

Low Voltage, High Accuracy, Triple/Quad Voltage Microprocessor Supervisory Circuit

Data Sheet ADM6710

FEATURES

Accurate monitoring of up to four power supply voltages 5 factory set threshold options: 1.8 V, 2.5 V, 3.0 V, 3.3 V, 5 V Adjustable input threshold voltage = 0.62 V (1.5% accuracy) 200 ms typical reset timeout Open-drain RESET output (10 μ A internal pull-up) Reset output stage: active low, valid to IN₁ = 1 V or IN₂ = 1 V Low power consumption (35 μ A) Power supply glitch immunity Specified from -40° C to $+125^{\circ}$ C 6-lead SOT-23 package

APPLICATIONS

Telecommunications
Microprocessor systems
Desktop and notebook computers
Data storage equipment
Servers/workstations

GENERAL DESCRIPTION

The ADM6710 is a low voltage, high accuracy supervisory circuit. The device monitors up to four system supply voltages.

The ADM6710 incorporates a variety of internally pretrimmed undervoltage threshold options for monitoring 1.8 V, 2.5 V, 3.0 V, 3.3 V and 5.0 V supply voltages. The ADM6710Q offers three adjustable thresholds for monitoring voltages down to 0.62 V. See the Ordering Guide section for a list and description of all available options.

If a monitored power supply voltage falls below the minimum voltage threshold, a single active low output asserts, triggering a system reset. The output is open-drain with a weak internal pull-up to the monitored IN_2 supply (or to V_{CC} in the case of the

FUNCTIONAL BLOCK DIAGRAM

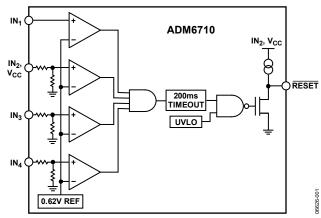


Figure 1.

ADM6710Q) of typically 10 μ A. After all voltages rise above the selected threshold level, the reset signal remains low for the reset timeout period (200 ms typical).

The ADM6710 output remains valid as long as IN_1 or IN_2 exceeds 1 V, whereas for the ADM6710Q, the output remains valid as long as V_{CC} exceeds 2 V.

Unused monitored inputs must not be allowed to float or to be grounded, instead they must be connected to a supply voltage greater than their specified threshold voltages.

The ADM6710 is available in a 6-lead SOT-23 package. The device operates over the extended temperature range of -40° C to $+125^{\circ}$ C.

TABLE OF CONTENTS

6/07—Revision 0: Initial Version

Features
Applications1
Functional Block Diagram
General Description1
Revision History
Specifications
Absolute Maximum Ratings4
ESD Caution
Pin Configurations and Function Descriptions5
REVISION HISTORY
11/15—Rev. A to Rev. B
Changes to Features Section and General Description Section1 Changes to Operating Voltage Range, $V_{\rm IN2}$ Parameter and
RESET Output Low (V _{OL}) Parameter, Table 1
Change to Storage Temperature Range Parameter and
Operating Temperature Range Parameter, Table 2 4
Changes to Figure 4, Figure 6, and Figure 96
Updated Outline Dimensions9
Updated Outline Dimensions

Typical Performance Characteristics	6
Theory of Operation	8
Input Configuration	8
RESET Output Configuration	8
Addition Of Manual Reset	8
Outline Dimensions	9
Ordering Guide	9

SPECIFICATIONS

 $V_{\text{IN2}} = 1 \text{ V to 5.5 V, } T_{\text{A}} = -40 ^{\circ}\text{C to } + 125 ^{\circ}\text{C, unless otherwise noted.} \text{ Typical values are } V_{\text{IN2}} = 3.0 \text{ V to 3.3 V, } T_{\text{A}} = 25 ^{\circ}\text{C.}$

Table 1.

