

BFP760

SiGe:C NPN RF bipolar transistor

Product description

The BFP760 is a wideband NPN RF heterojunction bipolar transistor (HBT).

Support

Feature list

- Low noise figure NF_{min} = 0.95 dB at 5.5 GHz, 3 V, 10 mA
- High gain G_{ms} = 16.5 dB at 5.5 GHz, 3 V, 30 mA
- *OIP*₃ = 27 dBm at 5.5 GHz, 3 V, 30 mA

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Potential applications

- Wireless communications: WLAN, WiMAX and UWB
- Satellite communication systems: GNSS navigation systems (GPS, GLONASS, BeiDou, Galileo), satellite radio (SDARs, DAB) and C-band LNB
- Multimedia applications such as mobile/portable TV, CATV and FM radio
- ISM applications like RKE, AMR and Zigbee, as well as for emerging wireless applications

Device information

Table 1 Part information

Product name / Ordering code	Package	Pin co	nfigura	tion		Marking	Pieces / Reel
BFP760 / BFP760H6327XTSA1	SOT343	1 = B	2 = E	3 = C	4 = E	R6s	3000

Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions

Table of contents

1

2

3.1
3.2
3.3
3.4
3.5

4

Table of contents

Product description	
Feature list	1
Product validation	1
Potential applications	
Device information	1
Table of contents	2
Absolute maximum ratings	
Thermal characteristics	4
Electrical characteristics	
DC characteristics	
General AC characteristics	5
Frequency dependent AC characteristics	6
Characteristic DC diagrams	9
Characteristic AC diagrams	
Package information SOT343	
Revision history	
Disclaimer	

Absolute maximum ratings

1 Absolute maximum ratings

Table 2 Absolute maxi	mum ratings at T _A	= 25 °C (ui	nless othei	rwise sp	ecified)
Parameter	Symbol	Values		Unit	Note or test condition
		Min.	Max.		
Collector emitter voltage	V _{CEO}	-	4.0	V	Open base
			3.5		T _A = −55 °C, open base
Collector emitter voltage	V _{CES}		13		E-B short circuited
Collector base voltage	V _{CBO}		13		Open emitter
Emitter base voltage	V _{EBO}		1.2		Open collector
Base current	I _B		4	mA	_
Collector current	Ι _C		70		
Total power dissipation ¹⁾	P _{tot}		240	mW	<i>T</i> _S ≤ 95 °C
Junction temperature	TJ		150	°C	-
Storage temperature	T _{Stg}	-55			

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding only one of these values may cause irreversible damage to the integrated circuit.

¹ $T_{\rm S}$ is the soldering point temperature. $T_{\rm S}$ is measured on the emitter lead at the soldering point of the PCB.

Thermal characteristics

2 Thermal characteristics

Table 3Thermal resistance

Parameter	Symbol Values		rameter Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.				
Junction - soldering point	R _{thJS}	-	230	_	K/W	-		

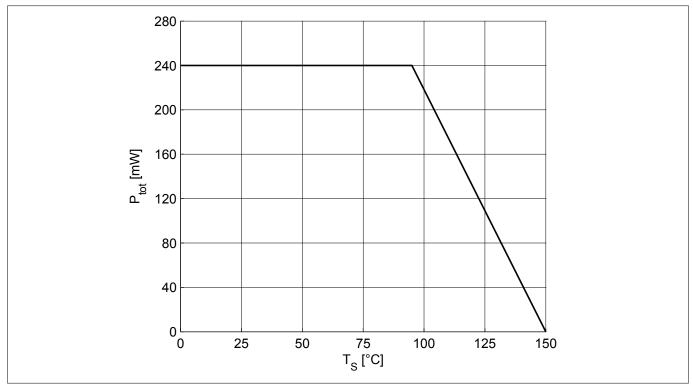


Figure 1

Total power dissipation $P_{tot} = f(T_S)$

Electrical characteristics

3 Electrical characteristics

3.1 DC characteristics

Table 4DC characteristics at $T_A = 25 \degree C$

Parameter	Symbol		Values	5	Unit	Note or test condition
		Min.	Тур.	Max.		
Collector emitter breakdown voltage	V _{(BR)CEO}	4	4.7	-	V	$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0,$ open base
Collector emitter leakage current	I _{CES}	-	10 1	400 ¹⁾ 40 ¹⁾	nA	$V_{CE} = 13 \text{ V}, V_{BE} = 0$ $V_{CE} = 5 \text{ V}, V_{BE} = 0$ E-B short circuited
Collector base leakage current	I _{CBO}		1	40 ¹⁾	-	$V_{CB} = 5 \text{ V}, I_E = 0,$ open emitter
Emitter base leakage current	I _{EBO}		1	40 ¹⁾		$V_{\rm EB}$ = 0.5 V, $I_{\rm C}$ = 0, open collector
DC current gain	h _{FE}	160	250	400		V_{CE} = 3 V, I_C = 35 mA, pulse measured

3.2 General AC characteristics

Table 5General AC characteristics at $T_A = 25 \text{ °C}$

Parameter	Symbol	bol Values			Unit	Note or test condition	
		Min.	Тур.	Max.			
Transition frequency	f _T	-	45	-	GHz	$V_{CE} = 3 \text{ V}, I_{C} = 35 \text{ mA},$ f = 1 GHz	
Collector base capacitance	C _{CB}		0.13	0.2	pF	$V_{CB} = 3 V, V_{BE} = 0,$ f = 1 MHz, emitter grounded	
Collector emitter capacitance	C _{CE}		0.42	-		V _{CE} = 3 V, V _{BE} = 0, f = 1 MHz, base grounded	
Emitter base capacitance	C _{EB}		0.65			$V_{\text{EB}} = 0.5 \text{ V}, V_{\text{CB}} = 0,$ f = 1 MHz, collector grounded	

Datasheet

¹ Maximum values not limited by the device but by the short cycle time of the 100% test.

Electrical characteristics

3.3 Frequency dependent AC characteristics

Measurement setup is a test fixture with Bias-T's in a 50 Ω system, T_A = 25 °C.

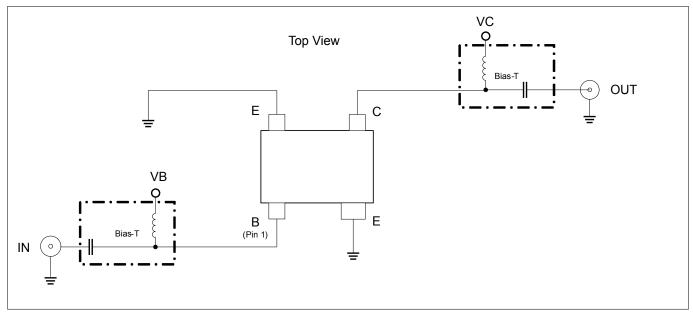


Figure 2 Test

Testing circuit

Table 6AC characteristics, $V_{CE} = 3 V, f = 900 MHz$

Parameter	Symbol		Values	5	Unit	Note or test condition
		Min.	Тур.	Max.		
Power gain		-		-	dB	
Maximum power gain	G _{ms}		29			I _C = 30 mA
Transducer gain	S ₂₁ ²		28			
Noise figure						
Minimum noise figure	NF _{min}		0.5			I _C = 10 mA
Associated gain	Gass		25.5			
Linearity					dBm	$Z_{\rm S} = Z_{\rm L} = 50 \Omega,$
• 3rd order intercept point at output	OIP ₃		27			$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega,$ $I_{\rm C} = 30 \ \rm{mA}$
• 1 dB gain compression point at output	OP _{1dB}		14			

