

ТАВ

G(1)

DPAK

Figure 1: Internal schematic diagram

D(2,TAB)

S(3)

STD3N95K5AG

Automotive-grade N-channel 950 V, 4.3 Ω typ., 2 A MDmesh[™] K5 Power MOSFET in a DPAK package

Datasheet - production data

Features

Order code	VDS	RDS(on) max.	ΙD	Ptot
STD3N95K5AG	950 V	5.0 Ω	2 A	45 W

- AEC-Q101 qualified
- Industry's lowest R_{DS(on)} x area
- Industry's best FoM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh[™] K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

AM01475V1

Order code	Marking	Package	Packing		
STD3N95K5AG	3N95K5	DPAK	Tape and reel		

HTRB test has been performed at 80% of $V_{(BR)DSS}$ according to AEC-Q101 rev. C. All the other tests have been done according to the AEC-Q101 rev. D.

DocID030664 Rev 1

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	DPAK (TO-252) type A package information	9
	4.2	DPAK (TO-252) packing information	12
5	Revisio	n history	14

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
Vgs	Gate-source voltage	±30	V	
ID	Drain current (continuous) at $T_C = 25$ °C	2	А	
ID	Drain current (continuous) at Tc = 100 °C	1.3	А	
IDM ⁽¹⁾	Drain current pulsed	3	А	
P _{TOT}	Total dissipation at $T_c = 25 \text{ °C}$ 45		W	
dv/dt ⁽²⁾	Peak diode recovery voltage slope	4.5	V/ns	
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns	
Tj	Operating junction temperature range	rating junction temperature range		
T _{stg}	Storage temperature range	-55 to 150 °		

Notes:

⁽¹⁾Pulse width limited by safe operating area.

⁽²⁾ $|_{SD} \le 2$ A, di/dt ≤ 100 A/µs, V_{DS} (peak) $\le V_{(BR)DSS}$

 $^{(3)}\mathsf{V}_{\mathsf{DS}} \leq 760 \; \mathsf{V}$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.78	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb		°C/W

Notes:

⁽¹⁾When mounted on 1 inch² FR-4, 2 Oz copper board

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax} .)	1	А
Eas	Single pulse avalanche energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	50	mJ

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Table 5: On/off-state						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V(BR)DSS	Drain-source breakdown voltage	V_{GS} = 0 V, I_D = 1 mA	950			V
		$V_{DS} = 950 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			1	μA
IDSS	Zero gate voltage drain current	$V_{DS} = 950 \text{ V}, V_{GS} = 0 \text{ V}$ Tc = 125 °C ⁽¹⁾			50	μA
I _{GSS}	Gate body leakage current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 100 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V_{GS} = 10 V, I_D = 1 A		4.3	5.0	Ω

Table 5: On/off-state

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	105	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V	-	9	-	pF
Crss	Reverse transfer capacitance	163 - 0 1	-	0.8	-	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{GS} = 0 V,	-	16	-	рF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	V _{DS} = 0 to 760 V		6	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz open drain	-	16	-	Ω
Qg	Total gate charge	$V_{DD} = 760 \text{ V}, \text{ I}_{D} = 2 \text{ A}$	-	3.4	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	0.9	-	nC
Q _{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	2.2	-	nC

Table 6: Dynamic

Notes:

 $^{(1)} Time$ related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{(2)}\mathsf{E}\mathsf{nergy}$ related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Electrical characteristics

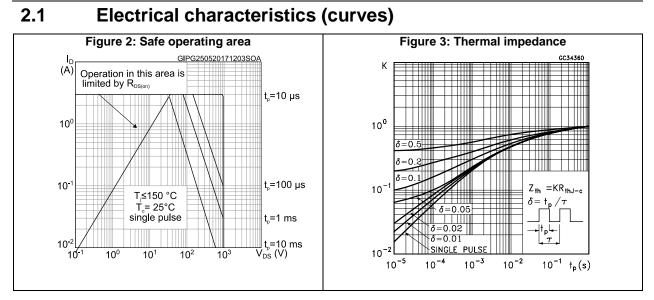
	Table 7: Switching times						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time	$V_{DD}\text{=}~475~V,~I_{D}=1~A,~R_{G}\text{=}~4.7~\Omega$	-	8.5	-	ns	
tr	Rise time	V _{GS} = 10 V	-	13.5	-	ns	
t _{d(off)}	Turn-off delay time	(see Figure 14: "Test circuit for resistive load switching times"	-	20.5	-	ns	
t _f	Fall time	and Figure 19: "Switching times" waveform")	-	32.5	-	ns	

