

K2xx0yHU Series

Schematic Symbol

Description

The new K2xx0yHU is a higher energy SIDAC switch for gas ignition applications requiring higher current pulse current especially at low repetition rate. It is offered in a DO-15 leaded package and DO-214AA surface mount package. Voltage activation of this solid state switch is accomplished with peak voltage level of 190 to 260Volts. The SIDAC is a silicon bilateral voltage triggered Thyristor switch that switches on through a negative resistance region to a low on-state voltage. Conduction will continue until current is interrupted or lowered below minimum holding current of the device.

Features

- AC circuit oriented
- RoHS compliant
- Triggering Voltage of 190 to 260V
- Unidirectional
- 280A Pulse current capability

Applications

Suitable for high voltage power supplies, natural gas igniters, and Xenon flash ignition.

Electrical Specifications (T_J = 25°C, unless otherwise specified)

Symbol	Parameters	Test Conditions		Min	Max	Unit
		K20	00yHU	190	210	
\/	Drankovar/Trigger Voltage	K2200yHU		210	230	
V_{BO}	Breakover/Trigger Voltage	K24	00yHU	230	250	V
		K2500yHU		240	260	
		K20	00yHU	180		
\/	Repetitive Peak Off-state Voltage	K22	00yHU	190		V
V_{DRM}	nepetitive reak Oil-State voitage	K24	00yHU	210		
			00yHU	220		
I _{T(RMS)}	On-state RMS Current	50/60Hz, T _J < 125°C			1	А
V _{TM}	Peak On-state Voltage	$I_{T} = 1A$			1.5	V
I _H	Dynamic Holding Current	$R_L = 100\Omega$ 50/60Hz Sine Wave			60	mA
R_s	Switching Resistance, $R_S = \frac{(V_{BO} - V_S)}{(I_S - I_{BO})}$	50/60Hz Sine Wave		100		Ω
I _{BO}	Breakover Current	50/60Hz	: Sine Wave		500	μΑ
	Peak Repetitive Pulse Current	+ 10	60Hz		120	^
I _{TRM}	(refer to figure 4)	$t_p = 10 \mu s$	$t_p = 10 \mu s$ 5Hz		280	A
di/dt	Critical Rate of Rise of On-State Current				220	A/µs
dv/dt	Critical Rate of Rise of Off-State Voltage			1500		V/µs
T _s	Storage Temperature Range			-40	150	°C
T_{J}	Junction Temperature Range			-40	125	°C
R _{⊠JL}	Thermal Resistance, Junction to Lead	DO-15 DO-214AA			18 30	°C/W
R _{⊠IA}	Thermal Resistance, Junction to Ambient	DO-15			75	°C/W

Note: xxx - voltage, y = package

Figure 1: V-I Characteristics

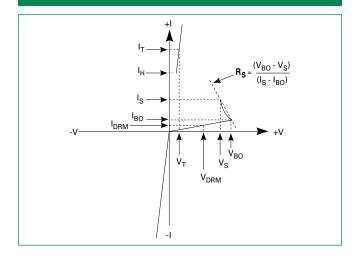


Figure 2: On-state Current vs. On-state Voltage (Typical)



Figure 3: Power Dissipation vs. On-state Current (Typical)

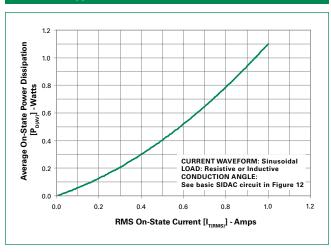


Figure 4: Repetitive Peak On-state Current (I_{TRM}) vs. Pulse Width at Various Frequencies

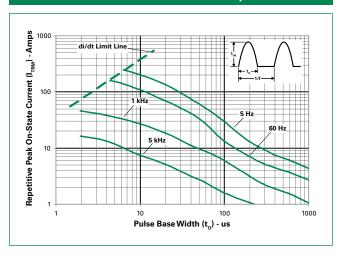
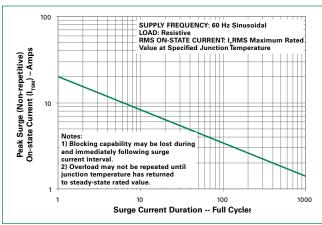



Figure 5: Surge Peak On-state Current vs. Number of Cycles

© 2016 Littelfuse, Inc.

Specifications are subject to change without notice. Revised: 03/25/16

Figure 6: Normalized V_{BO} Change vs. Junction Temperature

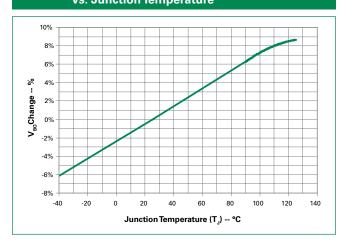


Figure 7: Normalized DC Holding Current vs. Junction Temperature

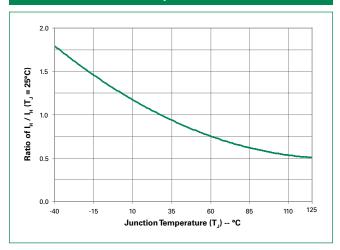


Figure 9: Maximum Allowable Ambient Temperature vs. RMS On-State Current

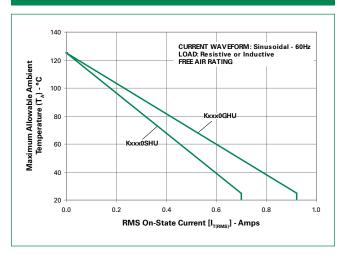


Figure 11: General Gas Ignitor Circuit

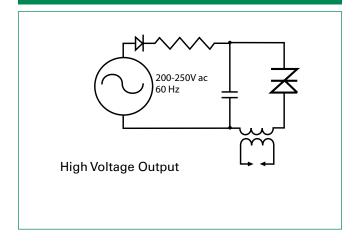


Figure 8: Maximum Allowable Case Temperature vs. RMS On-State Current

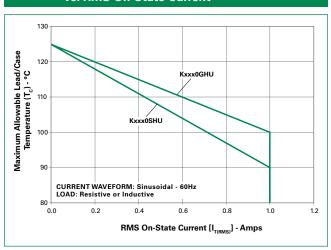
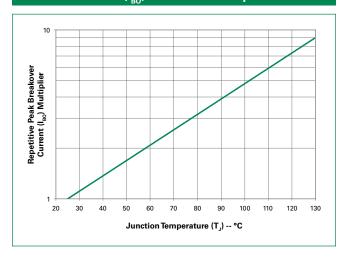
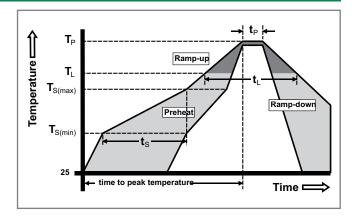



Figure 10: Normalized Repetitive Peak Breakover Current (I_{RO}) vs. Junction Temperature

Additional Information



Resources Samples

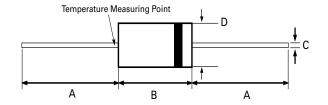
Soldering Parameters

Reflow Co	ndition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus Temp) (T _L) to peak		5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260+0/-5 °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

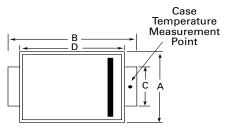
Terminal Material	Copper Alloy	
Terminal Finish	100% Matte Tin-plated	
Body Material	UL recognized epoxy meeting flammability classification 94V-0.	

Design Considerations

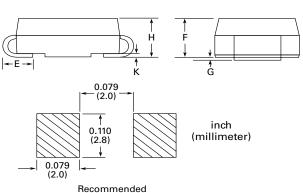

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Overheating and surge currents are the main killers of SIDACs. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Reliability/Environmental Tests

Test	Specifications and Conditions		
High Temperature Voltage Blocking	MIL-STD-750: Method 1040, Condition A Rated V _{DRM} (VAC-peak), 125°C, 1008 hours		
Temperature Cycling	MIL-STD-750: Method 1051 -40°C to 150°C, 15-minute dwell, 100 cycles		
Biased Temperature & Humidity	EIA/JEDEC: JESD22-A101 (VDC), 85°C, 85%RH, 1008 hours		
High Temp Storage	MIL-STD-750: Method 1031 150°C, 1008 hours		
Low-Temp Storage	-40°C, 1008 hours		
Thermal Shock	MIL-STD-750: Method 1056 0°C to 100°C, 5-minute dwell, 10-second transfer, 10 cycles		
Autoclave (Pressure Cooker Test)	EIA/JEDEC: JESD22-A102 121°C, 100%RH, 2atm, 168 hours		
Resistance to Solder Heat	MIL-STD-750: Method 2031 260°C, 10 seconds		
Solderability	ANSI/J-STD-002: Category 3		
Repetitive Surge Life Testing	MIL-STD-750: Method 2036, Condition E		