Electrical characteristics

Table 7AC characteristics, $V_{CE} = 3 V, f = 1.8 GHz$

Parameter	Symbol		Values			Note or test condition
		Min.	Тур.	Max.		
Power gain		-		_	dB	
Maximum power gain	G _{ms}		25			I _C = 30 mA
Transducer gain	$ S_{21} ^2$		22			
Noise figure						
Minimum noise figure	NF _{min}		0.55			<i>I</i> _C = 10 mA
Associated gain	G _{ass}		20.5			
Linearity					dBm	$Z_{\rm S} = Z_{\rm L} = 50 \Omega,$
• 3rd order intercept point at output	OIP ₃		28			$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega,$ $I_{\rm C} = 30 \ \rm{mA}$
• 1 dB gain compression point at output	OP _{1dB}		14.5			

Table 8AC characteristics, $V_{CE} = 3 V, f = 2.4 GHz$

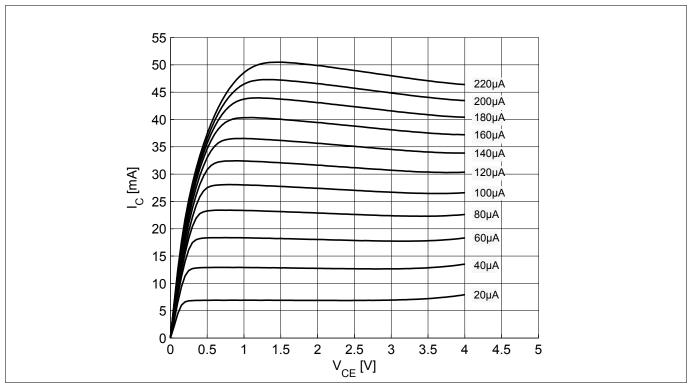
Parameter	Symbol		Values			Note or test condition	
		Min.	Тур.	Max.			
Power gain		_		-	dB		
Maximum power gain	G _{ms}		23.5			I _C = 30 mA	
Transducer gain	$ S_{21} ^2$		20				
Noise figure				1			
Minimum noise figure	NF _{min}		0.6			I _C = 10 mA	
Associated gain	G _{ass}		19				
Linearity				1	dBm	$Z_{\rm S} = Z_{\rm L} = 50 \Omega,$	
• 3rd order intercept point at output	OIP ₃		28			$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega,$ $I_{\rm C} = 30 \ \rm{mA}$	
• 1 dB gain compression point at output	OP _{1dB}		14				

Table 9AC characteristics, $V_{CE} = 3 V, f = 3.5 GHz$

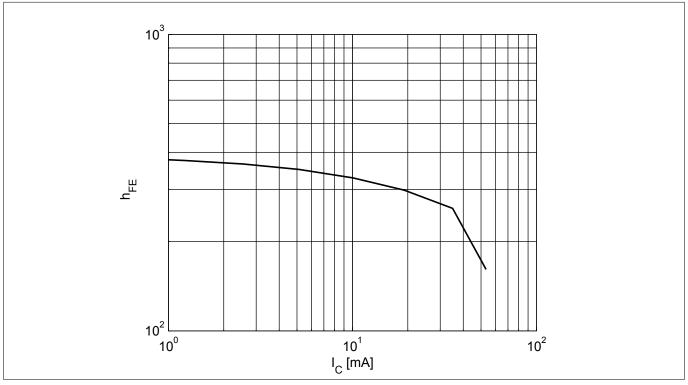
Parameter	Symbol		Values	;	Unit	Note or test condition
		Min.	Тур.	Max.		
Power gain		_		_	dB	
Maximum power gain	G _{ms}		21.5			I _C = 30 mA
Transducer gain	S ₂₁ ²		16.5			
Noise figure						
Minimum noise figure	NF _{min}		0.7			I _C = 10 mA
Associated gain	G _{ass}		16			
Linearity				-	dBm	$Z_{\rm S} = Z_{\rm L} = 50 \Omega,$
• 3rd order intercept point at output	OIP ₃		28.5			$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega,$ $I_{\rm C} = 30 \ \rm{mA}$
• 1 dB gain compression point at output	OP _{1dB}		14.5			

