

LMX321, LMX358, LMX324

General-purpose, low voltage rail-to-rail output operational amplifiers Datasheet - production data

Single (LMX321) SC70-5 SOT23-5 Dual (LMX358) DFN8 2x2 MiniSO8 SO8 CQuad (LMX324) CQuad (LMX324) SO14

Features

- Low power consumption: 120 µA at 2.7 V
- Low supply voltage: 2.3 V 5.5 V
- Rail-to-rail output swing
- Gain bandwidth product: 1.3 MHz
- Extended temperature range: -40 °C to 125 °C
- No crossover distortion
- No phase reversal
- Tiny packages

Related products

• See the TSV85x series for higher accuracy, stand-by options, and smaller packages

May 2013

DocID022943 Rev 3

1/25 www.st.com

This is information on a product in full production.

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Active filtering
- Medical instrumentation

Description

The LMX3xx series is a set of single, dual, and quad low-voltage, general-purpose, operational amplifiers. These devices can operate from 2.3 V to 5.5 V with a typical current consumption of 120 μ A per channel. The LMX3xx series offers a rail-to-rail output and an input common-mode voltage that includes ground.

The LMX3xx series also exhibits a 1.3 MHz gain bandwidth and they can drive capacitive loads. The devices are stable while operating at unity gain. They are offered with industry standard pinouts in tiny packages.

Table 1. Device summary

Reference	Single	Dual	Quad
LMX3xx	LMX321	LMX358	LMX324

Contents

1	Packa	Package pin connections 3					
2	Abso	lute maximum ratings and operating conditions	4				
3	Electi	rical characteristics	5				
4	Appli	cation information1	13				
	4.1	Operating voltages	13				
	4.2	Input common-mode range	13				
	4.3	Rail-to-rail output	13				
	4.4	Input offset voltage drift over temperature	13				
	4.5	PCB layouts	13				
	4.6	Macromodel	13				
5	Packa	age information 1	14				
	5.1	SC70-5 (or SOT323-5) package information	15				
	5.2	SOT23-5 package information	16				
	5.3	DFN8 2x2 package information	17				
	5.4	MiniSO8 package information	19				
	5.5	SO8 package information	20				
	5.6	TSSOP14 package information	21				
	5.7	SO14 package information	22				
6	Order	ing information	23				
7	Revis	ion history	24				

1 Package pin connections

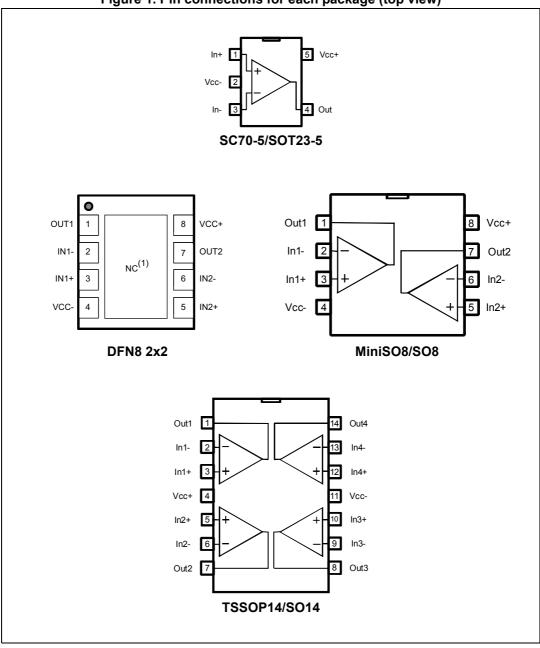


Figure 1. Pin connections for each package (top view)

1. The exposed pad of the DFN8 2x2 can be connected to VCC- or left floating.

2 Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit	
V _{CC}	Supply voltage ⁽¹⁾	6		
V _{id}	Differential input voltage (2)	±V _{CC}	V	
V _{in}	Input pins (IN+ and IN- pins) voltage (3)	V _{cc-} - 0.3 to V _{cc+} + 0.3		
l _{in}	Input current ⁽⁴⁾	10	mA	
T _{stg}	Storage temperature	-65 to +150	°C	
	Thermal resistance junction to ambient ⁽⁵⁾⁽⁶⁾			
	SC70-5	205		
	SOT23-5	250		
Р	DFN8 2x2	57	°C/W	
R _{thja}	MiniSO8	190	- C/W	
	SO8	125		
	TSSOP14	100		
	SO14	105		
Тj	Maximum junction temperature	150	°C	
	HBM: human body model ⁽⁷⁾	4000		
ESD	MM: machine model ⁽⁸⁾	250	V	
	CDM: charged device model ⁽⁹⁾	1300	1	
	Latch-up immunity	200	mA	

Table 2.	Absolute	maximum	ratings	(AMR)	
	Absoluto	IIIuAIIIuIII	ratings		

1. All voltage values, except differential voltage, are with respect to network ground terminal.

2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

3. V_{CC} - V_{in} must not exceed 6 V, V_{in} must not exceed 6 V.

- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. R_{th} are typical values.
- 7. Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
- 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Table 3.	Operating	conditions
----------	-----------	------------

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.3 to 5.5	V
V _{icm}	Common mode input voltage range	V _{CC-} - 0.2 to V _{CC+} - 1	v
T _{oper}	Operating free air temperature range	-40 to +125	°C

3 Electrical characteristics

Table 4. Electrical characteristics at V_{CC+} = 2.7 V with V_{CC-} = 0 V, V_{icm} = V_{CC}/2, T_{amb} = 25° C, and R_L connected to V_{CC}/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
DC perform	mance						
N/					4		
V _{io}	Input offset voltage	-40 °C < T< 125 °C			6	mV	
$\Delta V_{io} / \Delta T$	Input offset voltage drift ⁽¹⁾	-40 °C < T< 125 °C		1		μV/°C	
I.	Input offset current	$V_{out} = V_{cc}/2$		0.5	30		
I _{io}	input onset current	-40 °C < T< 125 °C			50	nA	
I _{ib}	Input bias current	$V_{out} = V_{cc}/2$		27	60		
٦D		-40 °C < T< 125 °C			110		
CMR	Common mode rejection ratio 20 log ($\Delta V_{icm}/\Delta V_{io}$)	$V_{ic} = 0 V to V_{cc}$ -1 V, $V_{out} = V_{cc}/2$	70	75			
	20 log (Δv _{icm} /Δv _{io})	-40 °C < T< 125 °C	68				
	Large signal voltage gain	R_L = 10 kΩ, V _{out} = 0.5 V to (V _{cc} -0.5 V)	100	110		dB	
^		-40 °C < T< 125 °C	90				
A _{vd}		$R_{L} = 2 k\Omega,$ V _{out} = 0.5 V to (V _{cc} -0.5 V)	90	100			
		-40 °C < T< 125 °C	80				
		R _L = 10 kΩ,		10	100		
	High level output voltage	-40 °C < T< 125 °C			200		
V _{CC} -V _{OH}		$R_L = 2 k\Omega$		40	300		
		-40 °C < T< 125 °C			400	mV	
		R _L = 10 kΩ,		65	180	IIIV	
V _{OL}	Low level output voltage	-40 °C < T< 125 °C			280	1	
۰OL		R _L = 2 kΩ,		120	300		
		-40 °C < T< 125 °C			400		
	Lau	$V_{out} = V_{cc}, V_{id} = -1 V$	15	26			
I _{out}	lsink	-40 °C < T< 125 °C	15			mA	
·out		V _{out} = 0 V, Vid = 1 V	15	21			
	Isource	-40 °C < T< 125 °C	12			<u> </u>	
I _{CC}	Supply current (per channel)	No load, $V_{out} = V_{CC}/2$		120	180	μA	
-00		-40 °C < T< 125 °C			180	μΑ	