Teccor® brand ThyristorsHigh Energy Unidirectional SIDACs

Dimensions — DO-15



Dimension	Inches		Millimeters		
Difficusion	Max	Max	Min	Max	
А	1.000	-	25.40	-	
В	0.230	0.300	5.80	7.60	
С	0.028	0.034	0.71	0.86	
D	0.104	0.140	2.60	3.60	

Dimensions - DO-214AA

Soldering Pad Outline

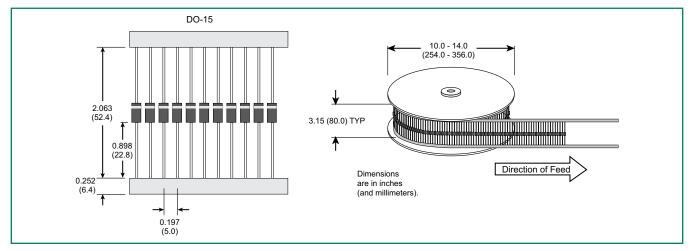
Dimension	Inches		Millimeters		
Difficusion	Max	Max	Min	Max	
А	0.130	0.156	3.30	3.95	
В	0.201	0.220	5.10	5.60	
С	0.077	0.087	1.95	2.20	
D	0.159	0.181	4.05	4.60	
Е	0.030	0.063	0.75	1.60	
F	0.075	0.096	1.90	2.45	
G	0.002	0.008	0.05	0.20	
Н	0.077	0.104	1.95	2.65	
K	0.006	0.016	0.15	0.41	

Product Selector

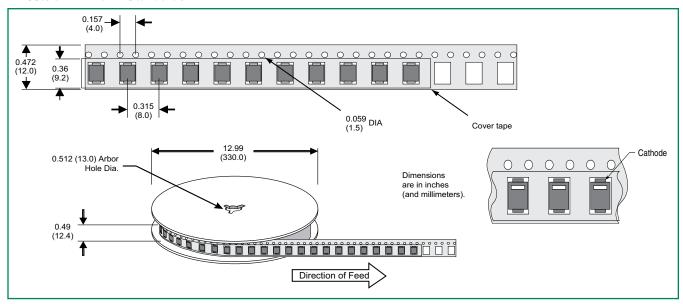
Part Number	Switching Voltage Range		Blocking Voltage	Packages	
Part Number	V _{BO} Minimum	V _{BO} Maximum	V_{DRM}	DO-15	DO-214AA
K2000yHU	190V	210V	180V	K2000GHU	K2000SHU
K2200yHU	210V	230V	190V	K2200GHU	K2200SHU
K2400yHU	230V	250V	210V	K2400GHU	K2400SHU
K2500yHU	240V	260V	220V	K2500GHU	K2500SHU

Note: y = package

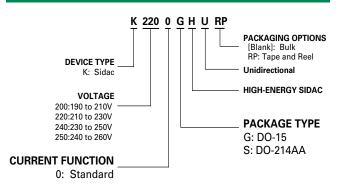
Packing Options


Part Number	Marking	Weight	Packaging Mode	Base Quantity
K2xx0GHU	K2xx0GHU	0.38g	Bulk	1000
K2xx0GHURP	K2xx0GHU	0.38g	Reel Pack	5000
K2xx0SHURP	KxxHU	0.10g	Reel Pack	2500

Note: xx = voltage


DO-15 Reel Pack (RP) Specifications

Meets all EIA RS-296 Standards



DO-214AA Embossed Carrier Reel Pack (RP) Specifications

Meets all EIA-481-1 Standards

Part Numbering System

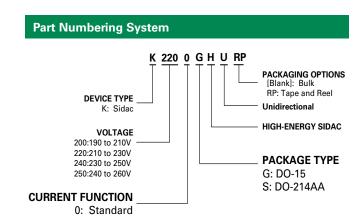
DO-15 K2200GHU DO-214AA K22HU YMXXX

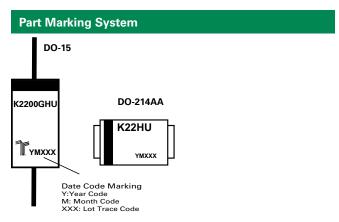
Date Code Marking

XXX: Lot Trace Code

Y:Year Code M: Month Code

Part Marking System


© 2016 Littelfuse, Inc.


Specifications are subject to change without notice. Revised: 03/25/16

Downloaded from Arrow.com.

Teccor® brand Thyristors High Energy Unidirectional SIDACs