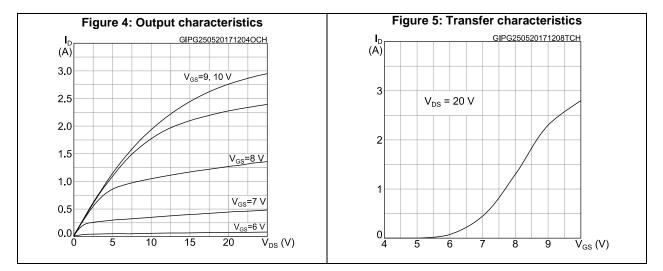
Table 8: Source-drain diode

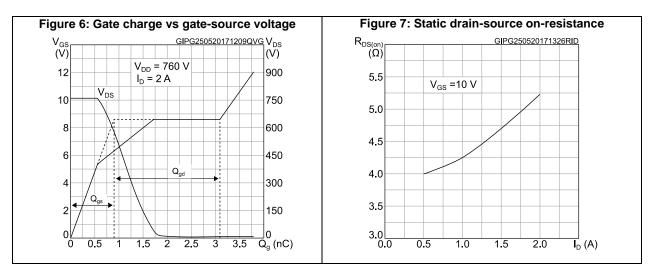
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		2	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		3	А
Vsd ⁽²⁾	Forward on voltage	$I_{SD} = 2 \text{ A}, \text{ V}_{GS} = 0 \text{ V}$	-		1.5	V
trr	Reverse recovery time	$I_{SD} = 2 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	300		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for	-	1.15		μC
Irrm	Reverse recovery current	inductive load switching and diode recovery times")	-	7.6		А
t _{rr}	Reverse recovery time	$I_{SD} = 2 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	525		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{\text{j}} = 150 \text{ °C}$ (see Figure 16: "Test circuit for	-	1.90		μC
Irrm	Reverse recovery current	inductive load switching and diode recovery times")	-	7.2		А

Notes:

 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Pulse}}$ width limited by safe operating area.


 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

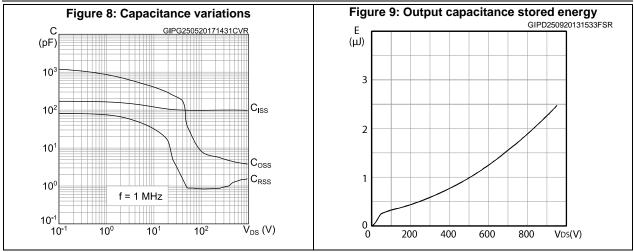

Table 9: Gate-source Zener diode

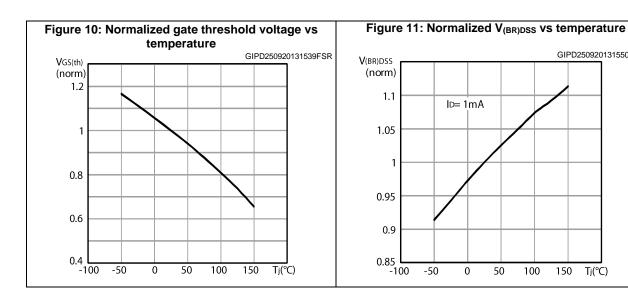

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
V _(BR) GSO	Gate-source breakdown voltage	$I_{GS}=\pm 1$ mA, $I_{D}=0$ A	±30	-	I	V

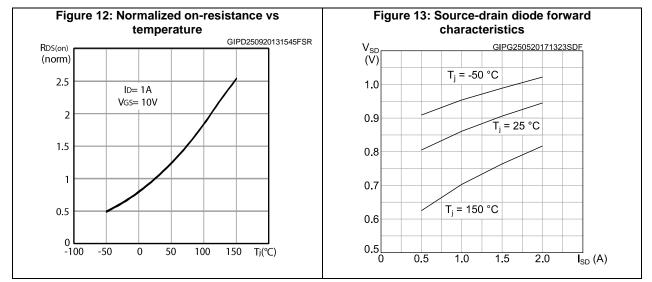
The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

DocID030664 Rev 1

STD3N95K5AG

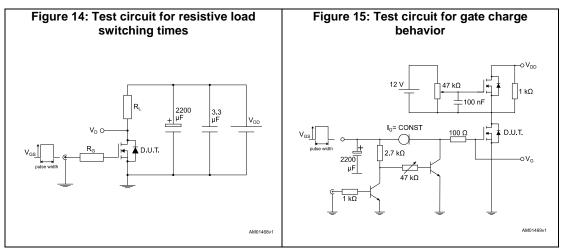

57

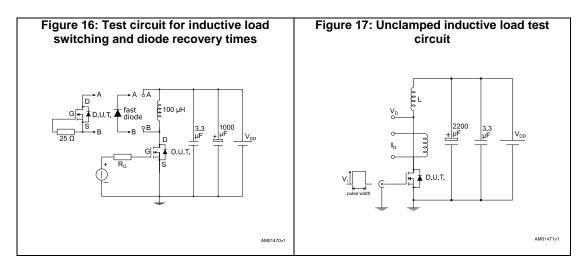

Electrical characteristics

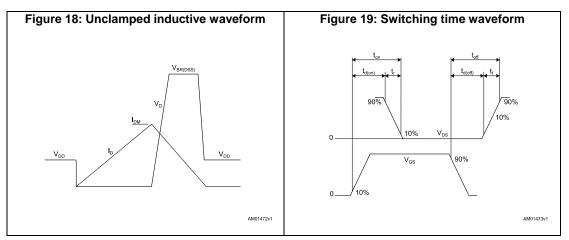

GIPD250920131550FSR

150

Tj(℃)