Table 4. Electrical characteristics at V_{CC+} = 2.7 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25° C, and
R_{I} connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
AC perfor	mance				•	
GBP	Gain bandwidth product			1.3		
Fu	Unity gain frequency	P > 1 MO C = 200 pE		1		MHz
$\Phi_{\rm m}$	Phase margin	R _L > 1 MΩ, C _L = 200 pF		60		degrees
G _m	Gain margin			10		dB
SR	Slew rate	R_L > 1 MΩ C _L = 200 pF V _{out} = 0.5 V to V _{CC} - 0.5 V		0.6		V/µs
e _n	Equivalent input noise voltage	f = 1 kHz f = 10 kHz		31 20		$\frac{nV}{\sqrt{Hz}}$
i _n	Equivalent input noise current	f = 1 kHz		0.30		<u>pA</u> √Hz
THD+N	Total harmonic distortion + noise			0.002		%

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
DC perfor	mance							
					4			
V _{io}	Input offset voltage	-40 °C < T< 125 °C			6	mV		
$\Delta V_{io} / \Delta T$	Input offset voltage drift ⁽¹⁾	-40 °C < T< 125 °C		1		μV/°C		
	have to ffe at a second to	$V_{out} = V_{cc}/2$		0.5	30			
I _{io}	Input offset current	-40 °C < T< 125 °C			50			
		$V_{out} = V_{cc}/2$		27	60	nA		
I _{ib}	Input bias current	-40 °C < T< 125 °C			110			
	Common mode rejection ratio	$V_{ic} = 0 V to V_{cc}-1V,$ $V_{out} = V_{cc}/2$	72	75				
	20 log ($\Delta V_{icm} / \Delta V_{io}$)	-40 °C < T< 125 °C	70					
	Supply voltage rejection ratio	V _{cc} = 2.5 to 5 V	72	79		- dB		
SVR	20 log ($\Delta V_{cc}/\Delta V_{io}$)	-40 °C < T< 125 °C	70					
	Large signal voltage gain	R_L = 10 kΩ V _{out} = 0.5 V to (V _{CC} - 0.5 V)	100	110				
A _{vd}		-40 °C < T< 125 °C	90					
vu		$R_L = 2 k\Omega$	90	100				
		-40 °C < T< 125 °C	80					
		R _L = 10 kΩ		10	100			
V/ V/		-40 °C < T< 125 °C			200			
V _{CC} -V _{OH}	High level output voltage	R _L = 2 kΩ,		40	300			
		-40 °C < T< 125 °C			400	mV		
		R _L = 10 kΩ		65	180	IIIV		
V		-40 °C < T< 125 °C			280			
V _{OL}	Low level output voltage	$R_L = 2 k\Omega$		120	300			
		-40 °C < T< 125 °C			400			
	1	$V_{out} = V_{CC}, V_{id} = -1 V$	35	43				
	lsink	-40 °C < T< 125 °C	25			^		
l _{out}	1	V _{out} = 0 V, V _{id} = 1 V	60	70		mA		
	Isource	-40 °C < T< 125 °C	50					
	Supply current (per channel)	No load, $V_{out} = V_{CC}/2$		130	180			
I _{CC}		-40 °C < T< 125 °C			180	μA		

Table 5. Electrical characteristics at $V_{CC+} = 5 V$ with $V_{CC-} = 0 V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ} C$, and R_{L} connected to $V_{CC}/2$ (unless otherwise specified)

Table 5. Electrical characteristics at $V_{CC+} = 5 V$ with $V_{CC-} = 0 V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ}$ C, and R_L connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
AC perfor	mance					
GBP	Gain bandwidth product			1.3		
Fu	Unity gain frequency	- R _I > 1 MΩ C _I = 200 pF		1		MHz
$\Phi_{\rm m}$	Phase margin	$R_{L} > 1 \text{ msz}$ $C_{L} = 200 \text{ pc}$		60		degrees
G _m	Gain margin			10		dB
SR	Slew rate	R_L > 1 MΩ C _L = 200 pF V _{out} = 0.5 V to V _{CC} - 0.5V		0.7		V/µs
e _n	Equivalent input noise voltage	f = 1 kHz f = 10 kHz		30 20		<u>nV</u> √Hz
i _n	Equivalent input noise current	f = 1 kHz		0.30		<u>pA</u> √Hz
THD+N	Total harmonic distortion + noise			0.002		%

