General Purpose Transistors

NPN Silicon

BC846ALT1G Series

Features

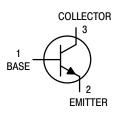
- Moisture Sensitivity Level: 1
- ESD Rating Human Body Model: > 4000 V
 - Machine Model: > 400 V
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC846 BC847, BC850 BC848, BC849	V _{CEO}	65 45 30	Vdc
Collector-Base Voltage BC846 BC847, BC850 BC848, BC849	V _{CBO}	80 50 30	Vdc
Emitter-Base Voltage BC846 BC847, BC850 BC848, BC849	V _{EBO}	6.0 6.0 5.0	Vdc
Collector Current – Continuous	I _C	100	mAdc

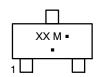
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board, (Note 1) T _A = 25°C Derate above 25°C	P _D	225	mW
Derate above 25°C		1.8	mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate (Note 2) T _A = 25°C	P _D	300	mW
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ hetaJA}$	417	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

- 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = $0.4 \times 0.3 \times 0.024$ in 99.5% alumina.

ON Semiconductor®


www.onsemi.com

SOT-23 CASE 318 STYLE 6

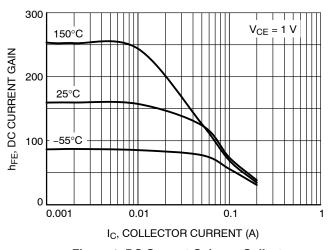
MARKING DIAGRAM

XX = Device Code
M = Date Code*
• Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteris	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector - Emitter Breakdown Voltage (I _C = 10 mA)	BC846A, B, C BC847A, B, C, BC850B, C BC848A, B, C, BC849B, C	V _{(BR)CEO}	65 45 30	- - -	- - -	V
Collector – Emitter Breakdown Voltage ($I_C = 10 \mu A, V_{EB} = 0$)	BC846A, B, C BC847A, B, C BC850B, C BC848A, B, C, BC849B, C	V _(BR) CES	80 50 30	- - -	- - -	V
Collector – Base Breakdown Voltage ($I_C = 10 \mu A$)	•			- - -	- - -	V
Emitter – Base Breakdown Voltage ($I_E = 1.0 \mu A$)	BC846A, B, C BC847A, B, C, BC850B, C BC848A, B, C, BC849B, C	V _{(BR)EBO}	6.0 6.0 5.0	- - -	- - -	V
Collector Cutoff Current (V _{CB} = 30 V) (V _{CB} = 30 V, T _A = 150°C)	I _{CBO}	- -	- -	15 5.0	nA μA	
ON CHARACTERISTICS						
DC Current Gain (I _C = 10 μ A, V _{CE} = 5.0 V)	BC846A, BC847A, BC848A BC846B, BC847B, BC848B BC846C, BC847C, BC848C	h _{FE}	- - -	90 150 270	- - -	-
$(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC846A, BC847A, BC848A BC846B, BC847B, BC848B, BC849B, BC850B		110 200	180 290	220 450	
BC846C, B0		420	520	800		
Collector – Emitter Saturation Voltage ($I_C = (I_C = I_C)$	V _{CE(sat)}	- -	- -	0.25 0.6	V	
Base – Emitter Saturation Voltage (I_C = 10 mA, I_B = 0.5 mA) (I_C = 100 mA, I_B = 5.0 mA)			- -	0.7 0.9	- -	V
Base – Emitter Voltage (I_C = 2.0 mA, V_{CE} = (I_C = 10 mA, V_{CE} = 5	V _{BE(on)}	580 -	660 -	700 770	mV	
SMALL-SIGNAL CHARACTERISTICS						
Current – Gain – Bandwidth Product ($I_C = 10$ mA, $V_{CE} = 5.0$ Vdc, $f = 100$ MHz)			100	_	-	MHz
Output Capacitance (V _{CB} = 10 V, f = 1.0 MI	C _{obo}	-	-	4.5	pF	
Noise Figure (I_C = 0.2 mA, V_{CE} = 5.0 Vdc, R_S = 2.0 k Ω , BC846 f = 1.0 kHz, BW = 200 Hz) BC849	NF	_ _	- -	10 4.0	dB	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