DocID030664 Rev 1

3 Test circuits

DocID030664 Rev 1

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 DPAK (TO-252) type A package information

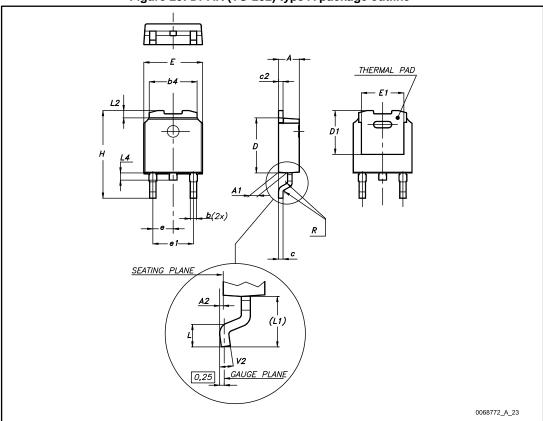
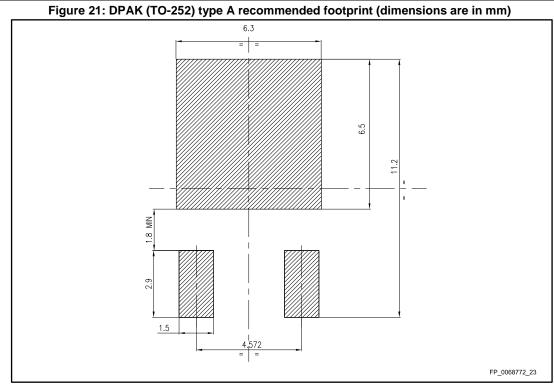
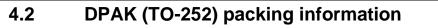


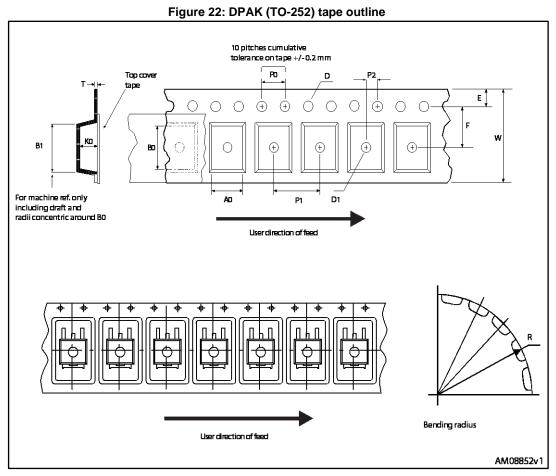
Figure 20: DPAK (TO-252) type A package outline

Package information


STD3N95K5AG

nformation	Table 10: DPAK (TO-252) type A mechanical data						
	Table 10: DPAK (10-25						
Dim.							
-	Min.	Тур.	Max.				
A	2.20		2.40				
A1	0.90		1.10				
A2	0.03		0.23				
b	0.64		0.90				
b4	5.20		5.40				
С	0.45		0.60				
c2	0.48		0.60				
D	6.00		6.20				
D1	4.95	5.10	5.25				
E	6.40		6.60				
E1	4.60	4.70	4.80				
е	2.16	2.28	2.40				
e1	4.40		4.60				
Н	9.35		10.10				
L	1.00		1.50				
(L1)	2.60	2.80	3.00				
L2	0.65	0.80	0.95				
L4	0.60		1.00				
R		0.20					
V2	0°		8°				




STD3N95K5AG

Package information

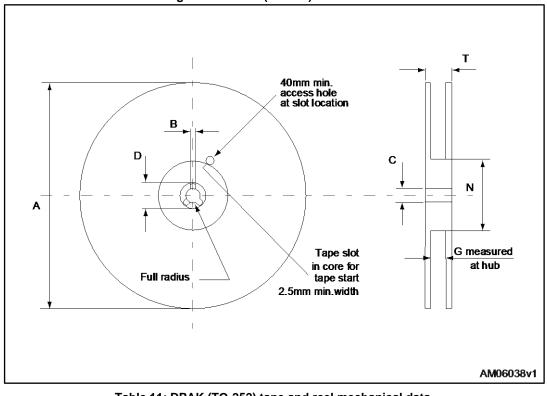


Table 11: DPAK (TO-252) tape and reel mechanical data							
Таре			Reel				
Dim.	mm		Dim	mm			
	Min.	Max.	Dim.	Min.	Max.		
A0	6.8	7	А		330		
B0	10.4	10.6	В	1.5			
B1		12.1	С	12.8	13.2		
D	1.5	1.6	D	20.2			
D1	1.5		G	16.4	18.4		
E	1.65	1.85	N	50			
F	7.4	7.6	Т		22.4		
K0	2.55	2.75					
P0	3.9	4.1	Base qty. 2500		2500		
P1	7.9	8.1	Bulk qty. 2500		2500		
P2	1.9	2.1					
R	40						
Т	0.25	0.35					
W	15.7	16.3					

5 Revision history

Table 12: Document revision history

Date	Revision	Changes
06-Jun-2017	1	First release.

STD3N95K5AG

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STD3N95K5AG