1. See Section 4.4: Input offset voltage drift over temperature.

0.20

0.15

0.15 0.10 0.10 0.05

0.00 2.5 T=125°C

T=-40°C

3.5

3.0

Vicm=Vcc/2

Supply Voltage (V)

4.0

T=25°C

4.5

5.0

5.5

Electrical characteristics

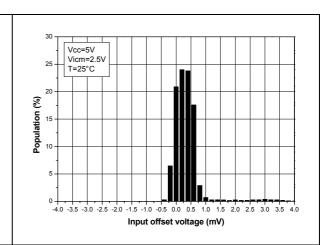


Figure 3. Vio distribution at V_{CC} = 5 V

Figure 4. Input offset voltage vs. input common mode voltage at V_{CC} = 5 V

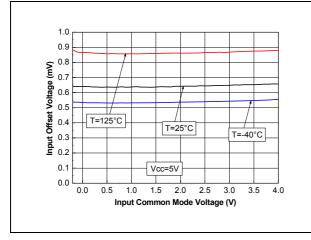


Figure 6. Output current vs. output voltage at $V_{CC} = 5 V$

Figure 5. Output current vs. output voltage at $V_{CC} = 2.7 V$

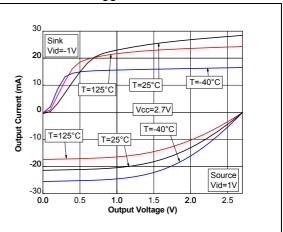
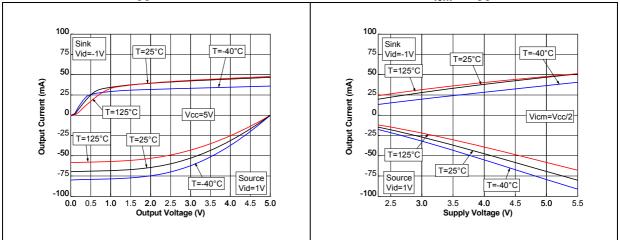



Figure 7. Output current vs. supply voltage at $V_{icm} = V_{CC}/2$

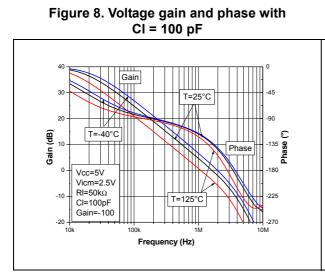


Figure 10. Gain margin vs. load capacitor at V_{CC} = 5 V

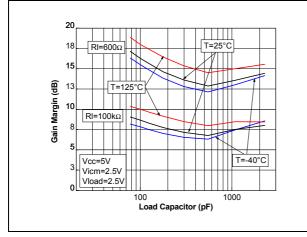


Figure 12. Closed-loop gain in voltage follower configuration for different capacitive loads

Figure 9. Voltage gain and phase with CI = 200 pF

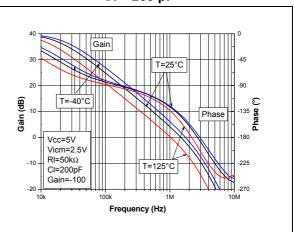


Figure 11. Phase margin vs. load capacitor at V_{CC} = 5 V

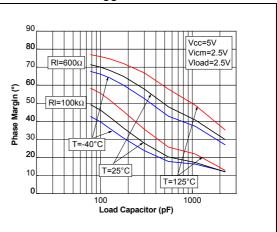
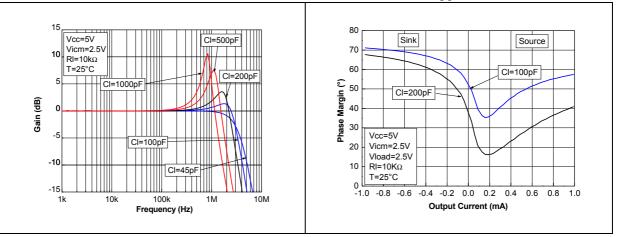