BC846A, BC847A, BC848A, SBC846A

300 150°C VCE = 5 V VCE = 5 V 200 25°C 100 -55°C 0 0.001 0.01 1C, COLLECTOR CURRENT (A)

Figure 1. DC Current Gain vs. Collector Current

Figure 2. DC Current Gain vs. Collector Current

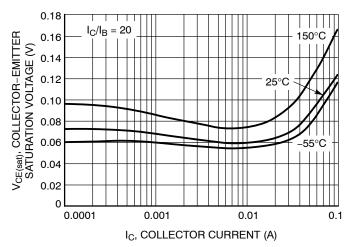


Figure 3. Collector Emitter Saturation Voltage vs. Collector Current

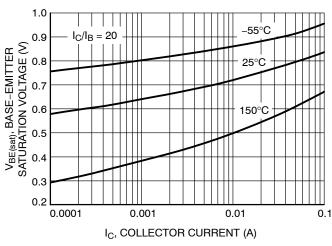


Figure 4. Base Emitter Saturation Voltage vs.
Collector Current

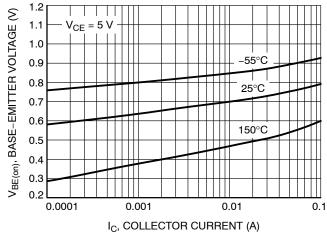
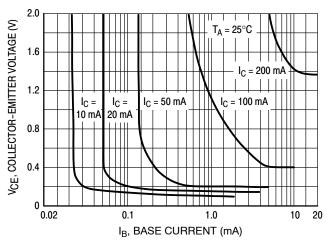



Figure 5. Base Emitter Voltage vs. Collector Current

BC846A, BC847A, BC848A, SBC846A

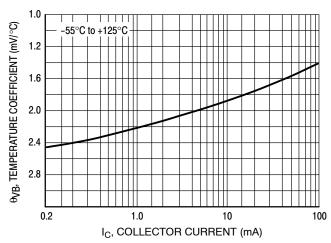


Figure 6. Collector Saturation Region

Figure 7. Base-Emitter Temperature Coefficient

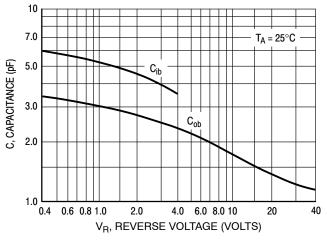


Figure 8. Capacitances

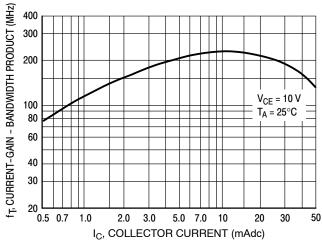


Figure 9. Current-Gain - Bandwidth Product

BC846B, SBC846B

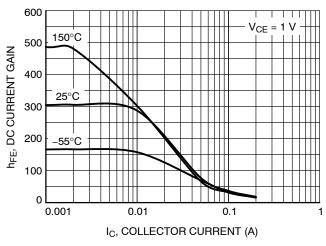


Figure 10. DC Current Gain vs. Collector Current

Figure 11. DC Current Gain vs. Collector Current

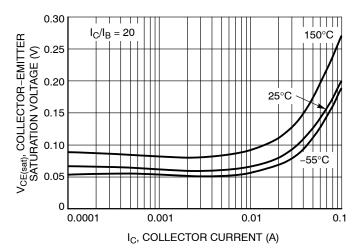


Figure 12. Collector Emitter Saturation Voltage vs. Collector Current

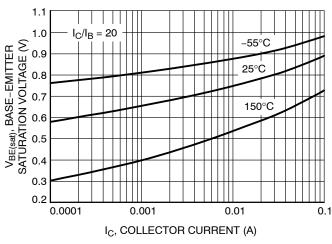


Figure 13. Base Emitter Saturation Voltage vs. Collector Current

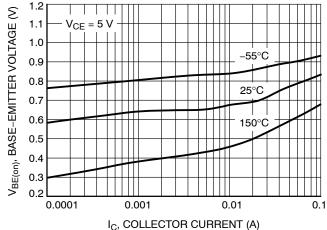
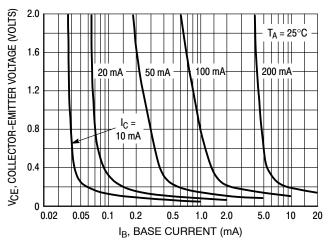



Figure 14. Base Emitter Voltage vs. Collector Current

BC846B, SBC846B

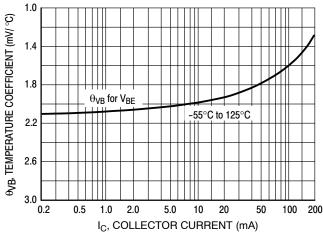


Figure 15. Collector Saturation Region

Figure 16. Base-Emitter Temperature Coefficient

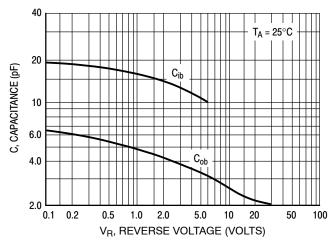


Figure 17. Capacitance

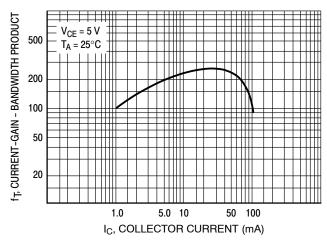
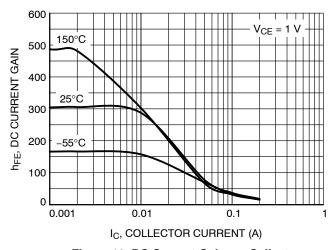



Figure 18. Current-Gain - Bandwidth Product

BC847B, BC848B, BC849B, BC850B, SBC847B, SBC848B

600 $V_{CE} = 5 V$ 150°C 500 h_{FE}, DC CURRENT GAIN 400 25°C 300 200 -55°C 100 0 0.001 0.01 0.1 I_C, COLLECTOR CURRENT (A)

Figure 19. DC Current Gain vs. Collector Current

Figure 20. DC Current Gain vs. Collector Current

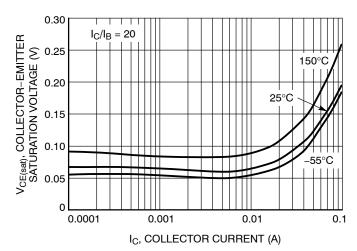


Figure 21. Collector Emitter Saturation Voltage vs. Collector Current

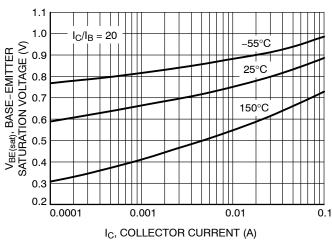


Figure 22. Base Emitter Saturation Voltage vs. Collector Current

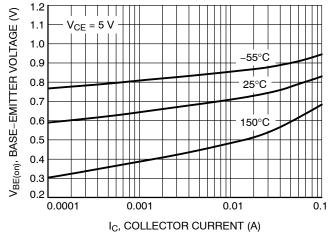
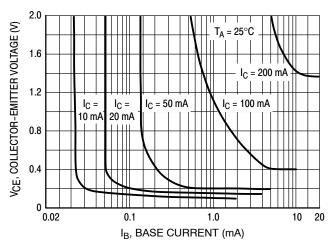



Figure 23. Base Emitter Voltage vs. Collector Current

BC847B, BC848B, BC849B, BC850B, SBC846B, SBC847B, SBC848B

1.0 --55°C to +125°C 1.2 1.6 2.0 2.4 2.8 0.2 1.0 1.0 10 100 I_C, COLLECTOR CURRENT (mA)

Figure 24. Collector Saturation Region

Figure 25. Base–Emitter Temperature Coefficient

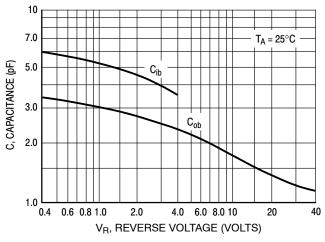


Figure 26. Capacitances

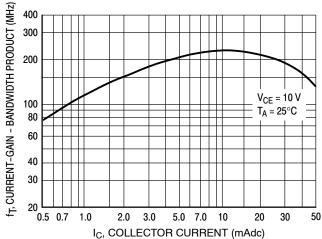
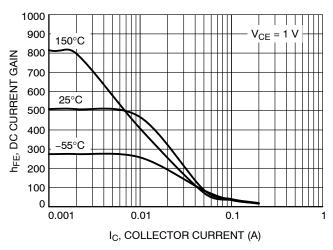



Figure 27. Current-Gain - Bandwidth Product

BC846C, BC847C, BC848C, BC849C, BC850C, SBC847C

1000 900 150°C V_{CE} 800 hFE, DC CURRENT GAIN 700 600 25°C 500 400 -55°C 300 200 100 0.001 0.01 0.1 IC, COLLECTOR CURRENT (A)

Figure 28. DC Current Gain vs. Collector Current

Figure 29. DC Current Gain vs. Collector Current

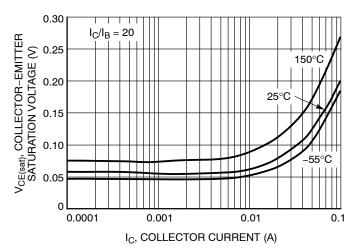


Figure 30. Collector Emitter Saturation Voltage vs. Collector Current

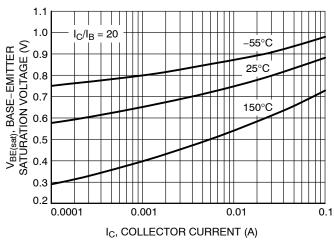


Figure 31. Base Emitter Saturation Voltage vs. Collector Current

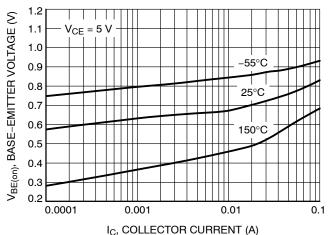
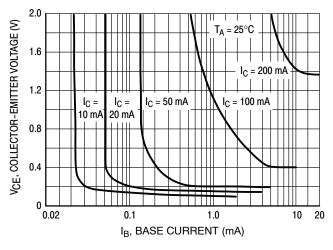



Figure 32. Base Emitter Voltage vs. Collector Current

BC846C, BC847C, BC848C, BC849C, BC850C, SBC847C

1.0 --55°C to +125°C 1.2 1.6 2.0 2.4 2.8 0.2 1.0 1.0 10 100 100 100

Figure 33. Collector Saturation Region

Figure 34. Base–Emitter Temperature Coefficient

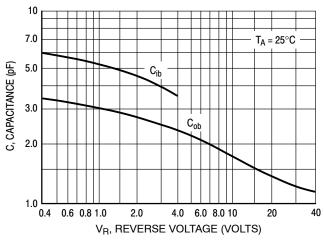


Figure 35. Capacitances

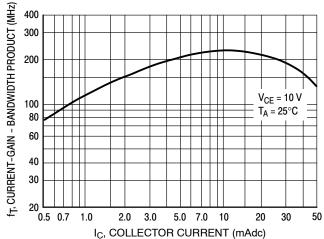


Figure 36. Current-Gain - Bandwidth Product

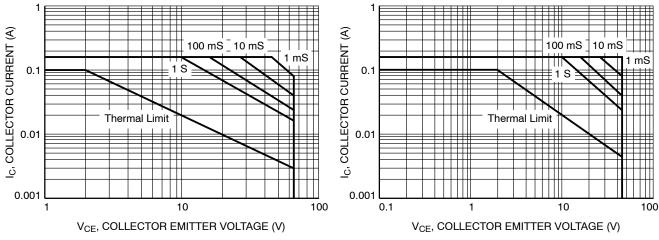


Figure 37. Safe Operating Area for BC846A, BC846B, BC846C

Figure 38. Safe Operating Area for BC847A, BC847B, BC847C, BC850B, BC850C

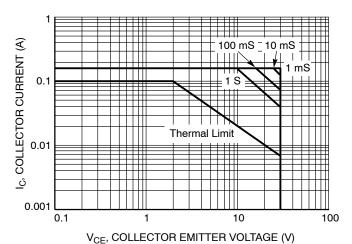
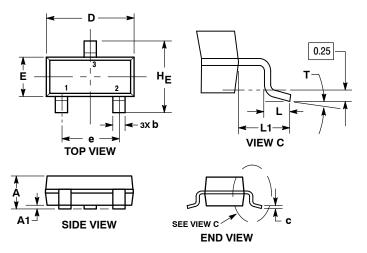


Figure 39. Safe Operating Area for BC848A, BC848B, BC848C, BC849B, BC849C

ORDERING INFORMATION


Device	Marking	Package	Shipping [†]		
BC846ALT1G			3,000 / Tape & Reel		
SBC846ALT1G*	1A				
BC846ALT3G			10,000 / Tape & Reel		
BC846BLT1G			0.000 (7		
SBC846BLT1G*			3,000 / Tape & Reel		
BC846BLT3G	1B		10 000 /T		
SBC846BLT3G*			10,000 / Tape & Reel		
BC846CLT1G	3C		3,000 / Tape & Reel		
BC847ALT1G			3,000 / Tape & Reel		
BC847ALT3G	1E		10,000 / Tape & Reel		
BC847BLT1G					
SBC847BLT1G*			3,000 / Tape & Reel		
BC847BLT3G	1F				
NSVBC847BLT3G*			10,000 / Tape & Reel		
BC847CLT1G		SOT-23 (Pb-Free)			
SBC847CLT1G*	1G		3,000 / Tape & Reel		
BC847CLT3G			10,000 / Tape & Reel		
BC848ALT1G	1J	(. 2	3,000 / Tape & Reel		
BC848BLT1G					
SBC848BLT1G*	1K		3,000 / Tape & Reel		
BC848BLT3G			10,000 / Tape & Reel		
BC848CLT1G			0.000 (T 0. P I		
NSVBC848CLT1G*	1L		3,000 / Tape & Reel		
BC848CLT3G			10,000 / Tape & Reel		
BC849BLT1G			0.000 / Table 9 Park		
NSVBC849BLT1G*	2B		3,000 / Tape & Reel		
BC849BLT3G			10,000 / Tape & Reel		
BC849CLT1G			3,000 / Tape & Reel		
BC849CLT3G	2C		10,000 / Tape & Reel		
BC850BLT1G	oF.				
NSVBC850BLT1G*	2F		2 000 / Terra 9 Daal		
BC850CLT1G	00	1	3,000 / Tape & Reel		
NSVBC850CLT1G*	2G				

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

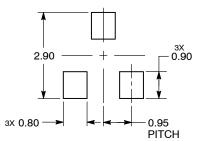
SOT-23 (TO-236) CASE 318-08 **ISSUE AS**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF
- THE BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.


	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	0°		10°	0°		10°

STYLE 6:

BASE

- EMITTER
- COLLECTOR

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

ON Semiconductor Website: www.onsemi.com

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative