	0.030	0.063	0.75	1.60			
F	0.075	0.096	1.90	2.45			
G	0.002	0.008	0.05	0.20			
Н	0.077	0.104	1.95	2.65			
J	0.043	0.053	1.09	1.35			
К	0.006	0.016	0.15	0.41			
L	0.030	0.055	0.76	1.40			
М	0.022	0.028	0.56	0.71			
Ν	0.027	0.033	0.69	0.84			
Р	0.052	0.058	1.32	1.47			

Product Selector

Part Number	Voltage				Tura		
Part Number	400V	600V	800V	1000V	Gate Sensitivity	Туре	Package
EC103 x 1	Х	Х			12µA	Sensitive SCR	TO-92
EC103 x 2	Х	Х			50µA	Sensitive SCR	TO-92
EC103 x	X / 2N6565	Х			200µA	Sensitive SCR	TO-92
EC103 x 3	Х	Х			500µA	Sensitive SCR	TO-92
S x S1	Х	Х			12µA	Sensitive SCR	Compak
S x S2	Х	Х			50µA	Sensitive SCR	Compak
S x S	Х	Х			200µA	Sensitive SCR	Compak
S x S3	Х	Х			500µA	Sensitive SCR	Compak

Note: x = Voltage

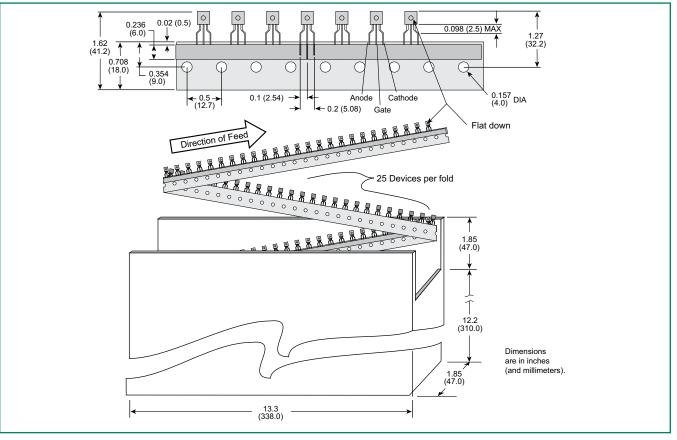

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
EC103xy / 2N6565	EC103xy / 2N6565	0.19 g	Bulk	2000
EC103xyRP	EC103xy	0.19 g	Reel Pack	2000
EC103xyAP	EC103xy	0.19 g	Ammo Pack	2000
SxSyRP	SxSy	0.08 g	Embossed Carrier	2500

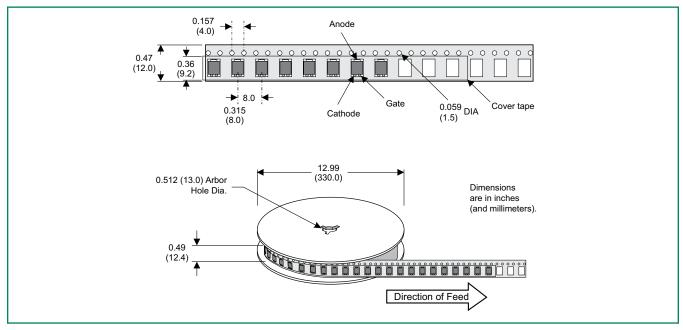
Note: x = Voltage, y = sensitivity

TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-C Standards

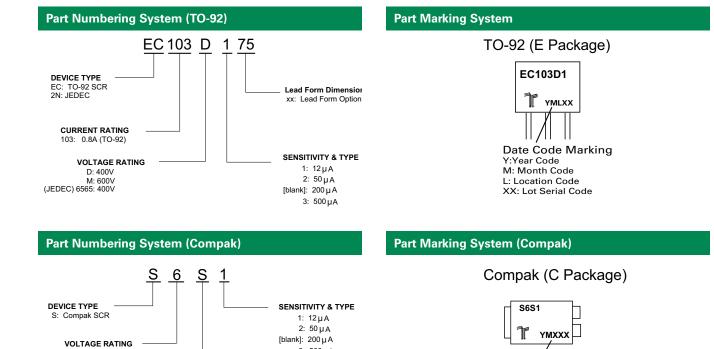



© 2018 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 01/16/18


TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-C Standards

Meets all EIA-481-1 Standards



4: 400V 6: 600V

Date Code Marking Y:Year Code M: Month Code

XXX: Lot Trace Code

3: 500µA

CURRENT RATING S: 0.8A (Compak)

© 2018 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 01/16/18