Figure 13. Phase margin vs. output current at V_{CC} = 5 V

DocID022943 Rev 3

5

Figure 14. Positive and negative slew rate vs. supply voltage

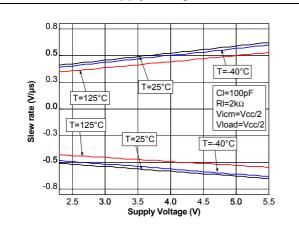


Figure 16. Negative slew rate at V_{CC} = 5 V with CI = 100 pF

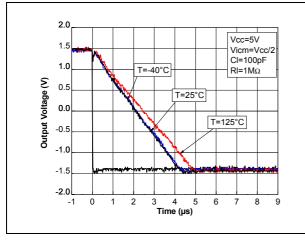


Figure 18. 0.1 Hz to 10 Hz noise at V_{CC} = 5 V

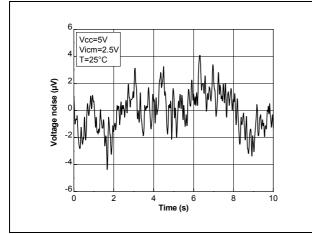


Figure 15. Positive slew rate at V_{CC} = 5 V with CI = 100 pF

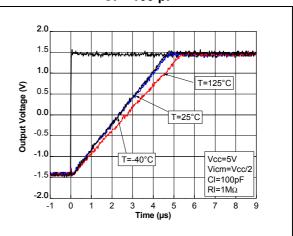


Figure 17. Noise vs. frequency

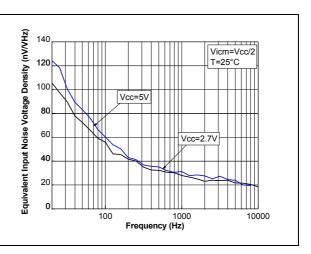
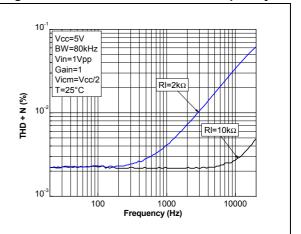



Figure 19. Distortion + noise vs. frequency

57

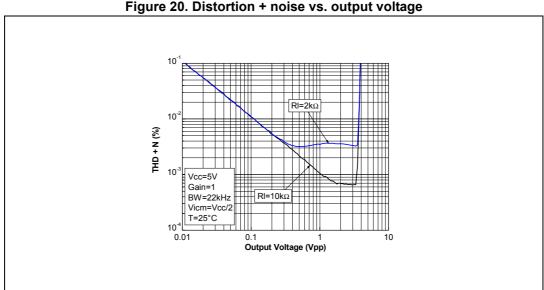


Figure 20. Distortion + noise vs. output voltage

12/25

4 Application information

4.1 Operating voltages

The LMX321, LMX358, and LMX324 can operate from 2.3 V to 5.5 V. The devices' parameters are fully specified for 2.7 V and 5 V power supplies. Additionally, the main specifications are guaranteed in extended temperature ranges from -40° C to $+125^{\circ}$ C.

4.2 Input common-mode range

The LMX321, LMX358, and LMX324 have an input common-mode range that includes ground. The input common-mode range is extended from V_{CC-} - 0.2 V to V_{CC+} - 1 V, with no output phase reversal.

4.3 Rail-to-rail output

The operational amplifiers' output levels can go close to the rails: to a maximum of 180 mV above and below the rail when connected to a 10 k Ω resistive load to V_{CC}/2.

4.4 Input offset voltage drift over temperature

The maximum input voltage drift over the temperature variation is defined in *Equation 1*.

Equation 1

$$\frac{\Delta \text{Vio}}{\Delta T} = \text{max} \left| \frac{\text{Vio}(T) - \text{Vio}(25^{\circ}\text{C})}{T - 25^{\circ}\text{C}} \right|$$

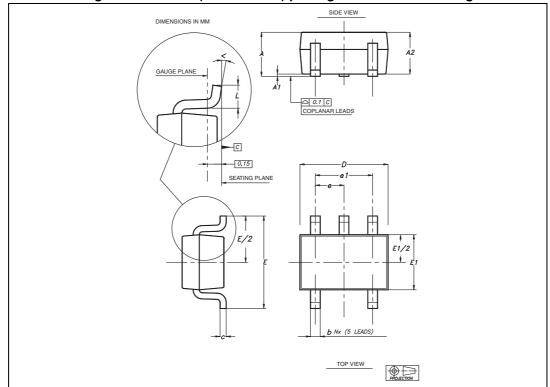
for $T_{min} < T < T_{max}$.

4.5 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

4.6 Macromodel

Accurate macromodels of the LMX321, LMX358, and LMX324 are available on STMicroelectronics' web site at www.st.com. These models are a trade-off between accuracy and complexity (that is, time simulation) of the LMX321, LMX358, and LMX324 operational amplifiers. They emulate the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right operational amplifier, *but they do not replace on-board measurements*.


5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

14/25

5.1 SC70-5 (or SOT323-5) package information

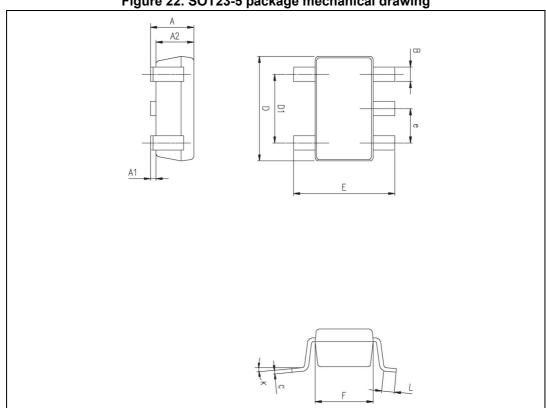

Figure 21. SC70-5 (or SOT323-5) package mechanical drawing

Table 6. SC70-5 (or SOT323-5) package mechanical data

	Dimensions					
Ref	Millimeters			Inches		
	Min	Тур	Мах	Min	Тур	Мах
А	0.80		1.10	0.032		0.043
A1			0.10			0.004
A2	0.80	0.90	1.00	0.032	0.035	0.039
b	0.15		0.30	0.006		0.012
С	0.10		0.22	0.004		0.009
D	1.80	2.00	2.20	0.071	0.079	0.087
E	1.80	2.10	2.40	0.071	0.083	0.094
E1	1.15	1.25	1.35	0.045	0.049	0.053
е		0.65			0.025	
e1		1.30			0.051	
L	0.26	0.36	0.46	0.010	0.014	0.018
<	0 °		8 °	0 °		8 °

SOT23-5 package information 5.2

Figure 22. SOT23-5 package mechanical drawing

	-		- I J -				
	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.90	1.20	1.45	0.035	0.047	0.057	
A1			0.15			0.006	
A2	0.90	1.05	1.30	0.035	0.041	0.051	
В	0.35	0.40	0.50	0.013	0.015	0.019	
С	0.09	0.15	0.20	0.003	0.006	0.008	
D	2.80	2.90	3.00	0.110	0.114	0.118	
D1		1.90			0.075		
е		0.95			0.037		
Е	2.60	2.80	3.00	0.102	0.110	0.118	
F	1.50	1.60	1.75	0.059	0.063	0.069	
L	0.10	0.35	0.60	0.004	0.013	0.023	
K	0 °		10 °	0 °		10 °	