Electrical characteristics

Table 10AC characteristics, $V_{CE} = 3 V, f = 5.5 GHz$

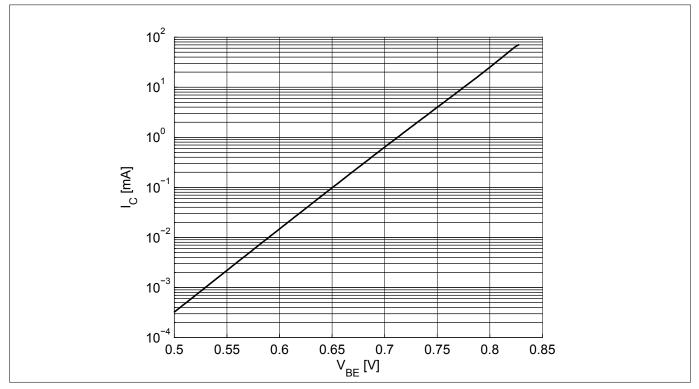

Parameter	Symbol		Values	i	Unit	Note or test condition	
		Min.	Тур.	Max.			
Power gain		-		-	dB		
Maximum power gain	G _{ma}		16.5			I _C = 30 mA	
Transducer gain	S ₂₁ ²		12				
Noise figure							
Minimum noise figure	NF _{min}		0.95			I _C = 10 mA	
Associated gain	G _{ass}		12.5				
Linearity					dBm	$Z_{\rm S} = Z_{\rm L} = 50 \Omega,$	
• 3rd order intercept point at output	OIP ₃		27			$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega,$ $I_{\rm C} = 30 \ \rm{mA}$	
• 1 dB gain compression point at output	OP _{1dB}		13				

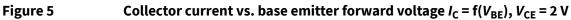
Note: $G_{ms} = IS_{21} / S_{12}I$ for k < 1; $G_{ma} = IS_{21} / S_{12}I(k-(k^2-1)^{1/2})$ for k > 1. In order to get the NF_{min} values stated in this chapter, the test fixture losses have been subtracted from all measured results. OIP₃ value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50 Ω from 0.2 MHz to 12 GHz.

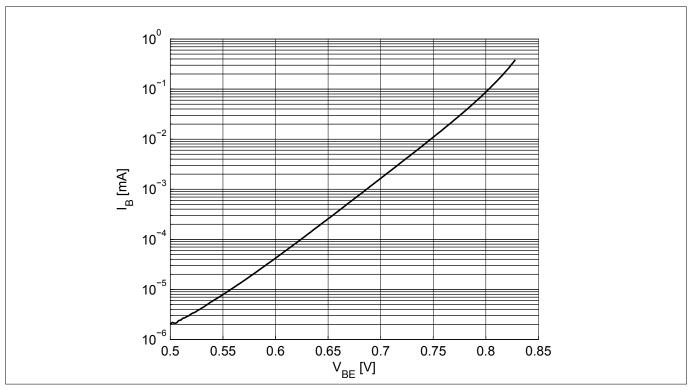


Electrical characteristics

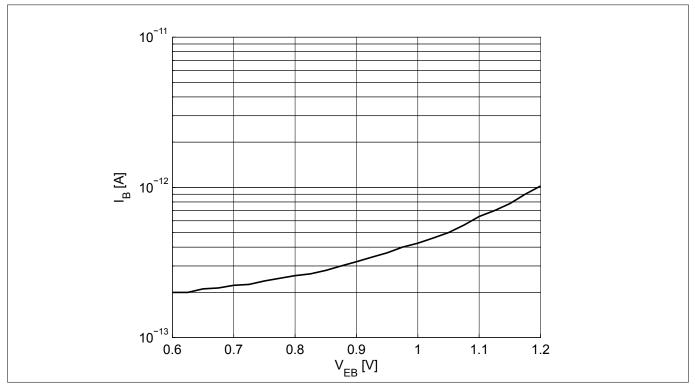
3.4 Characteristic DC diagrams



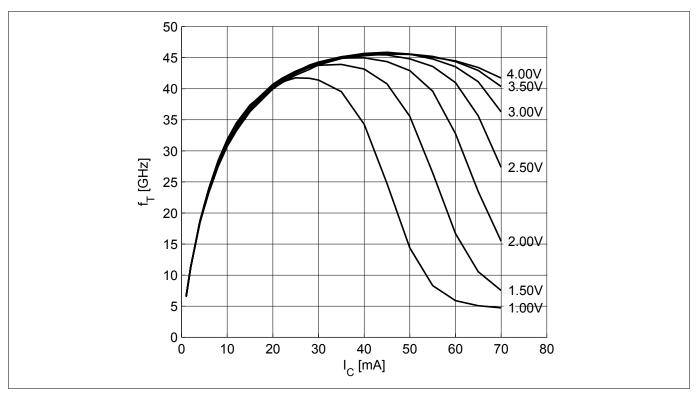




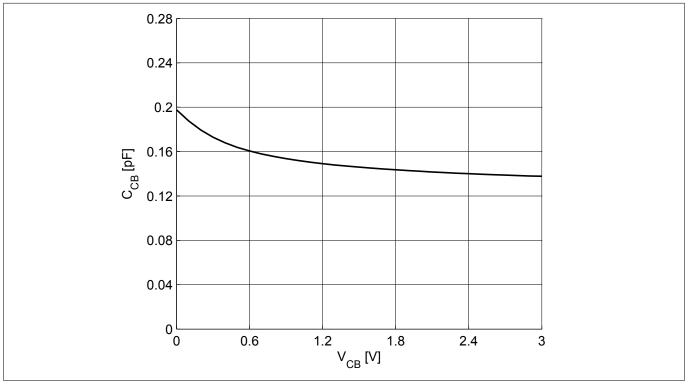
DC current gain $h_{FE} = f(I_C), V_{CE} = 3 V$



Base current vs. base emitter forward voltage $I_{\rm B}$ = f($V_{\rm BE}$), $V_{\rm CE}$ = 2 V

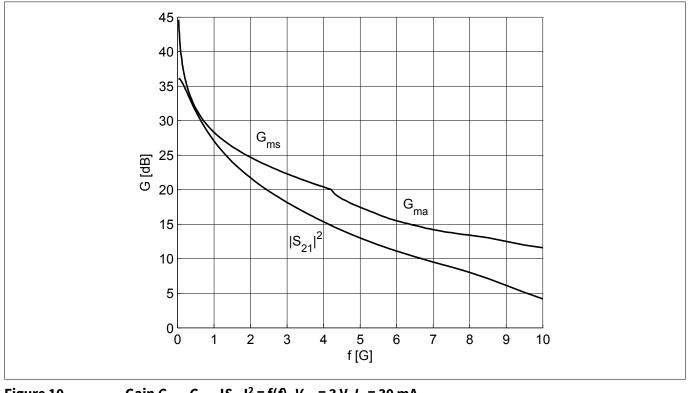


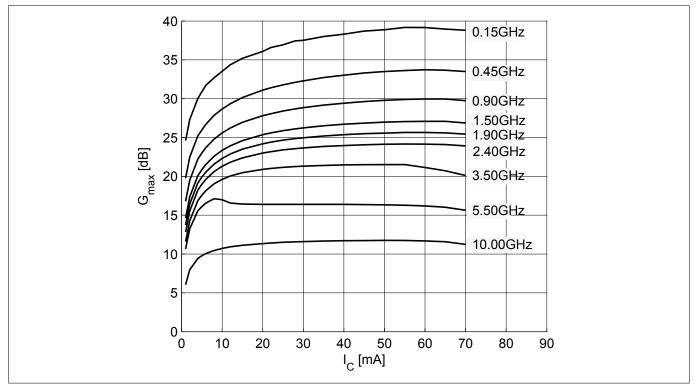

Base current vs. base emitter reverse voltage $I_{\rm B}$ = f($V_{\rm EB}$), $V_{\rm CE}$ = 2 V