$(ADM6710Q \text{ only}) \\ V \qquad V_{IN2} \geq 2.0 \text{ V, I}_{SOURCE} = 4 \mu\text{A, } \overline{RESET} \text{ deasserted}$	Parameter	Min	Тур	Max	Units	Test Conditions/Comments
V _{IN2} 2	OPERATING VOLTAGE RANGE					
NPUT CURRENT N	V _{CC} ¹	2.0		5.5	V	ADM6710Q only
IN IN IN IN IN IN IN IN	V _{IN2} ²	1.0		5.5	V	All devices except ADM6710Q; $T_A = 0^{\circ}C$ to +125°C
N _x Input Current S		1.2		5.5	V	All devices except ADM6710Q; $T_A = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$
Section Se	INPUT CURRENT					
Supplies ; the supply splits into 25 μA for the resistor divider and 30 μA for other circuits 0.4 μA	IN _x Input Current		25	40	μΑ	
Lic Input Current S S S D Lic Li			55	115	μΑ	supplies); the supply splits into 25 μA for the resistor
No. c No				0.4	μΑ	$V_{IN1} = 0 \text{ V}$ to 0.85 V (for adjustable thresholds)
THRESHOLD VOLTAGE Threshold Voltage (V _{TH}) 4.50 4.63 4.63 4.75 V INx decreasing; 5 V (−5%) INx decreasing; 5 V (−10%) 3.00 3.00 3.08 3.15 V INx decreasing; 3.3 V (−5%) INx decreasing; 3.3 V (−10%) INx decreasing; 3.3 V (−10%) INx decreasing; 3.0 V (−10%) INx decreasing; 2.5 V (−10%) INx decreasing; 2.5 V (−10%) INx decreasing; 2.5 V (−10%) INx decreasing; 1.8 V (−5%) INx decreasing; 1.8 V (−5%) INx decreasing; 1.8 V (−10%) INx de				0.2	μΑ	V_{IN3} , $V_{IN4} = 0$ V to 0.85 V (for adjustable thresholds)
Threshold Voltage (V _{TH}) 4.50 4.63 4.75 4.25 4.38 4.50 V INx decreasing; 5 V (−5%) INx decreasing; 3.3 V (−10%) INx decreasing; 3.3 V (−10%) INx decreasing; 3.0 V (−10%) INx d	Icc Input Current		35	50	μΑ	ADM6710Q only; $V_{CC} = 5.5 \text{ V}$
4.25	THRESHOLD VOLTAGE					
3.00 3.08 3.15 V INx decreasing; 3.3 V (−5%) 2.85 2.93 3.00 V INx decreasing; 3.3 V (−10%) 2.70 2.78 2.85 V INx decreasing; 3.3 V (−10%) 2.75 2.63 2.70 V INx decreasing; 3.0 V (−10%) 2.25 2.32 2.38 V INx decreasing; 3.0 V (−10%) 2.13 2.19 2.25 V INx decreasing; 2.5 V (−5%) 1.62 1.67 1.71 V INx decreasing; 2.5 V (−10%) 1.53 1.58 1.62 V INx decreasing; 1.8 V (−10%) 1.53 1.58 1.62 V INx decreasing; 1.8 V (−10%) 1.53 1.58 1.62 V INx decreasing; 1.8 V (−10%) 1.54 1.55 1.56 V INx decreasing; 1.8 V (−10%) 1.57 1.58 1.62 V INx decreasing; 1.8 V (−10%) 1.58 1.62 V INx decreasing; 1.8 V (−10%) 1.59 1.59 V INx decreasing; 1.8 V (−10%) 1.50 1.50 V INx decreasing; 1.8 V (−10%)	Threshold Voltage (V _{TH})	4.50	4.63	4.75	V	IN _x decreasing; 5 V (–5%)
2.85 2.93 3.00 V INx decreasing; 3.3 V (-10%) 2.70 2.78 2.85 V INx decreasing; 3.0 V (-5%) 1Nx decreasing; 3.0 V (-10%) INx decreasing; 3.0 V (-10%) 1Nx decreasing; 2.5 V (-5%) INx decreasing; 2.5 V (-5%) 1Nx decreasing; 2.5 V (-10%) INx decreasing; 2.5 V (-10%) 1Nx decreasing; 1.8 V (-5%) INx decreasing; 1.8 V (-5%) 1Nx decreasing; 1.8 V (-10%) INx decreasing; 1.8 V (-10%) 1Nx decreasing; 1.8 V (-10%) INx decreasing; 1.8 V (-10%) 1Nx decreasing; 1.8 V (-10%) INx decreasing; 1.8 V (-10%) 1Nx decreasing; 1.8 V (-10%) INx decreasing; 1.8 V (-10%) 1Nx decreasing; 1.8 V (-10%) INx decreasing; 1.8 V (-10%) 1Nx decreasing; 1.8 V (-10%) INx decreasing; 1.8 V (-10%) 1Nx decreasing; 1.8 V (-10%) INx decreasing; 1.8 V (-10%) 1Nx decreasing; 1.8 V (-10%) INx decreasing; 1.8 V (-10%) 1Nx decreasing; 1.8 V (-10%) INx decreasing; 1.8 V (-10%) 1Nx decreasing; 1.8 V (-10%) INx decreasing; 1.8 V (-10%) 1Nx decreasing; 1.8 V (-10%) INx decreasing; 1.8 V (-10%) 1Nx decreasing; 1.8 V (-10%) INx decreasing; 1.8 V (-10%) 1Nx decreasing; 1.8 V (-10		4.25	4.38	4.50	V	IN _x decreasing; 5 V (–10%)
2.70 2.78 2.85 V		3.00	3.08	3.15	V	IN _x decreasing; 3.3 V (–5%)
2.55 2.63 2.70 V INx decreasing; 3.0 V (−10%) 2.25 2.32 2.38 V INx decreasing; 2.5 V (−5%) 2.13 2.19 2.25 V INx decreasing; 2.5 V (−10%) 1.62 1.67 1.71 V INx decreasing; 2.5 V (−10%) 1.53 1.58 1.62 V INx decreasing; 1.8 V (−5%) 1.53 1.58 1.62 V INx decreasing; 1.8 V (−10%) 1.53 1.58 1.62 V INx decreasing; 1.8 V (−10%) 1.53 1.58 1.62 V INx decreasing; 1.8 V (−10%) 1.54 COEFFICIENT (TCV _{TH}) 1.55 1.58 1.62 V INx decreasing; 1.8 V (−10%) 1.58 1.62 V INx decreasing; 1.8 V (−10%) 1.59 V _{IN} decreasing RESET THRESHOLD HYSTERESIS (V _{HYST}) 1.50 0.611 0.620 0.629 V INx decreasing RESET THRESHOLD TEMPERATURE COEFFICIENT (TCV _{TH}) 1.50 V _{IN} falling at 10 mV/μs from V _{TH} to V _{TH} − 50 mV RESET TIMEOUT PERIOD (t _{RP}) 140 200 280 ms RESET OUTPUT LOW (Vo _L) 140 200 280 ms RESET OUTPUT LOW (Vo _L) 140 200 280 ms RESET OUTPUT HIGH (Vo _H) 140 200 280 ms RESET OUTPUT HIGH (Vo _H) 140 200 280 ms RESET OUTPUT HIGH (Vo _H) 140 200 280 ms RESET OUTPUT HIGH (Vo _H) 140 200 280 ms RESET OUTPUT HIGH (Vo _H) 140 200 280 ms RESET OUTPUT HIGH (Vo _H) 140 200 280 ms RESET OUTPUT HIGH (Vo _H) 140 200 280 ms RESET OUTPUT HIGH (Vo _H) 140 200 280 ms RESET OUTPUT HIGH (Vo _H) 140 200 280 ms RESET OUTPUT HIGH (Vo _H) 140 200 280 ms RESET OUTPUT HIGH (Vo _H) 140 200 280 ms RESET OUTPUT HIGH (Vo _H) 140 200 280 ms		2.85	2.93	3.00	V	IN _x decreasing; 3.3 V (–10%)
2.25 2.32 2.38 V INx decreasing; 2.5 V (−5%) 2.13 2.19 2.25 V INx decreasing; 2.5 V (−10%) 1.62 1.67 1.71 V INx decreasing; 1.8 V (−5%) 1.53 1.58 1.62 V INx decreasing; 1.8 V (−10%) RESET THRESHOLD HYSTERESIS (V _{HYST}) 0.611 0.620 0.629 V INx decreasing RESET THRESHOLD TEMPERATURE COEFFICIENT (TCV _{TH}) 60 ppm/°C INx increasing relative to INx decreasing INx to RESET DELAY (t _{RP}) 30 μs V _{IN} falling at 10 mV/μs from V _{TH} to V _{TH} − 50 mV RESET TIMEOUT PERIOD (t _{RP}) 140 200 280 ms RESET OUTPUT LOW (VoL) 0.3 V V _{IN2} , V _{CC} = 5 V, I _{SINK} = 2 mA 0.4 V V _{IN2} , V _{CC} = 2.5 V, I _{SINK} = 2.0 μA, T _A = 0°C to +125°C RESET OUTPUT HIGH (VoH) 0.8 × V _{CC} V V _{CC} ≥ 2.0 V, I _{SOURCE} = 4 μA, RESET deasserted (ADM6710Q only) 0.8 × V _{IN2} V V _{IN2} ≥ 2.0 V, I _{SOURCE} = 4 μA, RESET deasserted		2.70	2.78	2.85	V	IN _x decreasing; 3.0 V (–5%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.55	2.63	2.70	V	IN _x decreasing; 3.0 V (–10%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.25	2.32	2.38	V	IN _x decreasing; 2.5 V (–5%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.13	2.19	2.25	V	IN _x decreasing; 2.5 V (–10%)