Table 7. SOT23-5 package mechanical data

16/25

5.3 DFN8 2x2 package information

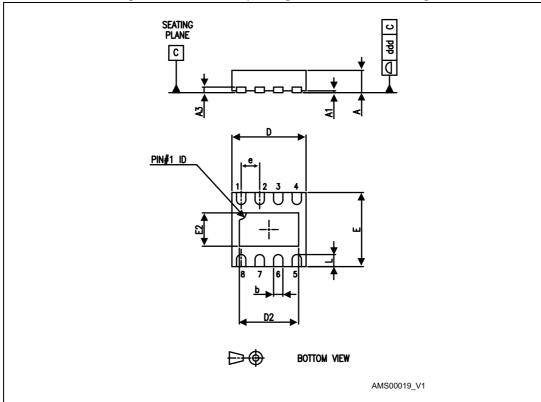


Figure 23. DFN8 2x2 package mechanical drawing

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.51	0.55	0.60	0.020	0.022	0.024	
A1			0.05			0.002	
A3		0.15			0.006		
b	0.18	0.25	0.30	0.007	0.010	0.012	
D	1.85	2.00	2.15	0.073	0.079	0.085	
D2	1.45	1.60	1.70	0.057	0.063	0.067	
Е	1.85	2.00	2.15	0.073	0.079	0.085	
E2	0.75	0.90	1.00	0.030	0.035	0.039	
е		0.50			0.020		
L			0.425			0.017	
ddd			0.08			0.003	

Figure 24. DFN8 2x2x0.6 mm package mechanical data (pitch 0.5 mm)

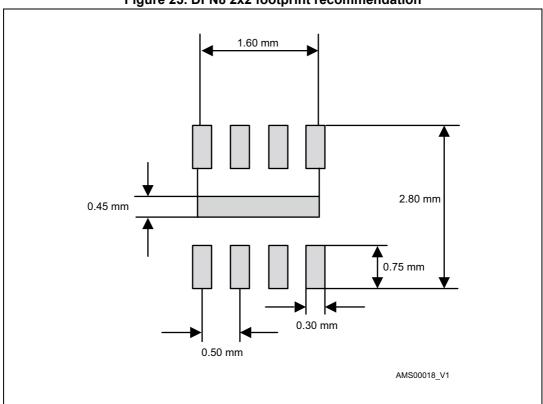
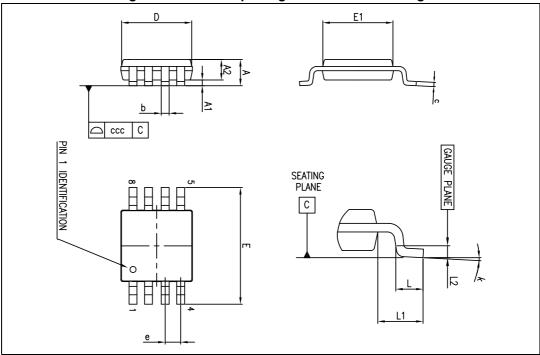



Figure 25. DFN8 2x2 footprint recommendation

18/25

5.4 MiniSO8 package information

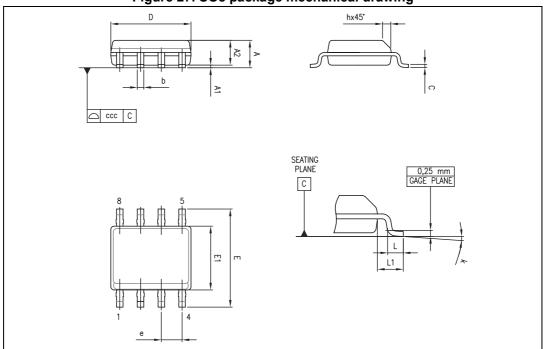

Figure 26. MiniSO8 package mechanical drawing

Table 8. MiniSO8 package mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.1			0.043	
A1	0		0.15	0		0.006	
A2	0.75	0.85	0.95	0.030	0.033	0.037	
b	0.22		0.40	0.009		0.016	
С	0.08		0.23	0.003		0.009	
D	2.80	3.00	3.20	0.11	0.118	0.126	
E	4.65	4.90	5.15	0.183	0.193	0.203	
E1	2.80	3.00	3.10	0.11	0.118	0.122	
е		0.65			0.026		
L	0.40	0.60	0.80	0.016	0.024	0.031	
L1		0.95			0.037		
L2		0.25			0.010		
k	0 °		8 °	0 °		8 °	
CCC			0.10			0.004	

5.5 SO8 package information

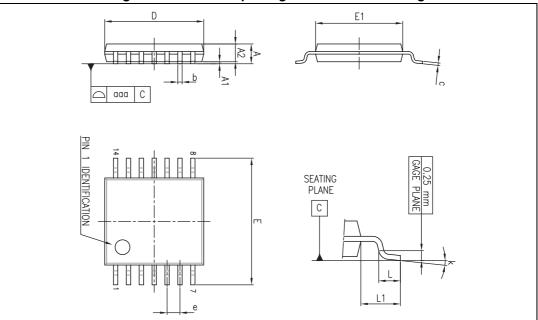

Figure 27. SO8 package mechanical drawing

Table 9. SO8 package mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.75			0.069	
A1	0.10		0.25	0.004		0.010	
A2	1.25			0.049			
b	0.28		0.48	0.011		0.019	
с	0.17		0.23	0.007		0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
E	5.80	6.00	6.20	0.228	0.236	0.244	
E1	3.80	3.90	4.00	0.150	0.154	0.157	
е		1.27			0.050		
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
L1		1.04			0.040		
k	1 °		8 °	1 °		8 °	
ССС			0.10			0.004	

5.6 TSSOP14 package information

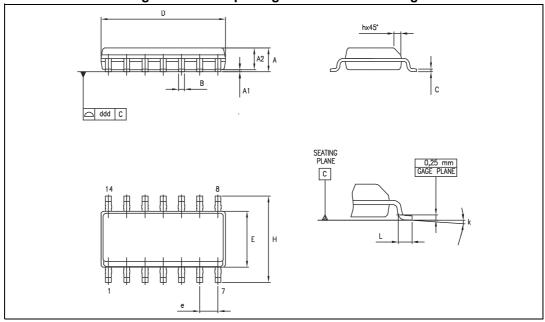

Figure 28. TSSOP14 package mechanical drawing

Table 10. TSSOP14 package mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.20			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.90	5.00	5.10	0.193	0.197	0.201	
E	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.176	
е		0.65			0.0256		
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00			0.039		
k	0 °		8 °	0 °		8 °	
ааа			0.10			0.004	

5.7 SO14 package information

Figure 29. SO14 package mechanical drawing

Table 11. SO14 package mechanical data

	Dimensions					
Def	Millimeters			Inches		
Ref.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	1.35		1.75	0.05		0.068
A1	0.10		0.25	0.004		0.009
A2	1.10		1.65	0.04		0.06
В	0.33		0.51	0.01		0.02
С	0.19		0.25	0.007		0.009
D	8.55		8.75	0.33		0.34
E	3.80		4.0	0.15		0.15
е		1.27			0.05	
Н	5.80		6.20	0.22		0.24
h	0.25		0.50	0.009		0.02
L	0.40		1.27	0.015		0.05
k			8 ° (I	max.)		
ddd			0.10			0.004

6 Ordering information

Order code	Temperature range	Package	Packing	Marking	
LMX321ICT		SC70-5		K21	
LMX321ILT		SOT23-5		K430	
LMX358IQ2T		DFN8 2x2		K21	
LMX358IST	-40° C to +125° C	MiniSO8	Tape and reel	K430	
LMX358IDT		SO8		LMX358I	
LMX324IPT		TSSOP14		LMX324I	
LMX324IDT		SO14		LMX324I	

Table 12. Order codes

7 Revision history

Date Revision Changes		Changes			
19-Mar-2012	1	Initial release.			
06-Apr-2012	2	Document status promoted from Target Specification to Production Data.			
07-May-2013	3	Added DFN8 2x2 silhouette, pinout, and package <i>Table 2: Absolute maximum ratings (AMR</i>): added R _{thja} data for DFN8 2x2 package. <i>Table 12: Order codes</i> : added LMX358IQ2T order code.			

Table 13. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