infineon

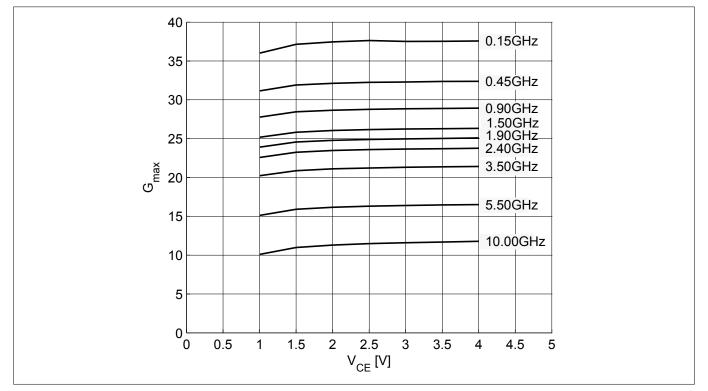
Electrical characteristics

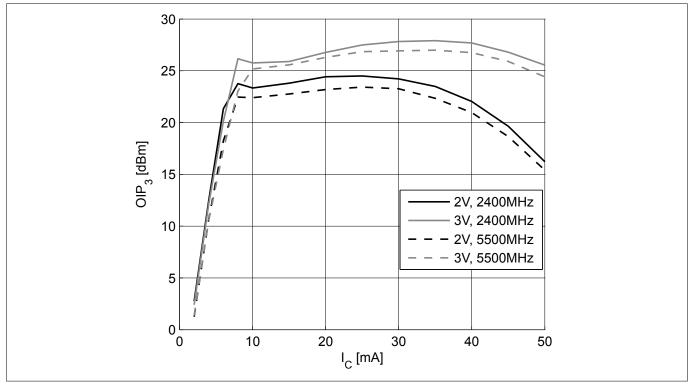
3.5 Characteristic AC diagrams



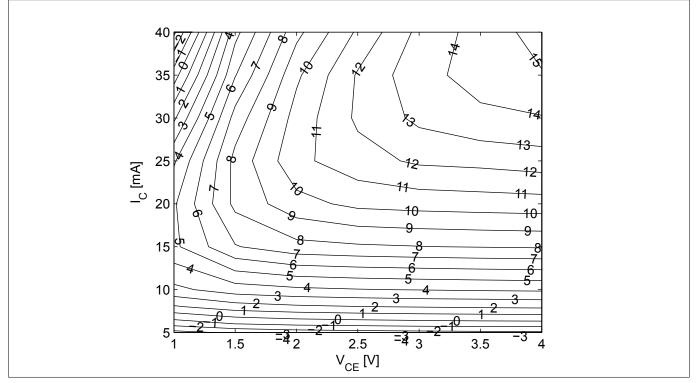

Collector base capacitance $C_{CB} = f(V_{CB}), f = 1 \text{ MHz}$

Datasheet

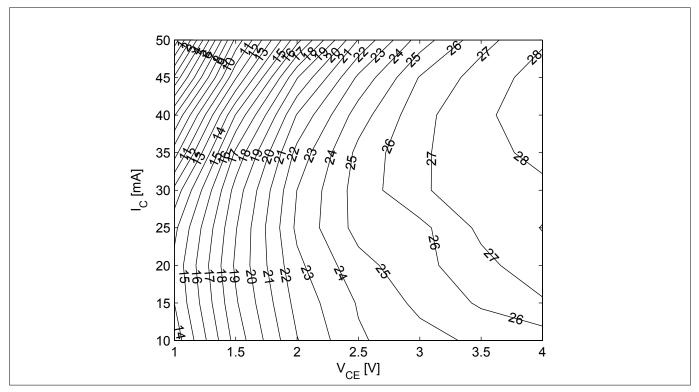




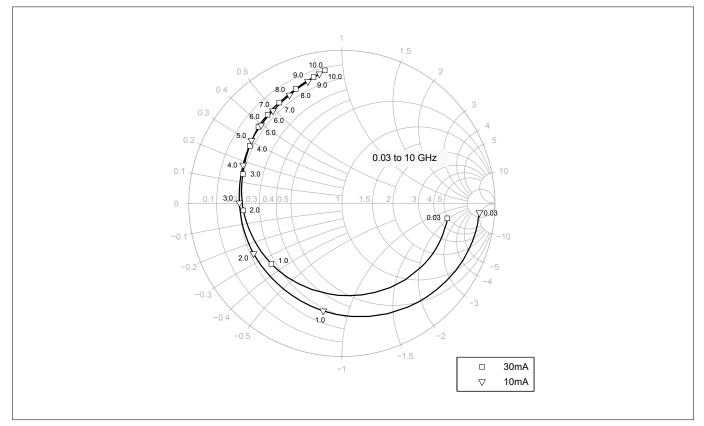
Maximum power gain $G_{max} = f(I_C)$, $V_{CE} = 3 V$, f = parameter in GHz