Adjustable Threshold (V_{TH}) 0.611 0.620 0.629 V IN _X decreasing RESET THRESHOLD HYSTERESIS (V_{HYST}) 0.3 % V_{TH} IN _X increasing relative to IN _X decreasing RESET THRESHOLD TEMPERATURE COEFFICIENT (TCV_{TH}) 60 ppm/°C IN _X to RESET DELAY (t_{RP}) 30 μ s V _{IN} falling at 10 mV/ μ s from V _{TH} to V _{TH} - 50 mV RESET TIMEOUT PERIOD (t_{RP}) 140 200 280 ms RESET OUTPUT LOW (V_{OL}) 0.3 V V _{IN2} , V _{CC} = 5 V, I _{SINK} = 2 mA 0.4 V V _{IN2} , V _{CC} = 2.5 V, I _{SINK} = 1.2 mA 0.3 V V _{IN2} = 1.0, I _{SINK} = 20 μ A, T _A = 0°C to +125°C RESET OUTPUT HIGH (V_{OH}) 0.8 × V _{CC} V _{IN2} V _{IN2} = 2.0 V, I _{SOURCE} = 4 μ A, RESET deasserted (ADM6710Q only) 0.8 × V _{IN2} V V _{IN2} > 2.0 V, I _{SOURCE} = 4 μ A, RESET deasserted		1.62	1.67	1.71	V	IN _x decreasing; 1.8 V (–5%)
RESET THRESHOLD HYSTERESIS (V_{HYST}) RESET THRESHOLD TEMPERATURE COEFFICIENT (TCV_{TH}) RESET DELAY (t_{RP}) RESET TIMEOUT PERIOD (t_{RP}) RESET OUTPUT LOW (V_{OL}) RESET OUTPUT HIGH (V_{OH})		1.53	1.58	1.62	V	IN _x decreasing; 1.8 V (–10%)
RESET THRESHOLD TEMPERATURE COEFFICIENT (TCV _{TH}) IN _X to RESET DELAY (t _{RP}) RESET TIMEOUT PERIOD (t _{RP}) RESET OUTPUT LOW (V _{OL}) RESET OUTPUT HIGH (V _{OH}) $0.8 \times V_{CC}$ $0.8 \times V_{IN2}$	Adjustable Threshold (V_{TH})	0.611	0.620	0.629	V	IN _x decreasing
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RESETTHRESHOLD HYSTERESIS (V _{HYST})		0.3		%V _{TH}	IN _x increasing relative to IN _x decreasing
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			60		ppm/°C	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IN _X to RESET DELAY (t _{RP})		30		μs	V_{IN} falling at 10 mV/ μ s from V_{TH} to V_{TH} – 50 mV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RESET TIMEOUT PERIOD (t _{RP})	140	200	280	ms	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RESET OUTPUT LOW (Vol)			0.3	V	V_{IN2} , $V_{CC} = 5$ V, $I_{SINK} = 2$ mA
RESET OUTPUT HIGH (VoH)				0.4	V	V_{IN2} , $V_{CC} = 2.5 \text{ V}$, $I_{SINK} = 1.2 \text{ mA}$
$(ADM6710Q \text{ only})$ $0.8 \times V_{\text{IN2}} \qquad V \qquad V_{\text{IN2}} \ge 2.0 \text{ V, Isource} = 4 \mu\text{A, } \overline{\text{RESET}} \text{ deasserted}$				0.3	V	$V_{IN2} = 1.0$, $I_{SINK} = 20 \mu A$, $T_A = 0^{\circ} C$ to $+125^{\circ} C$
	RESET OUTPUT HIGH (VoH)	0.8×V _{CC}			V	
		$0.8 \times V_{IN2}$			V	
	RESET OUTPUT HIGH SOURCE CURRENT (I _{OH})		10		μΑ	$V_{IN2} \ge 2.0 \text{ V}$, RESET deasserted

 $^{^1}$ Note that the ADM6710Q is powered from $V_{CC}.$ 2 The \overline{RESET} output is guaranteed to be in the correct state for IN_1 or IN_2 down to 1 V.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
V_{CC} , IN_X , \overline{RESET} to GND	−0.3 V to +6 V
Continuous RESET Current	20 mA
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	-40°C to +125°C
Lead Temperature (10 sec)	300°C
Junction Temperature	135°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 3. Thermal Resistance

Package Type	θ _{JA}	Unit		
6-lead SOT-23	169.5	°C/W		

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

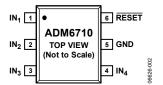


Figure 2. ADM6710 Pin Configuration

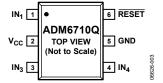


Figure 3. ADM6710Q Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN ₁	Input Voltage 1.
2	IN ₂	Input Voltage 2. IN₂ is the power supply input for the ADM6710.
	Vcc	V _{CC} is the power supply input for the ADM6710Q. It is not a monitored input.
3	IN ₃	Input Voltage 3.
4	IN ₄	Input Voltage 4.
5	GND	Ground.
6	RESET	Active Low $\overline{\text{RESET}}$ Output. $\overline{\text{RESET}}$ goes low when an input drops below the specified threshold. Once all inputs rise above the threshold voltage, $\overline{\text{RESET}}$ remains low for 200 ms (typical) before going high. $\overline{\text{RESET}}$ is open drain with a weak internal pull-up to IN ₂ or, in the case of the ADM6710Q, to V _{CC} , typically 10 μ A.

TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{\rm IN2} = V_{\rm CC} = 3.0 \text{V}$, $T_{\rm A} = 25 ^{\circ}\text{C}$, unless otherwise noted.

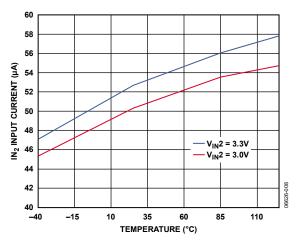


Figure 4. IN₂ Input Current vs. Temperature

Figure 5. IN₂ Input Current vs. IN₂ Voltage

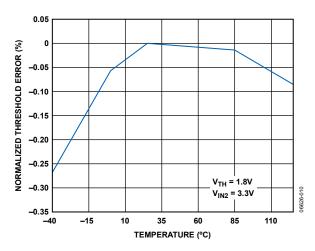


Figure 6. Normalized Threshold Error vs. Temperature

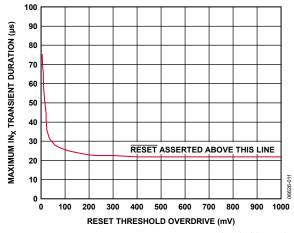


Figure 7. Maximum IN_x Transient Duration vs. Reset Threshold Overdrive

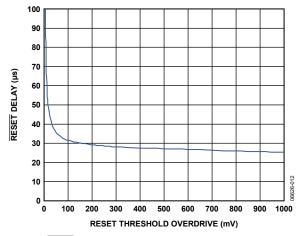


Figure 8. RESET Delay vs. Reset Threshold Overdrive (IN_x Decreasing)

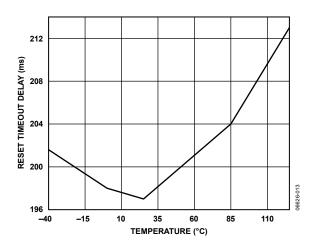


Figure 9. Reset Timeout Delay vs. Temperature

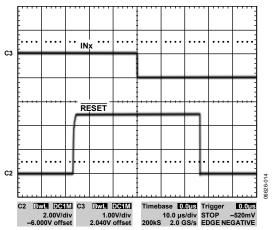


Figure 10. RESET Pull-Up and Pull-Down Response (10 μs/div)

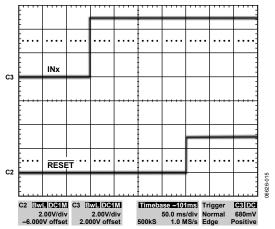


Figure 11. RESET Timeout Delay (50 ms/div)

THEORY OF OPERATION

The ADM6710 is a compact, low power supervisory circuit capable of monitoring up to four voltages in a multisupply application.

The device includes several factory-set voltage threshold options for monitoring 1.8 V, 2.5 V, 3.0 V, 3.3 V and 5.0 V supplies. It also provides up to three adjustable thresholds for monitoring voltages down to 0.62 V. See the Ordering Guide section for a list and description of all available options.

The ADM6710Q has three adjustable voltage inputs and is powered by V_{CC} , which is not a monitored voltage. All other ADM6710 devices are powered by IN_2 , which is a monitored voltage, and therefore monitors up to four voltages. If a monitored voltage drops below its associated threshold, the active low reset output asserts low and remains low while either IN_1 or IN_2 remains above 1.0 V.

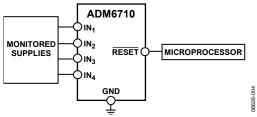


Figure 12. Typical Applications Circuit

INPUT CONFIGURATION

The ADM6710 provides numerous monitor choices with adjustable reset thresholds. Typically, the threshold voltage at each adjustable IN_x input is 0.62 V. To monitor a voltage greater than 0.62 V, connect a resistor divider network to the circuit as depicted in Figure 13, where

$$V_{INTH} = 0.62 \ V \left(\frac{R_1 + R_2}{R_2} \right)$$

$$V_{INTH}$$

$$R1 \stackrel{\bullet}{=} V_{REF} = 0.62V \stackrel{\text{90-9399}}{\longrightarrow} V_{REF}$$

Figure 13. Setting the Adjustable Monitor

The internal comparators each typically have a hysteresis of 0.3% with respect to the reset threshold. This built-in hysteresis improves the device's immunity to ambient noise without noticeably reducing the threshold accuracy. The ADM6710 is unaffected by short input transients.

The ADM6710 is powered from the monitored IN_2 , or V_{CC} in the case of the ADM6710Q. Monitored inputs are resistant to short power supply glitches. Figure 7 depicts the ADM6710 glitch immunity data. To increase noise immunity in noisy applications, place a 0.1 μF capacitor between the IN_2 input and ground.

Adding capacitance to IN_1 , IN_3 , and IN_4 also improves noise immunity.

Do not allow unused monitor inputs to float or to be grounded. Connect these inputs to a supply voltage greater than their specified threshold voltages. In the case of unused IN_x adjustable inputs, limit the bias current by connecting a 1 $M\Omega$ series resistor between the unused input and IN_2 (or V_{CC} in the case of the ADM6710Q).

RESET OUTPUT CONFIGURATION

The \overline{RESET} output asserts low if a monitored IN_x voltage drops below its voltage threshold. Once all voltages rise above the selected threshold level, the reset signal remains low for the reset timeout period (200 ms typical). The reset output is open drain with a weak internal pull-up to the monitored IN_2 or V_{CC} supply, typically 10 μA .

Many applications that interface with other logic devices do not require an external pull-up resistor. However, if an external pull-up resistor is required and it is connected to a voltage ranging from 0 V to 5.5 V, it will overdrive the internal pull-up. Reverse current flow from the external pull-up voltage to $\rm IN_2$ is prevented by the internal circuitry.

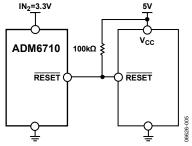


Figure 14. Interface with a Different Logic Supply Voltage

ADDITION OF MANUAL RESET

Use the circuit shown in Figure 15 to add manual reset to any of the ADM6710 adjustable inputs. When the switch is closed, the analog input shorts to ground and a $\overline{\text{RESET}}$ output commences. The switch must remain open for a minimum of 140 ms for the $\overline{\text{RESET}}$ output to deassert.

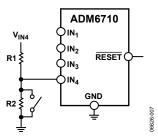


Figure 15. Addition of Manual Reset (IN₄ is an Adjustable Input)

OUTLINE DIMENSIONS

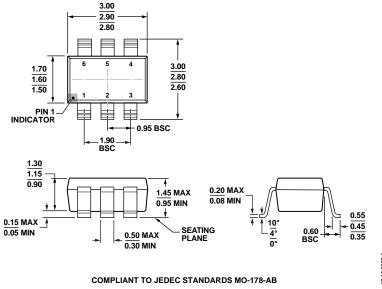


Figure 16. 6-Lead Small Outline Transistor Package [SOT-23] (RJ-6) Dimensions shown in millimeters

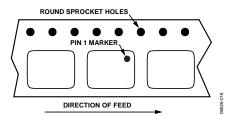


Figure 17. ADM6710 Reel Orientation

ORDERING GUIDE

	Nominal Input Voltage			ltage	Supply Temperature	Package	Package		
Model ^{1, 2}	IN ₁	IN ₂	IN ₃	IN ₄	Tolerance (%)	Range	Description	Option	Branding
ADM6710AARJZ-REEL7	5	3.3	2.5	Adj.	10	−40°C to +125°C	6-Lead SOT-23	RJ-6	MA9
ADM6710BARJZ-REEL7	5	3.3	2.5	Adj.	5	-40°C to +125°C	6-Lead SOT-23	RJ-6	MAH
ADM6710CARJZ-REEL7	5	3.3	1.8	Adj.	10	−40°C to +125°C	6-Lead SOT-23	RJ-6	MAJ
ADM6710DARJZ-REEL7	5	3.3	1.8	Adj.	5	-40°C to +125°C	6-Lead SOT-23	RJ-6	MAK
ADM6710EARJZ-REEL7	Adj.	3.3	2.5	1.8	10	−40°C to +125°C	6-Lead SOT-23	RJ-6	MAX
ADM6710FARJZ-REEL7	Adj.	3.3	2.5	1.8	5	-40°C to +125°C	6-Lead SOT-23	RJ-6	MA4
ADM6710GARJZ-REEL7	5	3.3	Adj.	Adj.	10	−40°C to +125°C	6-Lead SOT-23	RJ-6	MAL
ADM6710HARJZ-REEL7	5	3.3	Adj.	Adj.	5	−40°C to +125°C	6-Lead SOT-23	RJ-6	MAM
ADM6710IARJZ-REEL7	Adj.	3.3	2.5	Adj.	10	−40°C to +125°C	6-Lead SOT-23	RJ-6	MAN
ADM6710JARJZ-REEL7	Adj.	3.3	2.5	Adj.	5	−40°C to +125°C	6-Lead SOT-23	RJ-6	MAP
ADM6710KARJZ-REEL7	Adj.	3.3	1.8	Adj.	10	−40°C to +125°C	6-Lead SOT-23	RJ-6	MAQ
ADM6710LARJZ-REEL7	Adj.	3.3	1.8	Adj.	5	−40°C to +125°C	6-Lead SOT-23	RJ-6	MAR
ADM6710MARJZ-REEL7	Adj.	3	2.5	Adj.	10	−40°C to +125°C	6-Lead SOT-23	RJ-6	MAS
ADM6710NARJZ-REEL7	Adj.	3	2.5	Adj.	5	−40°C to +125°C	6-Lead SOT-23	RJ-6	MAT
ADM6710OARJZ-REEL7	Adj.	3	1.8	Adj.	10	−40°C to +125°C	6-Lead SOT-23	RJ-6	MAU
ADM6710PARJZ-REEL7	Adj.	3	1.8	Adj.	5	−40°C to +125°C	6-Lead SOT-23	RJ-6	MAV
ADM6710QARJZ-REEL7	Adj.	V_{CC}	Adj.	Adj.	Not applicable	−40°C to +125°C	6-Lead SOT-23	RJ-6	MAW

¹ Z = RoHS Compliant Part.

² Adjustable voltage based on 0.62 V internal threshold. The external threshold voltage can be set using an external resistor divider.

NOTES

NOTES

NOTES