3rd order intercept point at output $OIP_3 = f(I_C)$, $Z_S = Z_L = 50 \Omega$, V_{CE} , f = parameters



3rd order intercept point at output OIP_3 [dBm] = f(I_C , V_{CE}), $Z_S = Z_L = 50 \Omega$, f = 5.5 GHz

Electrical characteristics

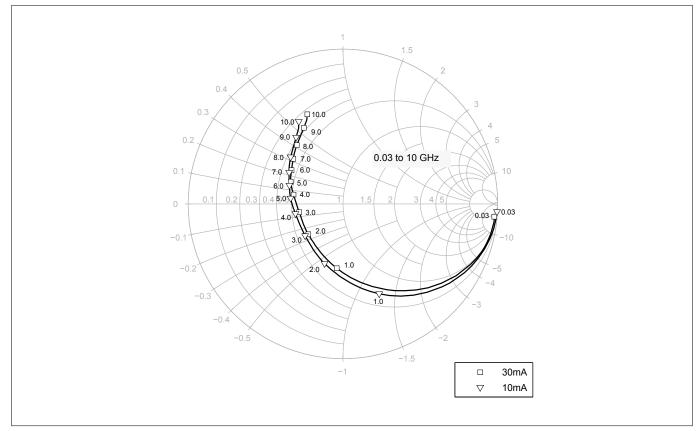
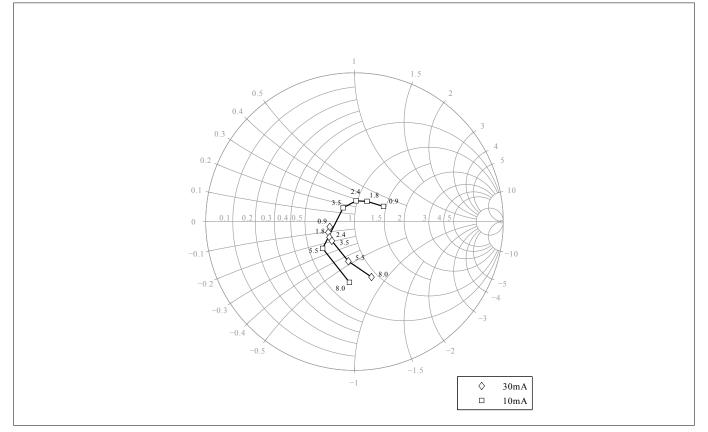
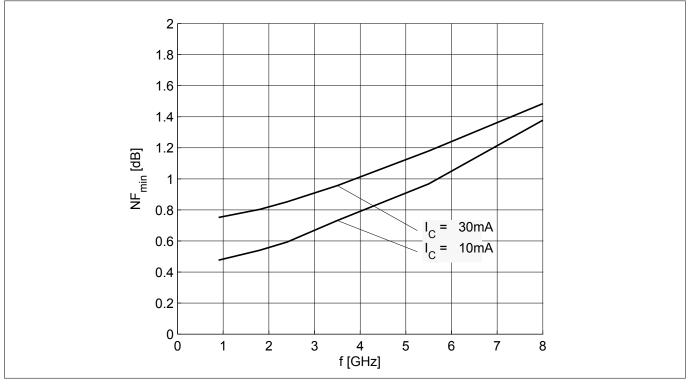
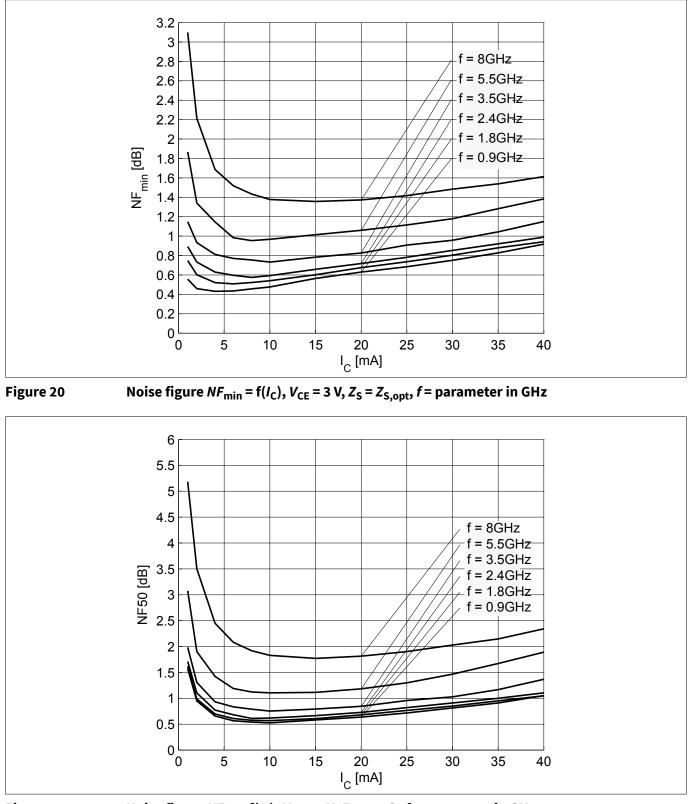
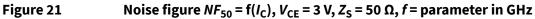



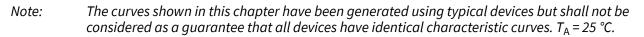
Figure 17


17 Output reflection coefficient $S_{22} = f(f)$, $V_{CE} = 3 \text{ V}$, $I_C = 10 / 30 \text{ mA}$

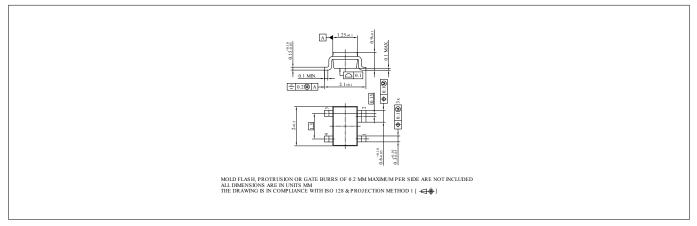
Electrical characteristics





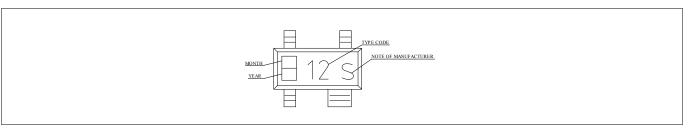

Noise figure $NF_{min} = f(f), V_{CE} = 3 V, Z_S = Z_{S,opt}, I_C = 10 / 30 mA$

Datasheet





Package information SOT343


4 Package information SOT343

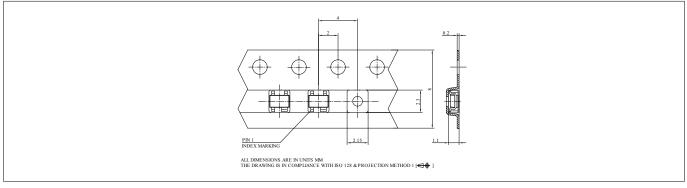

Figure 22 Package outline

Figure 23 Foot print

Figure 24 Marking layout example

Figure 25 Tape dimensions

Revision history

Revision history

Document version	Date of release	Description of changes
2.0	2018-09-26	New datasheet layout.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-09-26 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference IFX-leh1519206637391

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury