Automotive-grade 12-channel LED driver with open detection, local dimming, bus driven and standalone operations

Maturity status link

ALED1262ZT

Device summary	
Order code	ALED1262ZT
	ALED1262ZTTR
Package	HTSSOP24 exposed pad
Packing	62 parts per tube
	2500 parts per reel

Features

- Designed for automotive applications
- 12 constant current output channels
- 19 V current generator rated voltage
- Output current: from 6 mA to 60 mA
- Current programmable by a single external resistor
- 7-bit PWM local brightness control
- Slow turn-on/off time, gradual output delay and dithered clock for EMI reduction
- Error detection for open LEDs
- Supply voltage: from 5.5 V to 38 V
- Thermal shutdown and overtemperature alert
- Standalone and bus-driven mode
- Custom configuration by OTP with Redundancy and ECC
- 400 kHz fast $\mathrm{I}^{2} \mathrm{C}$ interface with selectable extended Hamming encoding
- Wired-OR error flag connection

Applications

- Automotive rear lights
- Automotive interior lighting

Description

The ALED1262ZT is a monolithic 12 output LED driver designed for automotive exterior and interior lighting applications. The ALED1262ZT guarantees 19 V output driving capability allowing users to connect several LEDs in series. In the output stage, twelve regulated current sources provide from 6 mA to 60 mA constant current to drive LEDs. The current is programmed by a single external resistor. In the ALED1262ZT, LED open error detection is available.
The brightness can be adjusted separately for each channel through a 7-bit grayscale control. A slow turn-on and turn-off time improves the system low noise generation performance. Moreover the gradual output delay reduces the inrush current. To further increase EMI performance, this device implements an internal clock dithering to have a spread spectrum noise reduction.
Thermal management is equipped with overtemperature data alert and the output thermal shutdown ($170^{\circ} \mathrm{C}$). The $\mathrm{I}^{2} \mathrm{C}$ high clock frequency, up to 400 kHz , makes the device suitable for high data rate transmissions. The supply voltage range is between 5.5 V and 38 V avoiding any external pre-regulation or additional load dump protection on the power supply stage.
This device can operate in bus-driven mode (BDM) using $I^{2} \mathrm{C}$ interface or in standalone mode (SAM) using internal custom configuration by OTP.

Figure 1. HTSSOP24 pinout

AMG090320171202MT

Table 1. Pin description

HTSSOP24	Symbol	
1	VDDD	Digital supply terminal
2	SDA	I2 C serial data input terminal
3	SCL	I 2 C clock input terminal
4	VDDA	Analog supply terminal and internal LDO input
5	LDO3	3.3 V internal LDO output
6	R-EXT	Terminal for external resistor for constant current programming
7	GND	Ground terminal
8	FLG	Fault flag: open-drain PMOS output for wired-OR connection
9	GPWM	Global PWM control. To be connected to LDO3 if it is not used
10	PG	Power Good pin. Connect to an external resistor divider to set a proper power supply voltage threshold for detection enabling 11
12	OTP1/2	Digital input for internal OTP register selection
13 to 24	OUT0 to OUT11	Output terminals (low-side current generators)
Exposed pad ${ }^{(1)}$	-	Additional device ground terminal to be connected to pin 7 (GND)

1. The device exposed pad must be connected to GND, moreover it should be soldered directly to a PCB copper area to maximize thermal dissipation.

2 Absolute maximum ratings

Stressing the device above the ratings listed on Table 2. Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {DDA }}$	Analog supply voltage	0 to 40	V
$V_{\text {DDD }}$	Digital supply voltage	0 to 7	
$V_{\text {PG }}$	Power Good pin	-0.3 to 20	
$\mathrm{V}_{\text {GPWM }}$	Global PWM dimming		
$\mathrm{V}_{\text {OTP } 1 / 2}$	OTP register selection		
$\mathrm{V}_{\text {OUT }}$	Output channel voltage		
CS	Chip select and OTP burning		
$V_{1 / O}$	Digital I/O pin: SDA, SCL	-0.5 to $\mathrm{V}_{\text {DDD }}$	
$\mathrm{V}_{\text {LDO3 }}$	LDO3 output voltage	0 to 4.6	
$V_{\text {FLG }}$	I/O flag: FLG	-0.3 to $\mathrm{V}_{\text {DDD }}{ }^{(1)}$	
lo	Output current	70	mA
ESD	Electrostatic discharge protection HBM (human body model)	± 2.0	kV
	Electrostatic discharge protection CDM (charged device model)	± 500	V
	Electrostatic discharge protection CDM (charged device model) for corner pins	± 750	

1. If $V_{D D D}$ is not plugged $A M R$ must be decreased to 3.3 V .

3

Thermal characteristics

Table 3. Thermal characteristics

Symbol	Parameter		Value	Unit
Topr	Operative junction temperature range		-40 to +150	${ }^{\circ} \mathrm{C}$
TstG	Storage ambient temperature range		-55 to +150	
$R_{\text {thj-amb }}$	Thermal resistance junction-ambient	HTSSOP24 ${ }^{(1)}$	$37.5^{(2)}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thj-b }}$	Thermal resistance junction-board		$22.8{ }^{(2)}$	
$\mathrm{R}_{\text {thj-c }}$	Thermal resistance junction-case		$14.6{ }^{(2)}$	

1. The exposed pad must be attached to a metal land electrically connected to ground. To get the thermal benefits it should be soldered directly to a PCB copper area.
2. Jedec test conditions on 2S2P board (4 layers).

Table 4. Electrical characteristics ($\mathrm{V}_{\mathrm{DDA}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}}=5 \mathrm{~V}, \mathrm{Tj}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$V_{\text {DDA }}$	Supply voltage		5.5		38	V
$V_{\text {DDD }}$	Supply voltage		4.5		5.5	
$V_{\text {OUT }}$	Output voltage	OUT0 - OUT11			19	
V_{H}	SDA, SCL digital thresholds	$V_{\text {DDD }}$ plugged	$0.7 \cdot V_{\text {DDD }}$		$\mathrm{V}_{\text {DDD }}$	
$\mathrm{V}_{\text {IL }}$			-0.5		$0.3 \cdot V_{\text {DDD }}$	
$\mathrm{V}_{\mathrm{H} 2}$	FLG digital input threshold with $V_{\text {DDD }}$ not active			1.70	1.90	
$\mathrm{V}_{\text {IL2 }}$			1.30	1.45		
V12_Hys	FLG hysteresis			0.25		
V_{1+3}	GPWM threshold	V DDA plugged			2.00	
$\mathrm{V}_{\text {IL3 }}$			1.70			
$\mathrm{V}_{\mathrm{IH} 4}$	OTP1/2 threshold				1.90	
$\mathrm{V}_{\text {IL4 }}$			1.30			
$\mathrm{V}_{\text {IH5 }}$	PG threshold			1.9	2.00	
$\mathrm{V}_{\text {IL5 }}$			1.70	1.8		
$\mathrm{V}_{15 \text { _Hys }}$	PG hysteresis			0.1		
RCs	CS pull-down			160		$\mathrm{k} \Omega$
l_GPWM	GPWM pin input current	$\mathrm{V}_{\text {GPWM }}=\mathrm{GND}$ or 2 V	-1		+1	
l_OTP1/2	OTP1/2 pin input current	$\mathrm{V}_{\text {OTP } 1 / 2}=\mathrm{GND}$ or 2 V	-1		+1	$\mu \mathrm{A}$
lıPG	PG pin input current	$\mathrm{V}_{\mathrm{PG}}=\mathrm{GND}$ or 2 V	-1		+1	
lol_sda	SDA sink current	$\mathrm{V}_{\text {DDD }}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3			mA
loL_SCL	SCL sink current	$\mathrm{V}_{\text {DDD }}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3			
$I_{\text {Dleak }}$	SDA, SCL leakage current	$\mathrm{V}_{\mathrm{l}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{DDD}}$	-10		+10	
Ioleak	Output channel leakage current	$\mathrm{V}_{\text {OUT }}=19 \mathrm{~V}$, all outputs OFF			0.5	
$\mathrm{lOH}_{\text {_flg }}$	FLG source current	$\mathrm{V}_{\text {DDD }}$ plugged $\mathrm{VOH}=\mathrm{V}_{\text {DDD }}-0.4 \mathrm{~V}$	3			
		$V_{\text {DDD }}$ not plugged $\mathrm{VOH}=\mathrm{V}_{\mathrm{LDO}}-0.4 \mathrm{~V}$				mA
V UVLO	$\mathrm{V}_{\text {DDA }}$ UVLO threshold (falling)		1.7	1.85		V
$\mathrm{V}_{\text {G_EN }}$	Global_EN $V_{\text {DDA }}$ threshold (rising)	GPWM = LDO3		3.8	4.0	
	Global_EN $V_{\text {DDA }}$ threshold (falling)		3.40	3.6		
$\mathrm{H}_{\text {G_EN }}$	Global_EN hysteresis			0.2		
$\mathrm{V}_{\text {ref }}$	$\mathrm{R}_{\text {EXT }}$ reference voltage			1.233		
$\mathrm{V}_{\text {LDO }}$	LDO3 output voltage	External maximum load current: $l_{\text {load }}=200 \mu \mathrm{~A}$	3.231	3.328	3.428	
ILDo	LDO short-circuit output current	$\mathrm{V}_{\mathrm{DDA}}=5.5 \mathrm{~V}$		110		mA

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit	
$\Delta_{\text {IOL1 }}$	Output current precision channel to channel (all outputs ON)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.65 \mathrm{~V} ; \mathrm{R}_{\mathrm{EXT}}=49.9 \mathrm{k} \Omega ; \\ & \mathrm{IO} \approx 6 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}} \leq 90^{\circ} \mathrm{C} ; \text { (outage) } \end{aligned}$			± 15	\%	
$\Delta_{\text {IOL2 }}$		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=1.05 \mathrm{~V} ; \mathrm{R}_{\mathrm{EXT}}=24.9 \mathrm{k} \Omega ; \\ & \mathrm{I}_{\mathrm{O}} \approx 12 \mathrm{~mA} ; \text { (outage) } \end{aligned}$			± 10		
$\Delta_{\text {IOL3 }}$		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=1.35 \mathrm{~V} ; \mathrm{R}_{\mathrm{EXT}}=4.99 \mathrm{k} \Omega ; \\ & \mathrm{I}_{\mathrm{O}} \approx 60 \mathrm{~mA} \text { (outage) } \end{aligned}$			± 3		
$\Delta_{\text {IOL2a }}$	Output current precision device to device (all outputs ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=1.35 \mathrm{~V} ; \mathrm{R}_{\mathrm{EXT}}=4.99 \mathrm{~K} \Omega ; \\ & \mathrm{I}_{\mathrm{O}} \approx 60 \mathrm{~mA} ; \text { (outage) } \end{aligned}$			± 6		
\%/dV ${ }_{\text {Out }}$	Output current vs output voltage regulation	$V_{\text {Out }}$ from 1.35 V to 3.35 V ; $\mathrm{R}_{\mathrm{EXT}}=4.99 \mathrm{k} \Omega ; \mathrm{I}_{\mathrm{O}} \approx 60 \mathrm{~mA}$		0.1		\|\%/V	
$\mathrm{R}_{\text {EXt }}$	External current set-up resistance		4.99		49.9	k Ω	
IdDD	$V_{\text {DDD }}$ supply current no dimming	$\mathrm{R}_{\mathrm{EXT}}=4.99 \mathrm{k} \Omega$ No $I^{2} \mathrm{C}$ data transfer OUT0 to 11 = ON (outage)		0.7	1.0	mA	
IdDA(OFF)	$V_{\text {DDA }}$ supply current (OFF) $G P W M=G N D$	$\mathrm{R}_{\mathrm{EXT}}=4.99 \mathrm{k} \Omega ;$ OUTO to 11 = OFF		0.3	0.6		
IDDA(ON1)	$V_{\text {DDA }}$ supply current (ON) no dimming	$\mathrm{R}_{\mathrm{EXT}}=24.9 \mathrm{k} \Omega ; \mathrm{l}_{\mathrm{O}} \approx 12 \mathrm{~mA} ;$ OUTO to $11=\mathrm{ON}$ (outage)		2	2.5		
IdDa(ON2)	$V_{\text {DDA }}$ supply current (ON) no dimming	$\mathrm{R}_{\mathrm{EXT}}=4.99 \mathrm{k} \Omega ; \mathrm{I}_{\mathrm{O}} \approx 60 \mathrm{~mA}$ OUTO to $11=\mathrm{ON}$ (outage)		4	5.5		
$\mathrm{I}_{\mathrm{DDA}(\mathrm{REC})}$	VDDA supply current	$\mathrm{R}_{\mathrm{EXT}}=4.99 \mathrm{k} \Omega ;$ SAM recovery condition			1.2		
Tfig	Thermal flag			140		${ }^{\circ} \mathrm{C}$	
T fig-hy	Thermal flag hysteresis			10			
$\mathrm{T}_{\text {sd }}$	Thermal shutdown			170			
$\mathrm{T}_{\text {sd-hy }}$	Thermal shutdown hysteresis			15			

1. Tested with just one output loaded.
2. $\left(\left(I_{\text {On }}-I_{\text {Oavg1-12 }}\right) / I_{\text {Oavg1-12 }}\right) \times 100$
3.

$$
\Delta(\% / V)=\frac{\left(I_{\text {On }} @ V_{\text {OUTn }}=3.35 \mathrm{~V}\right)-\left(I_{\text {On }} @ V_{\text {OUTn }}=1.35 \mathrm{~V}\right)}{\left(I_{\text {On }} @ V_{\text {OUTn }}=1.35 V\right)} \cdot \frac{100}{3.35-1.35}
$$

4.1 Switching characteristics

Table 5. Switching characteristics ($\mathrm{V}_{\mathrm{DDA}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}}=5 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{f}_{\text {SCL }}$	$1^{2} \mathrm{C}$ clock frequency		100		400	kHz
$\mathrm{f}_{\text {PWM }}$	GPWM frequency				500	Hz
$t_{\text {PWM }}$	Output minimum $t_{\text {on }}$ by GPWM	$\mathrm{GPWM}_{\text {HIGH }}=20 \mu \mathrm{~s}$	5			$\mu \mathrm{s}$
$\mathrm{f}_{\text {PWM_local }}$	Local dimming frequency ${ }^{(1)}$		200	220	240	Hz
tPWM_local	Local dimming minimum $t_{\text {on }}$			5		$\mu \mathrm{s}$
${ }^{\text {(}}$ (SP)	Pulse width of spikes that must be suppressed by the input filter				50	ns
${ }^{\text {(}}$ (BUF)	Bus free time between a STOP and START condition		1.3			$\mu \mathrm{s}$
$\mathrm{t}_{\text {pd(ACK) }}$	SCL low to data out valid (acknowledge)				0.9	
t Low	SCL low time		1.3			
$\mathrm{t}_{\text {HIGH }}$	SCL high time		0.6			
$\mathrm{t}_{\text {su(DAT) }}$	SDA / SCL set-up time		100			ns
$\mathrm{t}_{\text {su (STA) }}$	Set-up time for START condition		600			
$\mathrm{t}_{\text {su(STO) }}$	Set-up time for STOP condition		600			
$t_{\text {(}}$ (DAT)	Data input hold time				900	
$\mathrm{th}_{\text {(STA) }}$	START condition hold time		600			
t_{r}	Rise time both of SDA and SCL signals		20		300	
t_{f}	Fall time both of SDA and SCL signals		20		300	
$t_{\text {on }}$	Output current turn-on time	$\begin{aligned} & \mathrm{R}_{\mathrm{EXT}}=4.99 \mathrm{k} \Omega \mathrm{I}_{\mathrm{O}}=60 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DROP}}=1.35 \mathrm{~V} \\ & \mathrm{RL}=50 \Omega \mathrm{CL}=10 \mathrm{pF} \end{aligned}$		1.7		$\mu \mathrm{s}$
$t_{\text {off }}$	Output current turn-off time			1.4		
$t_{\text {n-reg }}$	Delay time from global_EN to output current regulation ($\mathrm{V}_{\text {LED }}$ is enough for regulation)	$\begin{aligned} & \mathrm{R}_{\mathrm{EXT}}=4.99 \mathrm{k} \Omega \mathrm{I}_{\mathrm{O}}=60 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DROP}}=1.35 \mathrm{~V} \\ & \mathrm{RL}=50 \Omega \mathrm{CL}=10 \mathrm{pF} \end{aligned}$			60	$\mu \mathrm{s}$
$t_{\text {n-err }}$	Delay time from PG to output error detection				70	

1. Using prescaler bit (Faulty_ch_1 register bit[7]) local dimming frequency value can be reduced by half (typ. $=110 \mathrm{~Hz}$)

Figure 2. $I^{2} \mathrm{C}$ timing definition

Figure 3. Simplified internal block diagram

5 Device pin functions

Note:	The CS pin cannot be connected to GND, neither directly nor through passive components. The only allowed polarization is floating or positive voltage (up to 15 V).
	$\mathrm{V}_{\text {DDD }}$ - digital power supply coming from MCU section together with $I^{2} \mathrm{C}$ bus. When $\mathrm{V}_{\text {DDD }}$ is below a threshold of about 2.9 V (typ. falling) or 3.0 V (typ. rising) the device goes automatically to SAM. Besides, providing the digital power supply $\mathrm{V}_{\text {DDD }}$ only ($\mathrm{V}_{\text {DDA }}$ not connected), the device $I^{2} \mathrm{C}$ bus is active and internal registers can be programmed, the only restriction is related to $\mathrm{V}_{\text {DDA }}$ impedance to GND that must be higher than $4.7 \mathrm{k} \Omega$. In case of a lower impedance, the device digital interface starts on the first $\mathrm{V}_{\text {DDA }}$ voltage rising edge. The allowed slew rate for this pin is below $0.17 \mathrm{~V} / \mu \mathrm{s}$ (0 to $5 \mathrm{~V} ; 30 \mu \mathrm{~s} \leq \mathrm{t}_{\text {rise }}$).
Note:	Fast $V_{D D D}$ edges can cause internal regulator overvoltage spikes that may provoke electrical stresses in the device.
	$\mathbf{V}_{\text {DDA }}$ - analog power supply coming from car body system. This is the main supply voltage for the driver and it can be dimmed to change LED brightness (100 or 200 Hz at 10% as minimum duty cycle, $\mathrm{V}_{\text {DDA }}=0$ to 12 V). Allowed slew rates for this pin are the following: from 0.4 to $1.2 \mathrm{~V} / \mu \mathrm{s}\left(0\right.$ to $12 \mathrm{~V} ; 10 \mu \mathrm{~s} \leq \mathrm{t}_{\text {rise/fall }} \leq 30 \mu \mathrm{~s}$) in normal operation, from 6.8 to $8.4 \mathrm{~V} / \mathrm{ms}$ for load dump conditions.
Note:	If the $I^{2} \mathrm{C}$ is programmed to only provide the digital power supply $V_{D D D}\left(V_{D D A}\right.$ not connected), a subsequent $V_{D D A}$ plug or unplug with edges faster than those allowed (trise/fall $<10 \mu \mathrm{~s}$) may induce the internal register reset.
	LDO3 - internal regulator output pin to be connected to an external capacitor (minimum value $1 \mu \mathrm{~F}$). The output voltage is about $3.3 \mathrm{~V} \pm 3 \%$ and it is used as an external reference voltage and the device internal supply. The capacitor connected on this pin is also used as "tank capacitor" to maintain internal volatile register data during $V_{\text {DDA }}$ pulsed dimming function (if required).

$\mathbf{R}_{\text {EXT }}$ - this resistor is used to program the regulated output current. The relationship between $\mathrm{R}_{\text {EXT }}$ value and the output current is given by the following equation:

$$
I_{O x}=\frac{V_{B G}}{R_{E X T}} \cdot K
$$

The current gain factor " K " is about 240 . The $V_{B G}$ voltage is normally at 1.233 V used to get the reference current trough R-EXT pin; this current is mirrored by a precise circuit to generate the reference for the driver stage. On REXT pin, any filter capacitor can be connected.
GND - ground pin, it must be connected to a package exposed pad. Exposed pad should be soldered directly to the PCB to see the thermal benefits (see the device thermal management section).
GPWM - a variable duty cycle square wave on this pin allows all channels brightness to be fixed simultaneously (PWM global dimming). If this pin is not used, it must be connected to LDO3. GPWM control requires a square wave with a HIGH level longer than $20 \mu \mathrm{~s}$ caused by a $15 \mu \mathrm{~s}$ delay needed to power on all internal blocks before the channel activation. With $20 \mu \mathrm{~s}$ HIGH level, the real output activation is around $5 \mu \mathrm{~s}$. The maximum allowed slew-rate on this pin is $1.9 \mathrm{~V} / \mathrm{\mu s}$.
OUTx - the ALED1262ZT has 12 current regulated low-side outputs. The output stage is a sinker, which is able to stand till 19 V , this is to use more than one LED series connected. The internal current generator turn-on and turnoff time has been slowed down to decrease as much as possible EMI noise.
FLG - this is the fault flag I/O pin used in wired-OR among those devices sharing the same application. In wiredOR connection, all FLG pins are connected together to a single pull-down resistor, this signal can also be read by an MCU to detect any fault condition. If the device receives an external error status, it reacts according to the internal configuration (see Section 13.1 BDM_conf_1 / Enable_CH_1 register, Section 13.2 BDM_conf_2 /

Enable_CH_2 register and Section 13.11 OTP/BA_n_SAM_setting register). This pin can be configured by setting internal registers and may combine error detection results and the overtemperature protection. The devices sharing the same FLG line must have the same supply domain. Different supply domains on the same FLG bus need to be managed externally according to the used voltage level (i.e., level shifter).
As soon as one device forces current on the external pull-down resistor ($\mathrm{R}_{\mathrm{FLG}}$) through the integrated high-sides, the digital information is generated. The internal high-side pull-up is connected to two different power lines to get the correct voltage level according to the external configuration:

- $\quad \mathrm{V}_{\mathrm{DDD}}$ is plugged: an internal high-side transistor is connected to the $\mathrm{V}_{\mathrm{DDD}}(5 \mathrm{~V})$. In this case the high level on FLG pin/bus is forced to $V_{\text {DDD }}$ and it is compliant to fault information coming directly from the MCU as well.
- $\quad \mathrm{V}_{\mathrm{DDD}}$ is not plugged: a high-side transistor is connected to the internal regulated voltage 3 V 3 (LDO3). In this case there is not any external interrupt coming from MCU to be managed ($5 \mathrm{~V} \mathrm{~V}_{\mathrm{DDD}}$ is not available). The voltage level is among chips connected to the same power domain.

The power line selection for the FLG analog MUX is a matter of $V_{D D D}$ comparator used to detect the $V_{D D D}$ plugin.

Figure 4. FLG pin connection

In case of dimming functions and FLG pin at high logic level due to one output in open condition (and/or thermal shutdown and/or $\mathrm{R}_{\mathrm{EXT}}$ short), FLG behavior is different according to running dimming mode:

- Faulty channel, dimming by GPWM pin: FLG blinks according to GPWM external square wave and error detection conditions.
- Faulty channel, dimming by PWM register (BDM): FLG is constantly high according to the error detection conditions.

PG - this pin is the LED driver Power Good, it must be connected by a proper resistor divider to the main voltage coming from car body system ($V_{\text {DDA }}$) or to LED power supply. Starting from the internal threshold overcoming (above 1.95 V), the ALED1262ZT has a valid detection available in less than $70 \mu \mathrm{~s}$. The maximum allowed slewrate on this pin is $1.9 \mathrm{~V} / \mu \mathrm{s}$.
OTP1/2 - in standalone mode, it is possible to select two possible output configurations. Each configuration is stored in non-volatile cells (shadowed by SAM_conf_* registers). This pin can be also connected to a switched voltage coming from car body system ($\mathrm{V}_{\mathrm{DDA}} 3$) by a resistor divider. When OTP1/2 is at logic level LOW, output configurations are related to SAM_conf_1 register. Conversely, when OTP $1 / 2$ is at logic level HIGH, output configurations are related to SAM_conf_2 register (see register description for more details). The maximum allowed slew-rate on this pin is $1.9 \mathrm{~V} / \mu \mathrm{s}$.

In order to correctly regulate the channel current, a minimum output voltage ($\mathrm{V}_{\mathrm{DROP}}$) across each current generator must be guaranteed.
Figure 5. Channel dropout voltage vs output current $\left(T j=25^{\circ} \mathrm{C}\right)$, Table 6. Minimum dropout voltage for certain current values ($\mathrm{Tj}=25^{\circ} \mathrm{C}$; worst case simulated at target minus 3%) and Table 7 . Minimum dropout voltage at 60 mA (worst case simulated at target minus 3%) show the minimum slightly less than the target value (output MOS transistor in triode region); these measurements have been recorded with just one output ON. When more than one output is active, the drop voltage increases. At 60 mA per channel, all channels ON , output voltage must be increased by about 110 mV (worst case at $\mathrm{Tj}=125^{\circ} \mathrm{C}$). If the $\mathrm{V}_{\mathrm{DROP}}$ is lower than the minimum recommended, the regulation of a current is lower than the expected one. However an excess of $V_{\text {DROP }}$ increases the power dissipation.

Figure 5 . Channel dropout voltage vs output current $\left(\mathbf{T j}=25^{\circ} \mathrm{C}\right)$

Table 6. Minimum dropout voltage for certain current values $\left(\mathrm{Tj}=25^{\circ} \mathrm{C}\right.$; worst case simulated at target minus 3\%)

Target output current [mA]	V $_{\text {DROP }}$ [mV]
6	100
12	140
20	200
40	350
60	510

Table 7. Minimum dropout voltage at 60 mA (worst case simulated at target minus $\mathbf{3 \%}$)

Tj [${ }^{\circ} \mathrm{C}$]	$\mathrm{V}_{\text {DROP }}$ [mV]
125	630
25	510
-40	440

Table 8. Typical output current vs $\mathrm{R}_{\mathrm{EXT}}$ value

lout target value (mA)	$R_{\text {EXT }}$ calculated value ($\left.\Omega\right)$	$R_{\text {EXT }}-\mathrm{E96}^{\mathbf{1 \%}}$ nearest commercial value (Ω)
6	49360	49900
12	24680	24900
15	19744	19600
20	14808	14700
25	11846	11800
30	9872	9760
35	8462	8450
40	7404	7320
45	6581	6650
50	5923	5900
55	5385	5360
60	4936	4990

7

 Device functional descriptionThe ALED1262ZT has been designed to be very flexible so to meet application needs. In a very basic connection, the ALED1262ZT is supplied only by $\mathrm{V}_{\text {DDA }}$ pin (with a continuous voltage), and a resistor connected between REXT pin and GND (placed as near as possible to the device) programs the current sunk from outputs, GPWM is not used (to LDO3) and output channels connected to external LED cathodes.

Figure 6. ALED1262ZT typical connection scheme

Furthermore, the Power Good pin (PG) can be connected to an external resistor divider. This divider supplied by $\mathrm{V}_{\text {LED }}$ provides the internal trigger signal when $\mathrm{V}_{\text {LED }}$ has a value enough for the device current regulation and consistent error detection. Fault flag pin (FLG) can be floating or connected to a pull-down resistor or in a wiredOR configuration to all FLG pins of additional devices sharing the same application. LDO3 is the internal regulator output supplied by $\mathrm{V}_{\mathrm{LED}}$, the output voltage is 3.3 V and it is used as the device internal block supply and, if necessary, as external reference voltage.
By changing the external circuit, more and more functions of the device can be used. The ALED1262ZT in a full feature configuration is connected using the $I^{2} \mathrm{C}$ interface and OTP1/2 output configurations as fail-safe recovery in case of bus accidental disconnection (see the following diagram).

Figure 7. The ALED1262ZT full connection

(*) Any de-rating included

On all applications where LEDs are dimmed using the main power line (VBAT1 on schematic) it's mandatory to rectify the $\mathrm{V}_{\mathrm{DDA}}$ voltage to supply the device. In this condition GPWM pin must be connected, by a resistor divider, to the power line (on VBAT1 before rectifier diode) to allow channels to switch off during main power supply dimming falling edge. For right operations, resistor dividers must be calculated to have GPWM threshold lower than Power Good (PG) threshold. The placement of external capacitors and minimum capacitance values are always mandatory, in this particular case they are essential for the device steady setup (see "component typical selection" table).
As mentioned, the ALED1262ZT has been designed to work in two possible application architectures: standalone mode (SAM) and bus-driven mode (BDM). Some details about these two operation modes are the following:
SAM - In standalone mode configuration, the device is not connected to an MCU or a controller board so ${ }^{2} \mathrm{C}$ bus leaves floating (SDA, SCL pins). In this condition, $\mathrm{V}_{\text {DDD }}$ is not supplied and an internal comparator senses this pin to set properly the device and to release the $I^{2} \mathrm{C}$ bus.
In this mode, the device refers to four internal registers mimic the content of non-volatile memory: SAM_conf_1, SAM_conf_2, SAM_conf_1_2 and BA_n_SAM_setting. In the rest of the document we can refer to these registers as non-volatile registers, just for sake of simplicity. SAM_conf_x represent the output ON/OFF status in two possible configurations that can be selected on the application by OTP1/2 pin. Error detection system is adequate to the activated outputs.
According to BA_n_SAM_setting register, the device runs continuously an error detection indicating, if required, the error status to all other devices connected on the same board by fault flag chain. All these four registers can be preset during - one time programming phase - at the end of customer production line using the chip-select pin (CS - see OTP programming section).
BDM - In bus-driven mode configuration, the device is connected to an MCU or to a controller board, so $I^{2} \mathrm{C}$ bus is active. $\mathrm{V}_{\mathrm{DDD}}$ is also supplied in this condition and an internal comparator senses this voltage to switch
automatically to SAM in case of bus unintentional disconnection. In this mode, we refer to one non-volatile register and six volatile registers:

- Non-volatile - BA_n_SAM_setting register, it is programmed during one time programming phase, using chip-select pin (CS - see OTP programming section).
- Volatile - BDM_conf 1 and 2, BDM_status, Faulty_ch 1 and 2, PWM_gain registers.

BA n_SAM setting register sets the device $I^{2} \mathrm{C}$ address on 31 possible selections (all zeros is valid only for fresh devices) and the communication protection mode; BDM_conf 1 and 2 set the output ON/OFF status; BDM_conf 1 also contains information about the error detection device behavior, diagnostic function and local dimming activation; BDM_status contains information about the diagnostic results, thermal protection and general driver status; Faulty_ch 1 and 2 contain indications about branches in which a fault is detected; PWM_gain represents the dimming value for each of 12 outputs (for more details see register description paragraph). Through bit BDM_Flag of the BDM_conf_1 register, we can force the device from SAM to BDM according to the following table:

Table 9. Operative status

$\mathrm{V}_{\text {DDA }}$	$\mathrm{V}_{\text {DD }}$	BDM_FLAG	STATUS	Notes
OFF	OFF	X	OFF	The device is not supplied
OFF	ON	0	SAM	Analog part is OFF but the current regulation can be re-established quickly as soon as $V_{\text {DDA }}$ is plugged and output configuration is related to SAM OTP registers, I ${ }^{2} \mathrm{C}$ registers are accessible
OFF	ON	1	BDM	Analog part is OFF but the current regulation can be re-established quickly as soon as $V_{\text {DDA }}$ is plugged and output configuration is related to BDM registers, $I^{2} \mathrm{C}$ registers are accessible
ON	OFF	0	SAM	Analog part is active and the output configuration is related to SAM_conf_* registers (OTP), $I^{2} \mathrm{C}$ registers are supplied, $I^{2} \mathrm{C}$ module is OFF
ON	OFF	1	SAM	BDM_FLAG is reset and the device comes back on the previous configuration (BDM_FLAG=0)
ON	ON	0	SAM	Analog part is active and output configuration is related to SAM_conf_* registers (OTP), $I^{2} \mathrm{C}$ registers are supplied, $I^{2} \mathrm{C}$ module is ON
ON	ON	1	BDM	Analog part is active and output configuration is related to BDM_conf_* registers (volatile), $I^{2} \mathrm{C}$ registers are supplied, $I^{2} \mathrm{C}$ module is ON

Figure 8. Power supply internal signal behavior

T1+T2 < $60 \mu \mathrm{~s}$
$\mathrm{T} 3<70 \mu \mathrm{~s}$
AMG090320171208MT

If Power Good threshold is asserted (PG pin voltage above 1.95 V), the ALED1262ZT runs continuously the output open detection. If the current flowing through the active channels is less than the half of the programmed one, the device reports an error that is managed according to BDM_conf register (see register description paragraph). Please note that all error flags: Rext_fault, Ext_fault, Led_fault, have a time delay mask (debounce), it means that a fault with duration lower than debounce time does not generate any type of interrupt. Time delay mask is about $10 \mu \mathrm{~s}$ on Rext_fault and LED_fault and $20 \mu \mathrm{~s}$ on Ext_fault signal. At the same time, if LED poweron time is less than $15 \mu \mathrm{~s}$ (delay mask + detection delay), no output detection can be available.
For the same reason, no output detection is available in case of dimmed channels with LED t_{on}-time less than 15 $\mu \mathrm{s}$ (below step 20 on non-linear dimming table). If recovery condition has been set on BDM_conf register and LED output channels are dimmed, in case of open condition detected, faulty channel duty cycle is brought to 100% till faulty retrieval. During recovery, the output current is typically regulated at 30 mA (value just as reference because channel is open condition). As soon as open channel is reconnected, the device sinks the recovery current for $10 \mu \mathrm{~s}$, subsequently all active channels are switched OFF to have, $15 \mu \mathrm{~s}$ later, a new channel power-ON in normal regulation.
Furthermore, R-EXT pin is indirectly continuously monitored and any short-to-ground condition can be detected stopping output activities. In this case the parameter is indirectly the channel output current, above 65 to 95 mA (it depends on number of active channels and junction temperature) an internal comparator warns the $\mathrm{R}_{\mathrm{EXT}}$ failure. In case of $R_{\text {EXT }}$ short the outputs are in power-off. After $620 \mu \mathrm{~s}$ (typ.) channels are reactivated for $10 \mu \mathrm{~s}$ (typ.) to check again faulty condition. In other words, a physical short condition on $\mathrm{R}_{\mathrm{EXT}}$ generates periodic pulsing on FLG pin at 630μ s period.
All error conditions are reported on BDM_status and Faulty_ch_1/2 registers (see register description paragraph) and on fault flag pin. A fault condition summarizing table is shown below:

Table 10. Type of fault and device behavior

Type of fault	FLG		Detection	
	Driven	Undriven	Outage	Recovery ${ }^{(1)}$
Open LED	Active	Not active	No action	All good channels OFF The device in low power mode Open channel in recovery
Fault flag input line				All channels disabled

[^0]
9

 Gradual output delayAn additional feature implemented on the ALED1262ZT is the gradual output delay. It consists of turning on gradually the current generators avoiding all channels to be turned on at the same time. In other words, enabling the device channels, the outputs can be turned ON with a staggered delay. The delay among each output is summarized on the following table, it is expressed in number of clock periods (typical internal clock frequency average value is $3.3 \mathrm{MHz} \equiv 303 \mathrm{~ns}$ period):

Table 11. Gradual output delay

Channels	Added delay (number of CLK period)	
ch0/ch1	1	
ch1/ch2	1	
ch2/ch3	1	
ch3/ch4	1	
ch4/ch5	2	
ch5/ch6	7	
ch6/ch7	1	
ch7/ch8	1	
ch8/ch9	1	
ch9/ch10	ch10/ch11	1
	1	

Between first and last channel the cumulative delays are 18 internal clock periods. This feature also prevents large inrush current and reduces the bypass capacitor value on LED voltage rail. This function is activated in local dimming condition (BDM) only.

10
 Thermal warning and protection

The device has a thermal control logic providing a digital flag status (warning) when the internal temperature exceeds $140^{\circ} \mathrm{C}$. If thermal alert is asserted, error data is uploaded into BDM_status register and this error notification is ready to stream through $I^{2} \mathrm{C}$ bus. If temperature increases over $170^{\circ} \mathrm{C}$ a thermal shutdown protects the device (all 12 channels OFF) and external fault flag (FLG) drives high.

11 Device local dimming function

The brightness of each channel can be adjusted through a 7-bit PWM grayscale brightness control according to local dimming register PWM_gain_x.

Figure 9. Device local dimming function logic

AMG090320171209MT

Brightness data are loaded through $I^{2} \mathrm{C}$ bus, PWM signal for each channel is generated by comparing the content of the brightness register to a 7-bit counter. The counter's clock source is provided by 3.3 MHz internal oscillator. Brightness register default configuration is all " 0 " (0×00) this means minimum LED brightness.
Note: $\quad P W M$ _gain_x registers are made visible internally to the $P W M$ generator, after an $I^{2} C$ transaction, when the internal 7-bit counter reaches the value 7Fh. Internal 7-bit counter stops when exiting PWM local dimming configuration (PWM_En and/or BDM_Flag set to '0'). When re-entering in PWM local dimming configuration 7-bit counter restarts from previous stopped value (unless HW reset), so first period of PWM waveform could be shorter.
The schematic below summarizes this functionality.
Figure 10. Channel dimming feature

The ALED1262ZT implements 128 non-linear dimming steps to adequate LED brightness change to human eye light perception, giving in this way the impression of brightness linear variation. The exponential law used to calculate the dimming steps is the following:

$$
\text { ton }_{i}=P W M_{-} \text {period } \cdot \alpha^{(N-i)}
$$

Where ton $_{i}$ is the LED ON-time during step number "i", PWM_period $=5 \mathrm{~ms}$ or 10 ms (max. values), this means that minimum dimming frequency can be 200 Hz or 100 Hz according to Faulty_ch_1 register bit[7] (see register description), $\mathrm{N}=127$ (7-bit resolution), $0 \leq i \leq 127, \alpha \approx 0.9471$.

12 Local dimming non-linear step table

The following table is related to the ALED1262ZT 7-bit local dimming non-linear steps. LED brightness can be changed in 128 paces with duty cycle between 0.1% and 100% (ton and duty cycle real values can be slightly different respect to tabulated numbers. Values are referred to minimum high range frequency: $\mathrm{f}_{\mathrm{PWM}}=200 \mathrm{~Hz}$).

Table 12. Local dimming step

Step number	$\mathrm{t}_{\mathrm{ON}}(\mu \mathrm{s})$	Duty cycle (\%)	Step number	$\mathrm{t}_{\mathrm{ON}}(\mu \mathrm{s})$	Duty cycle (\%)	Step number	$\mathrm{t}_{\mathrm{ON}}(\mu \mathrm{s})$
Duty cycle (\%)							

0	5.00	0.10	43	51.95	1.04	86	538.79	10.78
1	5.33	0.11	44	54.95	1.10	87	568.76	11.38
2	5.67	0.11	45	57.94	1.16	88	600.40	12.01
3	6.00	0.12	46	61.27	1.23	89	634.03	12.68
4	6.33	0.13	47	64.60	1.29	90	669.33	13.39
5	6.67	0.13	48	68.27	1.37	91	706.63	14.13
6	7.00	0.14	49	71.93	1.44	92	745.92	14.92
7	7.33	0.15	50	75.92	1.52	93	787.55	15.75
8	7.67	0.15	51	80.25	1.61	94	831.83	16.64
9	8.33	0.17	52	84.92	1.70	95	878.45	17.57
10	8.66	0.17	53	89.58	1.79	96	927.41	18.55
11	8.99	0.18	54	94.57	1.89	97	979.02	19.58
12	9.66	0.19	55	99.90	2.00	98	1033.63	20.67
13	10.32	0.21	56	105.23	2.10	99	1091.57	21.83
14	10.66	0.21	57	111.22	2.22	100	1152.51	23.05
15	11.32	0.23	58	117.55	2.35	101	1217.12	24.34
16	11.99	0.24	59	123.88	2.48	102	1285.05	25.70
17	12.65	0.25	60	130.87	2.62	103	1356.64	27.13
18	13.32	0.27	61	138.20	2.76	104	1432.23	28.64
19	13.99	0.28	62	145.85	2.92	105	1512.49	30.25
20	14.99	0.30	63	154.18	3.08	106	1597.07	31.94
21	15.65	0.31	64	162.84	3.26	107	1685.98	33.72
22	16.65	0.33	65	172.16	3.44	108	1780.22	35.60
23	17.65	0.35	66	181.82	3.64	109	1879.79	37.60
24	18.65	0.37	67	191.81	3.84	110	1984.68	39.69
25	19.65	0.39	68	202.46	4.05	111	2095.57	41.91
26	20.65	0.41	69	213.79	4.28	112	2212.79	44.26
27	21.65	0.43	70	225.77	4.52	113	2336.33	46.73
28	22.98	0.46	71	238.43	4.77	114	2466.53	49.33
29	24.31	0.49	72	251.75	5.03	115	2604.39	52.09
30	25.64	0.51	73	265.73	5.31	116	2749.91	55.00
31	26.97	0.54	74	280.72	5.61	117	2903.76	58.08
32	28.64	0.57	75	296.37	5.93	118	3065.60	61.31

Step number	toN $^{(\mu \mathbf{~})}$	Duty cycle (\%)	Step number	toN ($\boldsymbol{\mu s}$)	Duty cycle (\%)	Step number	toN ($\boldsymbol{\mu s}$)	Duty cycle (\%)
$\mathbf{3 3}$	30.30	0.61	$\mathbf{7 6}$	312.69	6.25	$\mathbf{1 1 9}$	3237.09	64.74
$\mathbf{3 4}$	31.97	0.64	$\mathbf{7 7}$	330.34	6.61	$\mathbf{1 2 0}$	3417.58	68.35
$\mathbf{3 5}$	33.63	0.67	$\mathbf{7 8}$	348.65	6.97	$\mathbf{1 2 1}$	3608.72	72.17
$\mathbf{3 6}$	35.63	0.71	$\mathbf{7 9}$	367.97	7.36	$\mathbf{1 2 2}$	3810.19	76.20
$\mathbf{3 7}$	37.63	0.75	$\mathbf{8 0}$	388.61	7.77	$\mathbf{1 2 3}$	4022.97	80.46
$\mathbf{3 8}$	39.63	0.79	$\mathbf{8 1}$	410.26	8.21	$\mathbf{1 2 4}$	4247.75	84.95
$\mathbf{3 9}$	41.96	0.84	$\mathbf{8 2}$	433.23	8.66	$\mathbf{1 2 5}$	4484.84	89.70
$\mathbf{4 0}$	44.29	0.89	$\mathbf{8 3}$	457.21	9.14	$\mathbf{1 2 6}$	4735.59	94.71
$\mathbf{4 1}$	46.62	0.93	$\mathbf{8 4}$	482.85	9.66	$\mathbf{1 2 7}$	5000.00	100.00
$\mathbf{4 2}$	49.28	0.99	$\mathbf{8 5}$	510.16	10.20			

Figure 11. Local dimming duty cycle vs dimming steps

13 Register descriptions

Table 13. Embedded register list and direct address table

\#	Register name (one byte content)	R/W	Functions	Reg. direct address
BDM registers				
1	BDM_conf_1 (bus-driven mode config. 1)	R/W	BDM/SAM selection, FLG and detection behavior, PWM ON or OFF, channels 11 to 8 ON or OFF	0x00
2	BDM_conf_2 (bus-driven mode config. 2)	R/W	Channels 7 to 0 ON or OFF	0x01
3	BDM_status (bus-driven mode status)	R	Rext_fault, msg_err, global_en, diag_en, T_alert, T_fail, ext_fault, LED_fault	0x02
4	Faulty_ch_1 (faulty channels 1+PWM frequency)	R/W	PWM 110 or 220 Hz , faulty_ch 11 to 8	0x03
5	Faulty_ch_2 (faulty channels 2)	R	Faulty_ch 7 to 0	0x04
6 to 17	PWM_gain_x (channel PWM gain)	R/W	PWM chx ON or OFF, PWM chx gain (first byte is related to ch0)	0x05 to 0x10
18	LDD (LED driver device)	R	Versioning: driver ID and revision ID	-
SAM registers (OTP)				
1	SAM_conf_1_2 (standalone mode out config. 1/2)	R/W	OTP $1 / 2=L$ channels 11 to 8 ON or OFF OTP1/2=H channels 11 to 8 ON or OFF	0x20
2	SAM_conf_2 (standalone mode out config. 2)	R/W	OTP1/2=L channels 7 to 0 ON or OFF	0x21
3	SAM_conf_2 (standalone mode out config. 2)	R/W	OTP $1 / 2=\mathrm{H}$ channels 7 to 0 ON or OFF	0x22
4	BA_n_SAM_setting (device bus ADDR and settings)	R/W	Hamming ON or OFF, FLG and detection behavior, $1^{2} \mathrm{C}$ bus address	0x23

1. Direct address can be used with 0×81 command (see the command table). Please note that register address must be maintained inside the allowed intervals: $0 \times 00 \leq \operatorname{direct} A D D R \leq 0 \times 10(B D M)$ and $0 \times 20 \leq \operatorname{direct~ADDR\leq 0\times 23~(SAM).~Outside~}$ these intervals, all other addresses are forbidden.

- Accessing read only registers (BDM_status and Faulty_ch_2) in write mode with direct address command could affect the register content.
- Safer way to address registers is using the specific commands reported in Table 29. Command representation and description, they are fully controlled by internal state machine.

13.1 BDM_conf_1 / Enable_CH_1 register

Reg. name: BDM_conf_1 / Enable_CH_1
Reg. default value: 0x00
Reg. direct address: 0x00
Command involved: 0x00/0x02
Reg. access mode: R/W

	7	6	5	4	3	2	1	0	
W	BDM_Flag	$\mathrm{D}[1: 0]$		PWM_En		BDM_conf[11:8]			
					Enable_CH[11:8]				

Table 14. BDM_conf_1 field descriptions

Field	Description		
BDM_Flag	Used to push the LED driver to BDM mode when VDDD is high ${ }^{(1)}$$0: \text { SAM }$1: BDM		
D[1:0]	Used to configure the LED open load circuit diagnosis response and associated FLG pin behavior (driven or undriven). Available responses are: Recovery: When set, and PG is asserted, the LED open load diagnosis is performed. When a fault is detected, the LED driver imposes a current on the faulty branch, switching OFF the others. When a fault is recovered, the LED driver returns to normal operation. If the FLG pin is triggered externally, the LED driver outputs are switched OFF and the low power mode is entered. If PG is not asserted, FLG and/or load diagnosis are ignored. Outage: When set, the LED open load diagnostic is performed by the LED driver and Faulty_ch_1/2 registers are updated accordingly. When a fault is detected no action is taken on the current regulation. If the FLG pin is triggered externally, no action is taken.		
	0	0	Detection is recovery
	0	1	Detection is recovery
	1	0	Detection is outage
	1	1	Detection is outage
	Note 1: in ca have a resid Note 2: in ca remaining ac Note 3: if the detection mod recovery cur enough to to		the device in recovery mission. the device in recover have a flicker. recovery with switch overy to outage, the not at the current set tion (OFF/ON) or reco
PWM_En	It indicates if 0: PWM OFF 1: PWM ON	PW	enabled or disabled:

Field	Description BDM_conf $[x]$Represents the programmed output status of the channel x when the LED driver operates in BDM. This register is written by I^{2} C message: $0:$ channel ON $1:$ channel OFF
Enable_CH $[x]$	Represents the status of the channel_x according to the table at the end of this paragraph. This register is read by I ${ }^{2} \mathrm{C}$ message: $0:$ channel ON $1:$ channel OFF

1. Each time the LED driver passes from BDM to SAM mode, this bit is reset.

Note: BDM_conf_1 register will be updated only if also BDM_conf_2 is transmitted and acknowledged. This is valid for dedicated \bar{c} commands, such as ID_FW_BDM, as well as direct register access ID_DR_ACS.

13.2 BDM_conf_2 / Enable_CH_2 register

Reg.name: BDM_conf_2 / Enable_CH_2
Reg. default value: 0x00
Reg. direct address: 0x01
Command involved: 0x00/0x02
Reg. access mode: R/W

	7	6	5	4	3	2	1	0
W	BDM_conf[7:0]							
R	Enable_CH[7:0]							

Table 15. BDM_conf_2 field descriptions

Field	Description
BDM_conf $[x]$	Represents the output status of the channel x when the LED driver operates in BDM. This register is written by $I^{2} \mathrm{C}$ message: 0: channel ON 1: channel OFF
Enable_CH[x]	Represents the status of the channel x according to the table at the end of this section. This register is read by $I^{2} C$ message: $0:$ channel ON $1:$ channel OFF

13.3 BDM_status register

Reg. name: BDM_status
Reg. default value: 0×00
Reg. direct address: 0x02
Command involved: 0x08/0x0A
Reg. access mode: R

7	6	5	4	3	2	1	0
Rext_fault	Msg_err	Global_en	Diag_en	T_alert	T_fail	Ext_fault	LED_fault

Table 16. BDM_status field descriptions

Field	Description	Notes
Rext_fault	0 : no fault detected 1: short-circuit on Rext connection detected	Set on fault detection, latched if permanent after $10 \mu \mathrm{~s}$. Reset by HW if no fault detected permanently for at least $10 \mu \mathrm{~s}$ or by GPWM off. Note1: if the device has GPWM pulsing, $V_{\text {DDD }}$ applied and a Rext_fault occurs, active channels could randomly flicker. Note2: if the device is in BDM and a double fault occurs: Ext_fault (input from FLG pin) + Rext_fault, on BDM status register, priority is assigned to Rext_fault. Ext_fault is reported only after Rext fault solution.
Msg_err	0 : no error detected on $I^{2} C$ messages 1: error detected in the last message received from $\mathrm{I}^{2} \mathrm{C}$	Set on fault detection, reset on register reading.
Global_en	It brings information about the internal Global_EN signal (deactivates all outputs when supply is below required minimum value): 0: global_en low 1: global_en high	Set on global_en assertion. Reset by HW on global_en deassertion.
Diag_en	It indicates if the LED driver supply voltage is in the diagnostic voltage range (Power Good above threshold, see the PG pin function): 0 : outside the diagnostic voltage range 1: inside the diagnostic voltage range	Set on rising PG threshold exceeded. Reset by HW on falling PG threshold exceeded.
T_alert	It indicates if the device junction temperature is over $\mathrm{T}_{\text {flg }}$: 0 : internal temperature under $\mathrm{T}_{\text {flg }}$ 1: internal temperature over $\mathrm{T}_{\text {flg }}$	Set on temperature exceeding $\mathrm{T}_{\text {fig }}$. Reset on register reading.
T_fail	It indicates if the device junction temperature is over $\mathrm{T}_{\text {sd }}$: 0 : internal temperature under $T_{\text {sd }}$ 1: internal temperature over $T_{\text {sd }}$	Set on temperature exceeding $\mathrm{T}_{\text {sd. }}$. Reset on the register reading.

Field	Description	Notes
Ext_fault	When a fault is detected by a LED driver connected on the same FLG pin, this flag is set: 0 : no external fault 1: external fault occurred	Set on fault detection, latched if permanent after $10 \mu \mathrm{~s}$. Reset by HW if no fault detected permanently for at least $10 \mu \mathrm{~s}$. Note: if the device is in BDM and a double fault occurs: Ext_fault (input from FLG pin) + Rext_fault, on BDM status register, priority is assigned to Rext_fault. Ext_fault is reported only after Rext_fault solution.
LED_fault	When a fault is detected this flag is set: 0 : open detection ok 1: open detection fault	If diag_en =1 set on fault detection, latched if permanent after $10 \mu \mathrm{~s}$. Reset by HW if no fault detected permanently for at least 10 $\mu \mathrm{s}$. Fault information maintained on falling PG threshold exceeded.

13.4 Faulty_ch_1 register

Reg. name: Faulty_ch_1
Reg. default value: 0×00
Reg. direct address: 0x03
Command involved: 0x09/0x0A/0x03
Reg. access mode: R/W bit[7] / R bit[3...0]

	7	6	5	4	3	2	1	
W	PWM_presc	Not used	Not used	Not used	Reserved			
R					Faulty_ch[11:8]			

Table 17. Faulty_ch_1 field descriptions

Field	Description	Notes
PWM_presc	Represents the enable bit for PWM prescaler to let it work at half dimming frequency: $0:$ PWM @ 220 Hz (typ.) $1:$ PWM @ 110 Hz (typ.)	
Faulty_ch[x]	This register can be written by the diagnostic block only and indicates in which channel a fault is detected: $0:$ no fault $1:$ fault on channel x	If diag_en $=1$ set on fault detection, latched if permanent after $10 \mu s$, reset on register reading (see BDM_status register)

13.5 Faulty_ch_2 register

Reg. name: Faulty_ch_2
Reg. default value: 0×00
Reg. direct address: 0x04
Command involved: 0x09/0x0A
Reg. access mode: R

7	6	5	4	3	2	1	0
	Faulty_ch[7:0]						

Table 18. Faulty_ch_2 field descriptions

Field	Description	Notes
Faulty_ch[x]	This register can be written by the diagnostic block only and indicates in which channels a fault is detected: 0 : no fault 1: fault on channel x	If diag_en = 1 set on fault detection, latched if permanent after $10 \mu \mathrm{~s}$, reset on register reading (see BDM_status register)

13.6 PWM_gain_x register

Reg. name: PWM_gain_x $(0 \leq x \leq 11)$
Reg. default value: 0×00
Reg. direct address: 0×05 to 0×10 (0×05 refers to ch 0 to 0×10 refers to ch11)
Command involved: 0x01/0x02
Reg. access mode: R/W

7	6	5	4	3	2	1	0
PWM_ch_on	PWM_gain_x[6:0]						

Table 19. PWM_gain_x field descriptions

Field	Description
PWM_ch_on [7]	This bit allows channel x activation or deactivation: $0:$ channel OFF $1:$ channel controlled by PWM_gain_x
PWM_gain_x [6:0]	Represents the 7 bit PWM gain on the channel x. This register is set by $I^{2} C$ message (see duty cycle step table). Default value is 0x00

Note: \quad PWM_gain_x registers are programmed sequentially due to serial nature of $I^{2} \mathrm{C}$ protocol, this might affect desired channel behavior whenever $I^{2} C$ transaction falls in the edge between two dimming cycles.

13.7 LDD register (LED driver device versioning)

Reg. name: LDD
Reg. default value: HW defined (current version: 0x07)
Command involved: 0x28
Reg. access mode: R

7	6	5	4	3	2	1	0
Device ID						Revision ID	

Table 20. LDD field descriptions

Field	Description
Device ID $[7: 3]$	These bits identify the device type:
	00000 : ALED1262ZT
Revision ID $[2: 0]$	111

13.8 OTP/SAM_conf_1_2 register

Reg. name: SAM_conf_1_2
Reg. default value: 0×00
Reg. direct address: 0×20
Command involved: 0x20/0x21/0x28
Reg. access mode: R/W

7	6	5	4	3	2	1	0
SAM_conf_2[11:8]					SAM_conf_1[11:8]		

Table 21. OTP / SAM_conf_1_2 field descriptions

Field	Description
SAM_conf_2[x]	Represents the output status of the channel $x=[11: 8]$ when the SAM_conf_2 is chosen by the external OTP1/2 pin high: 0 : channel ON 1: channel OFF
SAM_conf_1[x]	Represents the output status of the channel $x=[11: 8]$ when the SAM_conf_1 is chosen by the external OTP1/2 pin low: 0: channel ON 1: channel OFF

13.9 OTP/SAM_conf_1 register

Reg. name: SAM_conf_1
Reg. default value: 0×00
Reg. direct address: 0x21
Command involved: 0x20/0x21/0×28
Reg. access mode: R/W

7	6	5	4	3	2	1	0

Table 22. OTP / SAM_conf_1 field descriptions

Field	Description
SAM_conf_1 $[\mathrm{x}]$	Represents the output status of the channel $\mathrm{x}=[7: 0]$ when the SAM_conf_1 is chosen by the external OTP1/2 pin low $0:$ channel ON
	1: channel OFF

13.10 OTP/SAM_conf_2 register

Reg. name: SAM_conf_2
Reg. default value: 0×00
Reg. direct address: 0x22
Command involved: 0x20/0x21/0x28
Reg. access mode: R/W

7	6	5	4	3	2	1	0
SAM_conf_2[7:0]							

Table 23. SAM_conf_2 field description

Field	Description
SAM_conf_2[x]	Represents the output status of the channel $x=[7: 0]$ when the SAM_conf_2 is chosen by the external OTP1/2 pin high 0: channel ON 1: channel OFF

13.11 OTP/BA_n_SAM_setting register

Reg. name: BA_n_SAM_setting
Reg. default value: 0×00
Reg. direct address: 0x23
Command involved: $0 \times 20 / 0 \times 21 / 0 \times 28$
Reg. access mode: R/W

7	6	5	4	3	2	1	0							
$I^{2} \mathrm{C}$ _HA	$\mathrm{D}[1: 0]$									Bus_address[4:0]				

Table 24. OTP / BA_n_SAM_setting field descriptions

Field	Description	
$I^{2} \mathrm{C}$ _HA	Bus-driven mode error protection/detection on communication: $I^{2} \mathrm{C}$ Hamming encoding enable 0: parity check OFF 1: parity check ON	
D[1:0]	Used to configure the LED open load circuit diagnosis response and associated FLG pin behavior (driven or undriven). Available responses are: Recovery: when set, and PG is asserted, the LED open load diagnosis is performed. When a fault is detected, the LED driver imposes a current on the faulty branch, by switching OFF the others. When a fault is recovered, the LED driver returns to normal operation. If the FLG pin is triggered externally, the LED driver outputs are switched OFF and the low power mode is entered. If PG is not asserted, FLG and/or load diagnosis are ignored. Outage: when set, the LED open load diagnostic is performed by the LED driver. When a fault is detected no action is taken on the current regulation. If the FLG pin is triggered externally, no action is taken.	
	0 0	Detection is recovery - FLG undriven
	0 1	Detection is recovery - FLG driven
	10	Detection is outage - FLG undriven
	$1 \quad 1$	Detection is outage - FLG driven
	Note 1: in case of GPWM pulsing, the device in recovery mode and $\mathrm{R}_{\text {EXT }}$ fault occur, active channels could have a residual random low light emission. Note 2: in case of GPWM pulsing, the device in recovery mode and an open fault or an Ext_fault occur, remaining active channels could have a very light flicker.	
Bus_address[4:0]	A 7-bit wide address space theoretically allows $128 I^{2} \mathrm{C}$ addresses; however, some addresses are reserved for special purposes. Thus, only 112 addresses are available with the 7 -bit address scheme imposed by the $I^{2} \mathrm{C}$ bus standard. Nevertheless only 5 LSB can be defined in this register (the others are fixed at 01 so: 01xxxxx) allowing 32 possible slave addresses only.	

Table 25. Enable_CH[x] register content

Mode	Fault status	Notes	Enable_CH[x] register content
BDM	Any	$\begin{aligned} & \text { BDM_Flag }=1 \\ & \text { PWM_En }=0 \end{aligned}$	Enable_CH[11:0] = BDM_conf[11:0] ${ }^{(1)}$
BDM / PWM	Any	$\begin{gathered} \text { BDM_Flag }=1 \\ \text { PWM_En }=1 \end{gathered}$	$\begin{gathered} \text { Enable_CH[x] = }\{\text { PWM_ch_on }[x] \text { AND BDM_conf[}[x]\} \text { OR (NOT } \\ \text { PWM_ch_on } \left.[x]^{2}\right) ; \text { with } x=[0: 11] \end{gathered}$
SAM	Any	$\begin{aligned} & \text { BDM_Flag }=0 \\ & \text { OTP } 1 / 2 \text { pin }=0 \end{aligned}$	Enable_CH[11:0] = SAM_conf_1[11:0] ${ }^{(1)}$
SAM	Any	$\begin{aligned} & \text { BDM_Flag }=0 \\ & \text { OTP } 1 / 2 \text { pin }=1 \end{aligned}$	Enable_CH[11:0] = SAM_conf_2[11:0]

1. ' 0 ' if channel is ON; ' 1 ' if channel is OFF
2. '0' if channel is OFF; '1' if channel is controlled by PWM_gain_x

Figure 12. LED open circuit diagnosis response table

Configuration	A	B0	From B1 to 11	C	Out0	From Out1 to 11
Recovery + int. FLG driven	Open: D0 failed	ON (lout_recovery)	OFF	ON	tries to recover	OFF
Recovery + int. FLG undriven	Open: D0 failed	ON (lout_recovery)	OFF	OFF	tries to recover	OFF
Outage + int. FLG driven	Open: D0 failed	ON (lout_regulation)	ON	ON	tries to regulate	regulation
Outage + int. FLG undriven	Open: D0 failed	ON (lout_regulation)	ON	OFF	tries to regulate	regulation
Recovery (+ external FLG sig. H)	Close: DO OK	OFF	OFF	OFF	OFF	OFF
Outage (+ external FLG sig. H)	Close: DO OK	ON (lout_regulation)	ON	OFF	regulation	regulation

$14 \quad I^{2} C$ bus operations

The ALED1262ZT can operate both in standalone mode and bus-driven mode. When an MCU is present on the application, it can drive communication following the $I^{2} \mathrm{C}$ bus protocol (the bus is active $80 \mu \mathrm{~s}$ after $\mathrm{V}_{\mathrm{DDD}}$ plug). Such a task is performed by an internal digital block, which implements a slave $I^{2} \mathrm{C}$ communication peripheral as described in the reference documentation published by NXP (UM10204: I ${ }^{2}$ C bus specification and user manual rev.6, 04 April 2014).
The ALED1262ZT operates as slave only, standard (up to 100 kHz) or fast (up to 400 kHz) mode. Clock stretching operation is performed by the ALED1262ZT when needed. During the bidirectional communication, to minimize EMI interferences, SDA and SCL low-side MOS are driven to slow falling edges according to the bus parasitic and/or connected capacity (typ. $\approx 100 \mathrm{~ns}$; see the following charts).

Figure 13. Slave SDA falling time vs $C B u s$ Rup $=1.8 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{DDD}}=5 \mathrm{~V}$

Figure 14. Slave SDA rising time vs CBus Rup $=1.8 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{DDD}}=5 \mathrm{~V},-40<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C}$

$14.1 \quad I^{2} \mathrm{C}$ main concepts

$I^{2} \mathrm{C}$ communication, performed on a two signal basis, is a synchronous half duplex protocol. Signals are conveniently named as SCL (synchronization signal from MASTER to SLAVE) and SDA (data signal which can be either MASTER to SLAVE, or SLAVE to MASTER).
The multi-MASTER application configuration, which is a MASTER specific property, is supported by the ALED1262ZT.
$I^{2} \mathrm{C}$ communication is driven by specific events on the bus:

- START condition - it is a falling edge of SDA while SCL is HIGH level
- \quad Slave addressing - it is the transmission $(\mathrm{M} \rightarrow \mathrm{S})$ of the ID of the slave to be addressed (7-bit)
- Communication direction - it is one bit immediately following the slave ID: 0 for writing $(\mathrm{M} \rightarrow \mathrm{S})$ or 1 for reading ($\mathrm{S} \rightarrow \mathrm{M}$)
- Acknowledge - it is a LOW level on SDA line; driven by either SLAVE or MASTER depending on the communication moment
- Data bit - data are 8-bit per word driven either by MASTER or SLAVE depending on the communication moment
- STOP condition - it is a rising edge of SDA while SCL is HIGH level
- Restart condition - it is a new START condition which happens before a STOP condition: it normally implies a change in the direction of the communication

$15 \quad I^{2} \mathrm{C}$ addressing for the ALED1262ZT

Since having more than a single ALED1262ZT device is allowed in this application, a method to differentiate each of them has been put in place. Five OTPs (one time programmable) memory cells are dedicated to differentiate LSB bit of the ALED1262ZT address; this leads up to 31 devices valid addresses usable in the final application.
When OTP has not been programmed yet to address one specific SLAVE in the application board, an extra signal named CS is used (which is not part of $I^{2} \mathrm{C}$ standard). CS pin is a chip select signal (active HIGH), it is internally pulled down by a resistor. Hence the recommended application scheme should connect all the ALED1262ZT devices CS pin to a corresponding output pin in the programmer.
When in the end factory line programming, the testing/set-up system has to leave floating CS pin on all the devices except the one meant to be programmed at that specific time, on this specific device, CS must be polarized at 15 V . For 'fresh device', the address is " 0100000 " (0×40 including the writing bit or 0×41 including the reading bit).
Once the programming of all devices is over, all CS pins must be left floating (fixed low by internal pull-down), the addressing, by MCU in application, is performed by each programmed address as a traditional $I^{2} \mathrm{C}$ bus.

$16 \quad I^{2} \mathrm{C}$ selectable Hamming $(8,4)$ encoding

By bit-7 in BA_n_SAM_setting OTP byte, the user has the possibility to enable/disable the error detection on $I^{2} \mathrm{C}$ bus communication.
Reg. name: BA_n_SAM_setting

7	6	5	4	3	2	1	0						
$I^{2} \mathrm{C}$ _HA	$\mathrm{D}[1: 0]$									Bus_address[4:0]			

Table 26. Excerpt from table "OTP / BA_n_SAM_setting field descriptions"

Field	
	Bus-driven mode error protection/detection on communication:
$I^{2} C_{2}$ HA	I^{2} Hamming encoding enable
	$0:$ parity check OFF
	$1:$ parity check ON

Error detection occurs thanks to the extended Hamming code (8, 4), encoding info sent through the bus. The encoding packs 4 -bit of useful information with 4-bit of parity checks. The benefit of the chosen encoding algorithm is the opportunity to detect up to 3-bit error along with each byte transfer. Encoding algorithm packs together payload bit and parity bit in the following structure:

7	6	5	4	3	2	1	0
D3	D2	D1	P3	D0	P2	P1	P0

Where Dx represents data bit (useful information) and Px represents parity bit. Hereafter the encoding of parity bit vs data bit:

P 3	$\mathrm{D} 3 \oplus \mathrm{D} 2 \oplus \mathrm{D} 0$
P 2	$\mathrm{D} 2 \oplus \mathrm{D} 1 \oplus \mathrm{D} 0$
P 1	$\mathrm{D} 3 \oplus \mathrm{D} 1 \oplus \mathrm{D} 0$
P 0	$\mathrm{D} 3 \oplus \mathrm{D} 2 \oplus \mathrm{D} 1 \oplus \mathrm{P} 3 \oplus \mathrm{D} 0 \oplus \mathrm{P} 2 \oplus \mathrm{P} 1$

A graphical view of the encoding is shown below:

Figure 15. Graphic view of encoding

AMG130320170900MT

The following table provides all available datawords and corresponding codewords:

Table 27. Datawords and corresponding codewords

	D3	D2	D1	D0		D3	D2	D1	P3	D0	P2	P1	P0
DW0	0	0	0	0	CW0	0	0	0	0	0	0	0	0
DW1	0	0	0	1	CW1	0	0	0	1	1	1	1	0
DW2	0	0	1	0	CW2	0	0	1	0	0	1	1	1
DW3	0	0	1	1	CW3	0	0	1	1	1	0	0	1
DW4	0	1	0	0	CW4	0	1	0	1	0	1	0	1
DW5	0	1	0	1	CW5	0	1	0	0	1	0	1	1
DW6	0	1	1	0	CW6	0	1	1	1	0	0	1	0
DW7	0	1	1	1	CW7	0	1	1	0	1	1	0	0
DW8	1	0	0	0	CW8	1	0	0	1	0	0	1	1
DW9	1	0	0	1	CW9	1	0	0	0	1	1	0	1
DW10	1	0	1	0	CW10	1	0	1	1	0	1	0	0
DW11	1	0	1	1	CW11	1	0	1	0	1	0	1	0
DW12	1	1	0	0	CW12	1	1	0	0	0	1	1	0
DW13	1	1	0	1	CW13	1	1	0	1	1	0	0	0
DW14	1	1	1	0	CW14	1	1	1	0	0	0	0	1
DW15	1	1	1	1	CW15	1	1	1	1	1	1	1	1

Figure 16. Excerpt of communication scheme in application

Table 28. Not encoded nibbles and equivalent Hamming bytes

HEX format	Nibble	Hamming (8, 4) encoding	Byte
0	0000	00	00000000
1	0001	1 E	00011110
2	0010	27	00100111
3	0011	39	00111001
4	0100	55	01010101
5	0101	$4 B$	01001011
6	0110	72	01110010
7	0111	6 C	01101100
8	1000	93	10010011
9	1001	$8 D$	10001101
A	1010	B4	10110100
B	1011	AA	10101010
C	1100	C6	11000110
D	1101	D8	11011000
E	1110	E1	11100001
F	1111	FF	11111111

17 Message structure

17.1 Available commands

A set of commands has been implemented to recall the functions made available by $\mathrm{I}^{2} \mathrm{C}$ communication.
A brief table with their representation and description is presented hereafter; these commands are found in the following pages where the structure of messages is presented.

Table 29. Command representation and description

Command ID mnemonic name	Hex format (8-bit)	Hamming $(8,4)$ encoding	Affected registers	Description	
ID_FW_BDM (functional write BDM)	0×00	0x00/0x00	BDM_conf[1\|2]	Enables BDM_conf[1\|2] registers write to LED driver. Both registers are effective after the second one has been received. If the second register is not transmitted or it is not acknowledged, then the first one is not updated.	
ID_FW_PWM (functional write PWM)	0×01	0x00/0x1E	PWM_gain_[0..11]	Enables PWM_gain_[0...11] registers write to LED driver. Each register is effective just after acknowledgment. If LED driver does not acknowledge a byte, it is updated and the master has to stop data transfer to resume communication.	
ID_FW_FULL (functional write BDM + PWM)	0×02	0x00/0x27	$\begin{gathered} \text { BDM_conf[1\|2] + } \\ \text { PWM_gain_[0...11] } \end{gathered}$	Enables all BDM_conf[1\|2] and PWM_gain_[0... 11] registers write to LED driver.	
$\begin{gathered} \text { ID_FW_FLT } \\ \text { (functional write faulty) } \end{gathered}$	0×03	0x00/0x39	FAULTY_ch1[7]	Enables FAULTY_ch1[7] bit register write (110/220 Hz prescaler)	
$\begin{gathered} \text { ID_FR_STS } \\ \text { (functional read status) } \end{gathered}$	0x08	0x00/0x93	BDM_status	Enables BDM_status register read from LED driver.	
ID_FR_FLT (functional read faulty)	0×09	0x00/0x8D	Faulty_ch[1\|2]	Enables Faulty_ch[1\|2] registers read from LED driver.	
$\begin{aligned} & \text { ID_FR_FULL } \\ & \text { (functional read channels } \\ & \text { enabled + status + faulty } \\ & + \text { PWM) } \end{aligned}$	0x0A	0x00/0xB4	$\begin{gathered} \text { Enable_CH[1\|2] + } \\ \text { BDM_status + } \\ \text { Faulty_ch[1\|2] + } \\ \text { PWM_gain_[0...11] } \end{gathered}$	Enables all actual Enable_CH[1\|2], BDM_status, Faulty_ch[1	2] and PWM_gain_[0...11] registers read from LED driver.
ID_FR_PWM (functional read PWM)	0x0B	0x00/0xAA	PWM_gain_[0...11]	Enables PWM_gain_[0...11] registers read from LED driver.	
ID_EW_EMU (end-of-line write emulation)	0x20	0x27/0x00	SAM_conf_* + BA_n_SAM_setting	Enables all SAM_conf_* and BA_n_SAM_setting registers write to LED driver (OTP emulation).	
ID_EW_BURN (end-of-line write burning)	0×21	0x27/0x1E	SAM_conf_* + BA_n_SAM_setting	Enables all SAM_conf_* and BA_n_SAM_setting registers are burnt on OTPs (OTP burn).	
ID_ER_OTP (end-of-line read OTP)	0x28	0x27/0x93	$\begin{gathered} \text { LDD + SAM_conf_* } \\ + \\ \text { BA_n_SAM_setting } \end{gathered}$	Enables the read back of: SAM_conf_* and BA_n_SAM_setting, registers as programmed by OTPs. It allows LDD byte (OTP read) to be read back.	

Command ID mnemonic name	Hex format $(8-b i t)$	Hamming (8,4) encoding	Affected registers	Description
ID_DR_ACS	0×81	$0 \times 93 / 0 \times 1 E$	All	Enables the direct access, for writing or reading, to all registers. See specific register address on the related table.
(direct register access)				

During reading and writing operations the basic master transmission is:

1. slave address + write bit (as per $\mathrm{I}^{2} \mathrm{C}$ protocol)
2. slave address repeating (slave replies ACK or NACK according to own $I^{2} \mathrm{C}$ actual address)
3. command ID (according to the table above, a wrong command ID results in a slave NACK)
4. read or write sequence as described on the following sections (see write and read operations)

17.2 Pattern symbols

Figure 17. Pattern symbols

S	Is: START condition issued by MASTER device
A[6:0] [0ㅇ]	Is: ADDRESS+[WRITE\|READ] command issued by MASTER
A[x:y] [H\|L]	Is: ADDRESS [High\|Low] nibble encoded by Hamming (8,4)
Data byte	Is: data byte sent from MASTER to SLAVE
P	Is: STOP condition issued by MASTER device
R	Is: RESTART condition issued by MASTER
A	Is: ACK bit sent by MASTER to SLAVE
N	Is: NACK sent by MASTER to SLAVE
Data byte	Is: data byte sent from SLAVE to MASTER
A	Is: ACK bit sent by SLAVE to MASTER

17.3 Write operations

In some cases, during the write operation, the whole setting information has to be split into different bytes, to avoid a partial device set-up change, related registers are updated only after full data receiving. In case of aborted communication, a stop signal restores the bus. Affected registers:

- Without parity detection
- BDM_conf_1 + BDM_conf_2, registers updated at the end of the second byte
- All remaining registers are updated at the end of the byte
- With parity detection
- BDM_conf_1 + BDM_conf_2, registers updated at the end of the fourth byte (if correctly received)
- All remaining registers are updated at the end of the second byte (if correctly received)
17.3.1 BDM configuration register write

Figure 18. Without parity detection (4 bytes)

Figure 19. With parity detection (8 bytes)

Note: (*) e.g. BDM_conf_1_H = BDM_conf_1[7:4] w/ error detection; BDM_conf_1_L = BMD_conf_1[3:0] W/ error detection.
17.3.2 FAULTY_ch1[7] bit register write (prescaler)

Figure 20. Without parity detection (3 bytes)

Figure 21. With parity detection (6 bytes)

17.3.3 PWM_gain_x register write

Figure 22. Without parity detection (14 bytes)

Figure 23. With parity detection (28 bytes)

S A[6:0]	0	A	A[6:3]_H	A	A[2:0] 0 _ L	A	\ldots
			ID_FW_PWM_H	A	ID_FW_PWM_L	A	\ldots
			PWM_gain_0_H	A	PWM_gain_0_	A	\ldots
		\ldots	...	\ldots	\ldots	\ldots	..
			PWM_gain_11H	A	PWM_gain_11_L	A	P

17.3.4 BDM_conf and PWM_gain_x register write

Figure 24. Without parity detection (16 bytes)

Figure 25. With parity detection (32 bytes)

Please note that, in terms of output duty cycle, each PWM_gain_x byte (or PWM_gain_x_H + PWM_gain_x_L bytes with parity detection) is updated at the end of each dimming count and the remaining channels PWM_gain_x byte transmission are disregarded. The same for PWM_ch_on [7] bit that switches each channel from controlled by PWM gain value to OFF (0: Channel OFF; 1: channel controlled by PWM_gain_x). Instead, BDM_conf[x] bit inside BDM_conf_1/2 registers updates instantly channel status (ON or OFF) ignoring PWM counter progression. Besides, PWM_En bit on BDM_conf_1 register updates instantly the channel status (dimming enabled or disabled) ignoring PWM counter progression.
In case of writing additional bytes beyond those expected by the specific command, extra data are ignored.

17.3.5 Direct write on registers

Figure 26. Without parity detection (16 bytes)

S A[6:0]	0	A	A[6:0]	A	
			ID_DR	A	\ldots
			PP	A	\ldots
			WW	A	\ldots
			WW 1	A	\ldots
		\ldots			\ldots
			WWn	A	P

Figure 27. With parity detection (32 bytes)

Where: WW is the content to be written on register at position PP (direct address), WW1 to be written on register at position PP+1 and so on.

Note: \quad Please note that $P P+n$ position must be maintained inside allowed address intervals: $0 \times 00 \leq P P+n \leq 0 \times 10$ (BDM) and $0 \times 20 \leq P P+n \leq 0 \times 23$ (SAM). Outside these intervals all other addresses are forbidden.
See also the register address table.

17.4 Read operations

17.4.1 Status register

Figure 28. Without parity detection (4 bytes)

Figure 29. With parity detection (7 bytes)

S	A[6:0]	0	A	A[6:3] H	A	A[2:0]_0_L	A	\ldots
				ID_FR_STS_H	A	ID_FR_STS_L	A	
S	A[6:0]	1	A	BDM_status_H	A	BDM_status_L	N	P

17.4.2 Faulty_ch registers

Figure 30 . Without parity detection (5 bytes)

Figure 31. With parity detection (9 bytes)

17.4.3 PWM_gain_x registers

Figure 32. Without parity detection (15 bytes)

S	A[6:0]	0	A	A[6:0]_0	A	\ldots
				ID_FR_PWM	A	
R	A[6:0]	1	A	PWM_gain_0	A	\ldots
			\ldots	...	\ldots	\ldots
				PWM gain 11	N	P

Figure 33. With parity detection (29 bytes)

S	A[6:0]	0	A	A[6:3]_H	A	A[2:0] 0 L	A	\ldots
				ID_FR_PWM_H	A	ID_FR_PWM_L	A	
S	A[6:0]	1	A	PWM_gain_0_H	A	PWM_gain_0_L	A	\ldots
			\ldots	-..	\ldots	...	\ldots	\cdot
				PWM_gain_11_H	A	PWM_gain_11_L	N	P

17.4.4 BDM_conf, status, Faulty_ch, PWM_gain_x registers

Figure 34. Without parity detection (20 bytes)

Figure 35 . With parity detection (39 bytes)

S A[6:0]	0	A	A[6:3]_H	A A[2:0]_0L	A	\ldots
		\ldots	ID_FR_FULL_H	A	ID_FR_FULL_L	A

In case of reading additional bytes beyond those provided by the specific command, the extra bit is zeroed.

17.4.5 Direct read from registers

Figure 36. Without parity detection

Figure 37. With parity detection

Where: RR is the content to be read from register at position PP (direct address), RR1 to be read from register at position PP+1 and so on. If PP+n position has not the corresponding register location, read data must be ignored. See also the register address table.
Please note that, if $I^{2} \mathrm{C}$ communication starts with slave address plus reading bit (A[6:0]_1 as first byte is a word allowed by $I^{2} \mathrm{C}$ standard but not allowed on the ALED1262ZT protocol), the related slave device reply data has to be ignored. Normal communication is resumed with a stop transition.

18 OTP operations

The ALED1262ZT can operate in standalone mode (SAM); the functionality in this working mode is configured by four registers: SAM_conf_1_2, SAM_conf_1, SAM_conf_2 and BA_n_SAM_setting. Refer to OTP register description for further information.
This configuration can be programmed during one time set phase at the end of the customer production line. The 32 bits of such configuration are stored, with Error-correcting code (ECC) and fully redundancy, into 80 OTP (one time programmable) cells.
Before the OTP zapping an ECC control word is generated based on the content of the four registers and all the resulting bits are stored in paired OTP cells. During the OTP load, happening at start up or after an HW reset, the paired cells are ORed, the resulting data is controlled by ECC word and copied into the four registers.
For non-volatile register programming and communication, we have to connect:

- $V_{\text {DDD }}$ to 5 V
- SDA and SCL connected to 100 or $400 \mathrm{kHz} \mathrm{I}^{2} \mathrm{C}$ bus (W/O or W parity check according to OTP/ BA_n_SAM_setting [bit 7] programmed 0 or 1)
- \quad CS used to address on application board device to be programmed $\left(I^{2} \mathrm{C}\right.$ address is not yet available because itself is to be programmed). CS pin must be supplied at 15 V with current capability $\mathrm{I}_{\mathrm{CS}}>100 \mathrm{~mA}$.
- GND to power supply and $\mathrm{I}^{2} \mathrm{C}$ controller ground (general ground connection)

To program OTPs, the user needs to address the device; in case of 'fresh device', the address is " 0100000 " (0×40 including the writing bit or 0×41 including the reading bit); and drives HIGH to 15 V the CS pin. In this condition, the user can proceed with the OTP message to program the fuses. In case of several devices on same $I^{2} \mathrm{C}$ bus, programming functions must be performed on a single device by time. This means that all others CS pin must be floating (it means LOW by internal pull-down resistor). After the device power supply and 15 V as CS polarization, OTP operation message must be sent by $\mathrm{I}^{2} \mathrm{C}$ bus master.
Three operations are available on OTP cells: EMULATE, BURN and READ.
EMULATE and READ are possible at any time without special care.
While BURN execution need a special attention because of ECC; the complete full procedure, based on a double zap, must be executed in a single run (meaning using same data configuration) since ECC is computed for the data actually present into non-volatile registers and once stored into OTP, cells cannot be modified any longer. To invoke such operations, see related message structure and commands.

18.1 OTP emulate

To emulate OTPs, the user needs to address the device by using the actual device address (which may differ from default if the emulation/burning on BA_n_SAM_setting[4:0] bits has been performed sometimes in the past). Emulated bits are reset at their original status after an electrical HW reset that force an OTP load.
The OTP emulate command writes data inside shadow registers, such data will be transferred to the OTP cells only when the OTP Burn command will be issued. Anyway, ALED1262ZT will apply immediately the data written into shadow registers. This means that modifying in emulation the BA_n_SAM_setting[4:0] bits, the $I^{2} \mathrm{C}$ address changes immediately and so the following commands have to use the new set address.

Figure 38. Emulate OTP bit without parity detection

S A[6:0] 0	A	A[6:0_0	A	\ldots
	\ldots	ID_EW_EMU	A	\ldots
	\ldots	SAM_conf_12	A	\ldots
	\ldots	SAM_conf_1	A	\ldots
	\ldots	SAM_conf_2	A	\ldots
	\ldots	BA_n_SAM_setting	A	P

Figure 39. Emulate OTP bit with parity detection

| S A[6:0] 0 | A | A[6:3]H | A | A[2:0]_0_L | A |
| :--- | :--- | :--- | :--- | :--- | :--- | ...

18.2 OTP burn

To program OTPs, user needs to address the device by using the current device address (which may vary if the emulation/burning on BA_n_SAM_setting[4:0] bits has been performed sometime in the past) and driving accordingly the CS pin (CS is also the high voltage pin carrying the current used to zap OTPs). Before any burning command, OTP registers must be emulated as described in the previous section. OTP burn command writes permanently the emulated configuration on the device OTP banks.
In order to minimize the number of OTP cells which could had a not perfect burn it is requested to execute the OTP burn command twice without any change in the emulated configuration.
OTP burn has to be executed in a single run (meaning using same data configuration) since ECC is computed for the actual data present into non-volatile registers and once zapped into OTP cells can be confirmed but not modified.
When customer issues the command OTP burn, ALED1262ZT will compute the ECC word from the 32 bit of the four non-volatile registers; this ECC word allows the automatic correction of 1 bit error. Once all data will be ready ALED1262ZT generates sequentially the burning signals for zapping all the 80 OTP cells.
The OTP cells burning takes about 80 ms , this means that CS voltage has to be kept active for at least this time after the latest $I^{2} \mathrm{C}$ 'acknowledge' sent by SLAVE.
During the burning process, ALED1262ZT puts on hold any running $I^{2} \mathrm{C}$ communication using the clock stretching mechanism. This means that SCL pin is grounded for all the burning period in case the $I^{2} \mathrm{C}$ communication is still active when Burn process starts. In same cases, with very fast $I^{2} \mathrm{C}$ master, to force clock stretching it is necessary to add a "fake" byte before the Stop, if needed to know the real burning process duration.

Figure 40. Burn OTP bit without parity detection

Wait $>80 \mathrm{~ms}$

Figure 41. Burn OTP bit with parity detection

Wait $>80 \mathrm{~ms}$

18.3 OTP read

After programming the device, user has to reset the device in order to force a data load and to be able to read back the OTP written values to validate their status. The address to be used to read back the data is: "01" + BA_n_SAM_setting [4:0] as LSB.

Figure 42. Read back OTP bit without parity detection

S	A[6:0]	0	A	A[6:0]_0	A
				ID_ER_OTP	A
R	A[6:0]	1	A	LDD	A
				SAM_conf_12	A
				SAM_conf_1	A
				SAM_conf_2	A
				BA_n_SAM_setting	A

Figure 43. Read back OTP bit with parity detection

S	A[6:0]	0	A	A[6:3] H	A	A[2:0] 0 _	A	...
				ID_ER_OTP_H	A	ID_ER_OTP_L	A	\ldots
S	A[6:0]	1	A	LDD_H	A	LDD_L	A	...
				SAM_conf_12_H	A	SAM_conf_1_2 L	A	\ldots
				SAM_conf_1H	A	SAM_conf_1_L	A	\ldots
				SAM_conf_2H	A	SAM_conf_2 L	A	...
				BA_n_SAM_setting_H	A	BA_n_SAM_setting_L	A	P

$19 \quad I^{2} \mathrm{C}$ communication examples

19.1 Communication without parity detection

19.1.1 OTP burning with double zap and read back

To emulate as example the address 0100001 the following sequence is needed:

- $\quad C S=15 \mathrm{~V}$
- $\mathrm{VDDD}=5 \mathrm{~V}$
- 0x40 0x40 0x20 0x00 0x00 0x00 0x01

Based on the new emulated address (0100001) the burning communication sequence is:

- $0 \times 420 \times 420 \times 21$
- wait > 80ms
- $0 \times 420 \times 420 \times 21$

Switch OFF the supply to be sure about the real burning before read back check using the following pattern:

- $0 \times 420 \times 420 \times 28 \mathrm{R} 0 \times 430 \times 070 \times 000 \times 000 \times 000 \times 01$
(R means the restart condition; in bold the expected read back data, $\mathbf{0 x 0 7}$ is the current LDD value) From now on, the device answers to 0×42 for writing and to 0×43 for reading operations; CS at 18 V for $\mathrm{I}^{2} \mathrm{C}$ communication is no more needed.
19.1.2 All LEDs with power-ON

To power on all the device output channels, in case of $0100001 I^{2} \mathrm{C}$ address, the following sequence is needed:

- $\quad C S=$ floating
- $V D D D=5 \mathrm{~V}$
- $\mathrm{VDDA}=12 \mathrm{~V}$
- VLED according to number of LEDs in series per channel
- 0x42 0x42 0x00 0xA0 0x00
(0xA0 0x00 means: BDM_Flag = 1, detection = recovery, FLG = driven, PWM_En = OFF, channels from 11 to $0=\mathrm{ON}$)
19.1.3 $\quad 110 \mathrm{~Hz}$ dimming prescaler bit

For prescaler bit setting, $0100001 I^{2} \mathrm{C}$ address, the following sequence is needed:

- $\quad C S=$ floating
- $\mathrm{VDDD}=5 \mathrm{~V}$
- $0 \times 420 \times 420 \times 030 \times 80$
(0x80 means: prescaler bit $=1$)
19.1.4 All LEDs with PWM dimming at $\mathbf{5 0 \%}$ (full configuration)

For PWM dimming setting, $0100001 I^{2} \mathrm{C}$ address, the following sequence is needed:

- $\quad C S=$ floating
- $\mathrm{VDDD}=5 \mathrm{~V}$
- $\mathrm{VDDA}=12 \mathrm{~V}$
- VLED according to number of LEDs per channel
- 0x42 0x42 0x02 0xB0 0x00 0xF2 0xF2
(0xB0 0x00 means: BDM_Flag=1, detection=recovery, FLG=driven, PWM_En=ON, channels from 11 to 0=ON; $0 \times F 2$ means dimming step \#114)

19.1.5 Device status read back

For status read back, $0100001 \mathrm{I}^{2} \mathrm{C}$ address, the following sequence is needed:

- $\quad C S=$ floating
- $\mathrm{VDDD}=5 \mathrm{~V}$
- 0x42 0x42 0x08 R 0x43 0x??
(R means the restart condition; in bold the read back data)

19.1.6 Device full status read back

For full status read back, $0100001 \mathrm{I}^{2} \mathrm{C}$ address, the following sequence is needed:

- \quad CS = floating
- $\mathrm{VDDD}=5 \mathrm{~V}$
- 0x42 0x42 0x0A R 0x43 0x?? 0x??
(R means the restart condition; in bold the read back data)
To read the status up to faulty channels only it is matter to send a STOP condition after the fifth received byte, as shown in the following sequence:
- \quad CS = floating
- VDDD $=5 \mathrm{~V}$
- 0x42 0x42 0x0A R 0x43 0x?? 0x?? 0x?? 0x?? 0x?? P
(R means the restart condition; P means the STOP condition; in bold the read back data).

19.1.7 LDD read back (device identifier)

For LDD read back, $0100001 I^{2} \mathrm{C}$ address, the following sequence is needed:

- $\quad C S=$ floating
- $V D D D=5 \mathrm{~V}$
- $0 \times 420 \times 420 \times 28 \mathrm{R} 0 \times 430 \times 07 \mathrm{P}$
(R means the restart condition; P means the STOP condition; in bold the read back data; $\mathbf{0 x 0 7}$ is current LDD value)

19.2 Communication with parity detection

19.2.1 All LEDs with power-ON

To power on all the device output channels, in case of $0100001 I^{2} \mathrm{C}$ address, the following sequence is needed:

- $\quad \mathrm{CS}=$ floating
- $\mathrm{VDDD}=5 \mathrm{~V}$
- $\quad \mathrm{VDDA}=12 \mathrm{~V}$
- VLED according to number of LEDs in series per channel
without parity detection pattern was:
- 0x42 0x42 0x00 0xA0 0x00
(0xA0 0x00 means: BDM_Flag=1, detection=recovery, FLG = driven, PWM_En = OFF, channels from 11 to $0=\mathrm{ON}$)
With parity detection, we need to codify all words beyond the first address (0×42):
0×42, the repeated address, with Hamming encoding is $0 \times 55+0 \times 27$ (see nibbles encoding table); byte 0×00 encoded is $0 \times 00+0 \times 00$; byte $0 \times A 0$ encoded is $0 \times B 4+0 \times 00$. So full pattern with Hamming $(8,4)$ is:
- 0x42 0x55 0x27 0x00 0x00 0xB4 0x00 0x00 0x00

This sequence powers on all the device output channels.

LED supply voltage

LED supply voltage ($\mathrm{V}_{\mathrm{LED}}$) must be chosen by taking into account several parameters:

- The voltage drop across each current generators ($\mathrm{V}_{\mathrm{DROP}}$) must be enough to guarantee the current regulation (see dedicated section in the datasheet)
- The maximum LED forward voltage ($\mathrm{V}_{\mathrm{F}, \max }$)
- The maximum power that can be dissipated by the package under the application ambient conditions
- The accuracy of the supply voltage itself ($\mathrm{V}_{\text {LED }}$ can vary in a range and the minimum and maximum values must be considered)

Therefore the minimum LED supply voltage can be calculated as:

$$
V_{L E D, \min }=V_{D R O P, \min }+V_{F, \max }
$$

The worst case for power dissipation is to consider all channels connected to LEDs at minimum V_{F} and maximum $V_{\text {LED }}$:

$$
V_{D R O P, \max }=V_{L E D, \max }-V_{F, \min }
$$

The LED supply voltage should be higher than $\mathrm{V}_{\text {LED, min }}$ (to consider any fluctuation of the involved parameters) but not too high in order to keep low the power dissipation:

$$
P_{D}=V_{D D D} \cdot I_{D D D}+V_{D D A} \cdot I_{D D A}+\sum_{i=0}^{11}{ }_{0} V_{D R O P_{-} \max _{-} i} \cdot I_{C H i}
$$

where $V_{D D A}$ and $V_{D D D}$ are the device voltage supplies, $I_{D D A}$ and $I_{D D D}$ are the device supply currents, $V_{\text {DROP_max_i }}$ and $\mathrm{I}_{\mathrm{CHi}}$ are respectively the maximum voltage drop across the current generator " i " and the channel " i " current. The simplified equation is the following:

$$
P_{D} \cong \sum_{i=0}^{11}{ }_{0} V_{D R O P_{-} \max _{-} i} \cdot I_{C H i}
$$

The power dissipation should be kept below the maximum power dissipation, defined as:

$$
P_{D, \max }=\frac{\left(T_{j}-T_{a}\right)}{\theta_{j a}}
$$

where T_{j} and T_{a} are respectively the maximum junction and ambient temperature, whereas θ_{ja} is the junction-toambient thermal resistance ($R_{\text {thj-amb }}$). Junction temperature should be maintained below $150{ }^{\circ} \mathrm{C}$.
To summarize, the proper power supply choice must be a trade-off between the correct value assuring the desired LED current and the lowest power dissipation.
In multi-type LED applications, there can be a significant variability of the LED forward voltage (e.g. red LEDs have a lower forward voltage than white, green or blue LEDs).
In this case, the supply voltage must be chosen so to correctly switch on the LEDs with the highest forward voltage. At the same time, the excess of voltage in the lines with the lowest forward voltage LEDs drops on the current generators, increasing the power dissipation and the loss of efficiency.
To avoid these drawbacks, two different approaches are possible:

1. Adding a resistor in series to each low forward voltage LEDs. In this way, the voltage excess drops across the resistor instead of dropping across the current generators. This solution implies a significant reduction of the power dissipated by the chip (lower T_{j}). However the total power dissipation does not change and a remarkable part of the power is still wasted on the series resistor. This not only affects the efficiency, but also raises the cost of the system due to the need to dissipate the generated heat.
2. Another solution is to split the LED voltage rail: one for high forward voltage LEDs and one for low forward voltage LEDs, which can be derived from the former using a switching regulator. This solution is by far the most advantageous in terms of power dissipation. Voltage rails are tailored to the type of LEDs they drive and the wasted power is significantly reduced as well as the heat produced.

21 Higher current requests (outputs in parallel)

When the application requires driving high power LEDs, the current demand could be higher than the current provided by a single channel. In this case a higher current capability can be achieved by connecting together two or more channels (in accordance with the current value, it must be regulated). Normally no stability issues are shown using this output connection but, in any case, a bypass capacitor on driver power supplies (of about $1 \mu \mathrm{~F}$ on $\mathrm{V}_{\text {DDA }}$ and $\mathrm{V}_{\text {DDD }}$) and in particular a bypass capacitor near LED anodes on VLED power supply rail ($2.2 \mu \mathrm{~F}$ or higher) are strongly recommend.

22 PCB layout and external component guidelines

The aim of this paragraph is to provide some recommendations about the design of the application PCB designing. Routing general rules are always valid, however there are some other considerations tailored for this device family focused to reduce as much as possible EMI effects and maintain good signal integrity.

22.1 Signal integrity and EMI radiated/conducted immunity

- The external programming resistor between R-EXT and GND should be connected as close as possible to the device.
- The $I^{2} \mathrm{C}$ bus should move unitarily on the board and should be shielded.
- Try to widen the spacing among signal lines as much as routing restrictions allow. Try not to bring traces closer than three times the dielectric height; the distance between the centers of two adjacent traces should be at least four times the trace width.
- Design the transmission line so that the conductor is as close to the ground plane as possible. This technique couples the transmission line tightly to the ground plane and help decouple it from adjacent signals.
- All $I^{2} \mathrm{C}$ signals should proceed to the same board direction by a data bus.
- Regarding $I^{2} \mathrm{C}$ bus, vias should be avoided, all strips should be traced on a single layer, if it is possible a ground plane has to be provided close to this layer. If it is an inner layer, insert the strips sandwiched between two GND surfaces. Reduce as much as possible the length of connections from the main bus to the device chain (derived traces \equiv stubs). Keep traces as straight as possible (corners should be rounded). Avoid crossing among SCL/SDA strips and power supply lines or fault flag connections ($\mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{DDD}}$ and FLG).
- Filter capacitors ($1 \mu \mathrm{~F}$) must be connected as close as possible to the device on pins: $\mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{DDD}}$ and LDO3. In parallel to each filter capacitor, it's suggested to add 10 nF compensation for EMC/EMI improvement. The same additional capacitor (10 nF X7R) must be connected in parallel on FLG pull-down resistor.

On $V_{\text {DDA }}$ line, a serial resistor of about 10Ω can be also added to constitute an RC low-pass filter to improve the external conducted disturbance immunity. As electromagnetic very noisy environment, to avoid resonant effects on internal digital supply, causing the device internal electrical stress, it's suggested to add a 10Ω resistor between the external filter capacitor and $V_{\text {DDD }}$ pin. The following figure shows the placement of the 10Ω supplementary resistors.

Figure 44. Additional filter connection

22.2 Radiated emission reduction (EMI)

- To decrease the electromagnetic noise during LED power-on/off, the driver output lines should follow the shortest path " $V_{\text {LED }}$ power-rail/LED/driver". Besides, as the system stability, a capacitor should be connected on the LED power supply rail ($2.2 \mu \mathrm{~F}$) as near as possible to LED anodes (the inductive LED power supply rail component should be compensated by the added capacitor, while regarding to a wider PCB, more distributed capacitors have to be placed). Another filter capacitor must be added to each driver power supply pins ($V_{\text {DDD }}$ and $V_{\text {DDA }}$) and on linear regulator output (LDO3), see the previous section
- GND connection must be enlarged as much as possible
- $\quad I^{2} C$ connection strips from controller to LED driver have to be as short as possible, and a ground plane should be provided close to bus lines and layer, see the previous section

22.3 Device thermal management

- For a better power dissipation (to decrease the device working temperature) it is necessary for the package exposed pad to be soldered to the board
- To guarantee a better thermal performance at least a 4-layer (e.g. 2S2P) PCB should be used
- The copper area below the package thermal pad should be enlarged as much as possible also outside the package perimeter using internal and copper side layers and/or extending the copper area using the no-pin package sides
- A reasonable number of vias must connect the copper area below the package to all available PCB layers (e.g. 3×4 or 3×5 via array). Smaller and closely spaced vias is the best solution. The best implementation is represented by copper filled vias
- On each inner layer a copper area must be provided for dissipation (the wider the better, at least 4 times or more the package dimensions). A good condition is to have at least a power layer as an entire copper area (e.g. GND layer)
- Traces for pin connection must be enlarged as much as layout constrains allow
- Several devices in power dissipation conditions on the same board must be adequately spaced

22.4 PCB layout example

On the image below a typical PCB layout is shown with main LED driver external components to be placed with higher priority (output channels to be connected). In this manner, the component position and strip routing length can be optimized. In this example, a two-layer PCB and 0603 component size are used:

- $\quad \mathrm{C} 1$ and C 2 are the $\mathrm{V}_{\text {DDD }}$ filter capacitors, very important for power supply noise reduction and internal regulator stability ($\mathrm{C} 1=10 \mathrm{nF}, \mathrm{C} 2=1 \mu \mathrm{~F}, \mathrm{X} 7 \mathrm{R}$ type)
- $\quad \mathrm{C} 3$ and C 4 are the $\mathrm{V}_{\text {DDA }}$ filter capacitors, very important for power supply noise reduction and internal regulator stability ($C 3=10 \mathrm{nF}, \mathrm{C} 4=1 \mu \mathrm{~F}, \mathrm{X} 7 \mathrm{R}$ type)
- C5 and C6 are the LDO3 filter capacitors, very important for linear regulator stability ($\mathrm{C} 5=10 \mathrm{nF}, \mathrm{C} 6=1 \mu \mathrm{~F}$, X7R type)
- $\quad \mathrm{C} 7$ is the fault flag (FLG) filter capacitor, very useful for the device noise immunity ($C 7=10 \mathrm{nF}, \mathrm{X} 7 \mathrm{R}$ type). R4 is the fault flag pull-down resistor
- \quad R3 is the current programming resistor to be placed as close as possible to R-EXT pin and the device GND connection
- $\quad \mathrm{R} 2$ and R 1 are the $\mathrm{I}^{2} \mathrm{C}$ pull-up resistors
- $\quad R 5$ is the low-side resistor divider related to Power Good pin (PG)

To be noticed vias near GND terminal for C1, C2, C3, C4 and C7 capacitors for a low ground impedance connection. $I^{2} \mathrm{C}$ bus is mainly on a single layer, GND shielded and without crossing with the supply lines.

Figure 45. PCB routing example

As already mentioned, to improve external conducted disturbance immunity, a serial resistor can be added to analog power supply pin (VDDA) before C 3 and C 4 to constitute a low-pass filter, and a serial resistor on digital power supply pin ($V_{D D D}$) after C 1 and C 2 to avoid internal resonant effects (EMI conducted immunity section). These resistors are not placed on the following PCB example.

Figure 46. PCB routing example (components and copper side)

Copper side (from components side)

23 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

23.1 HTSSOP24 exposed pad package information

Figure 47. HTSSOP24 exposed pad package outline

Table 30. HTSSOP24 exposed pad mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A			1.20
A1			0.15
A2	0.80	1.00	1.05
b	0.19		0.30
c	7.70		0.20
D	4.80		7.80
D1	6.20	6.00	7.90
E	4.30	4.40	5.20
E1	3.00	3.20	6.60
E2		0.65	4.50
e	0.45	0.60	3.40
L		1.00	
L1	0		0.75
K			8
aaa			

Figure 48. HTSSOP24 exposed pad recommended footprint

Revision history

Table 31. Document revision history

Date	Revision	Changes
29-Jun-2018	1	First release
05-Nov-2018	2	Added: - Note in Figure 9. Device local dimming function logic - Note in Table 14. BDM_conf_1 field descriptions - Note in Table 19. PWM_gain_x field descriptions - Section 17.4.1 Enable_CH registers - Section 17.4.5 BDM_conf, status, Faulty_ch, PWM_gain_x registers Updated: - Footnote in Table 13. Embedded register list and direct address table - Table 25. Enable_CH[x] register content - Table 29. Command representation and description - Section 17.1 Available commands - Section 19.1.6 Device full status read back Minor text changes.
28-Jan-2019	3	Removed: ID_FR_BDM command in Table 29. Command representation and description and Section Enable_CH registers.
25-Feb-2019	4	Updated: Figure 4. FLG pin connection.

Contents

1 Pin description 2
2 Absolute maximum ratings 3
3 Thermal characteristics 4
4 Electrical characteristics 5
4.1 Switching characteristics 7
5 Device pin functions 10
6 Driver dropout voltage 12
7 Device functional description 14
8 Error detection 18
9 Gradual output delay 19
10 Thermal warning and protection 20
11 Device local dimming function 21
12 Local dimming non-linear step table 23
13 Register descriptions 25
13.1 BDM_conf_1 / Enable_CH_1 register. 26
13.2 BDM_conf_2 / Enable_CH_2 register. 27
13.3 BDM_status register 28
13.4 Faulty_ch_1 register 29
13.5 Faulty_ch_2 register 30
13.6 PWM_gain_x register 31
13.7 LDD register (LED driver device versioning) 31
13.8 OTP/SAM_conf_1_2 register 32
13.9 OTP/SAM_conf_1 register 32
13.10 OTP/SAM_conf_2 register 33
13.11 OTP/BA_n_SAM_setting register 33
$14 I^{2} \mathrm{C}$ bus operations 36
14.1 ${ }^{12} \mathrm{C}$ main concepts 37
15 I²'C addressing for the ALED1262ZT 38
$16 I^{2} C$ selectable Hamming $(8,4)$ encoding 39
17 Message structure 42
17.1 Available commands 42
17.2 Pattern symbols 43
17.3 Write operations 43
17.3.1 BDM configuration register write 44
17.3.2 FAULTY_ch1[7] bit register write (prescaler) 44
17.3.3 PWM_gain_x register write 44
17.3.4 BDM_conf and PWM_gain_x register write 45
17.3.5 Direct write on registers 45
17.4 Read operations 47
17.4.1 Status register 47
17.4.2 Faulty_ch registers 47
17.4.3 PWM_gain_x registers 47
17.4.4 BDM_conf, status, Faulty_ch, PWM_gain_x registers 47
17.4.5 Direct read from registers 48
18 OTP operations 50
18.1 OTP emulate 50
18.2 OTP burn 51
18.3 OTP read 52
19 I ${ }^{2}$ C communication examples 53
19.1 Communication without parity detection 53
19.1.1 OTP burning with double zap and read back 53
19.1.2 All LEDs with power-ON 53
19.1.3 110 Hz dimming prescaler bit 53
19.1.4 All LEDs with PWM dimming at 50% (full configuration) 53
19.1.5 Device status read back 53
19.1.6 Device full status read back 54
19.1.7 LDD read back (device identifier) 54
19.2 Communication with parity detection 54
19.2.1 All LEDs with power-ON 54
20 LED supply voltage 55
21 Higher current requests (outputs in parallel) 56
22 PCB layout and external component guidelines 57
22.1 Signal integrity and EMI radiated/conducted immunity 57
22.2 Radiated emission reduction (EMI) 58
22.3 Device thermal management 58
22.4 PCB layout example 58
23 Package information 61
23.1 HTSSOP24 exposed pad package information 61
Revision history 63

List of tables

Table 1. Pin description 2
Table 2. Absolute maximum ratings 3
Table 3. Thermal characteristics 4
Table 4. Electrical characteristics ($\mathrm{V}_{\mathrm{DDA}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}}=5 \mathrm{~V}, \mathrm{Tj}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified) 5
Table 5. Switching characteristics ($\mathrm{V}_{\mathrm{DDA}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDD}}=5 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$, unless otherwise specified) 7
Table 6. Minimum dropout voltage for certain current values ($\mathrm{Tj}=25^{\circ} \mathrm{C}$; worst case simulated at target minus 3%) 12
Table 7. Minimum dropout voltage at 60 mA (worst case simulated at target minus 3\%) 13
Table 8. Typical output current vs $\mathrm{R}_{\mathrm{EXT}}$ value. 13
Table 9. Operative status 16
Table 10. Type of fault and device behavior 18
Table 11. Gradual output delay 19
Table 12. Local dimming step 23
Table 13. Embedded register list and direct address table 25
Table 14. BDM_conf_1 field descriptions 26
Table 15. BDM_conf_2 field descriptions 27
Table 16. BDM_status field descriptions 28
Table 17. Faulty_ch_1 field descriptions 29
Table 18. Faulty_ch_2 field descriptions 30
Table 19. PWM_gain_x field descriptions 31
Table 20. LDD field descriptions 31
Table 21. OTP / SAM_conf_1_2 field descriptions 32
Table 22. OTP / SAM_conf_1 field descriptions 32
Table 23. SAM_conf_2 field description 33
Table 24. OTP / BA_n_SAM_setting field descriptions 34
Table 25. Enable_CH[x] register content 34
Table 26. Excerpt from table "OTP / BA_n_SAM_setting field descriptions" 39
Table 27. Datawords and corresponding codewords 40
Table 28. Not encoded nibbles and equivalent Hamming bytes 41
Table 29. Command representation and description 42
Table 30. HTSSOP24 exposed pad mechanical data 62
Table 31. Document revision history 63

List of figures

Figure 1. HTSSOP24 pinout 2
Figure 2. $I^{2} \mathrm{C}$ timing definition 8
Figure 3. Simplified internal block diagram 9
Figure 4. FLG pin connection 11
Figure 5. Channel dropout voltage vs output current $\left(\mathrm{Tj}=25^{\circ} \mathrm{C}\right)$ 12
Figure 6. ALED1262ZT typical connection scheme 14
Figure 7. The ALED1262ZT full connection 15
Figure 8. Power supply internal signal behavior 17
Figure 9. Device local dimming function logic. 21
Figure 10. Channel dimming feature 21
Figure 11. Local dimming duty cycle vs dimming steps 24
Figure 12. LED open circuit diagnosis response table 35
Figure 13. Slave SDA falling time vs $C B u s$ Rup $=1.8 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{DDD}}=5 \mathrm{~V}$ 36
Figure 14. Slave SDA rising time vs CBus Rup $=1.8 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{DDD}}=5 \mathrm{~V},-40<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C}$ 36
Figure 15. Graphic view of encoding 40
Figure 16. Excerpt of communication scheme in application. 41
Figure 17. Pattern symbols 43
Figure 18. Without parity detection (4 bytes) 44
Figure 19. With parity detection (8 bytes). 44
Figure 20. Without parity detection (3 bytes) 44
Figure 21. With parity detection (6 bytes). 44
Figure 22. Without parity detection (14 bytes) 44
Figure 23. With parity detection (28 bytes). 44
Figure 24. Without parity detection (16 bytes) 45
Figure 25. With parity detection (32 bytes). 45
Figure 26. Without parity detection (16 bytes) 45
Figure 27. With parity detection (32 bytes). 46
Figure 28. Without parity detection (4 bytes) 47
Figure 29. With parity detection (7 bytes). 47
Figure 30. Without parity detection (5 bytes) 47
Figure 31. With parity detection (9 bytes). 47
Figure 32. Without parity detection (15 bytes) 47
Figure 33. With parity detection (29 bytes). 47
Figure 34. Without parity detection (20 bytes) 48
Figure 35. With parity detection (39 bytes). 48
Figure 36 . Without parity detection 48
Figure 37. With parity detection 49
Figure 38. Emulate OTP bit without parity detection 50
Figure 39. Emulate OTP bit with parity detection 51
Figure 40. Burn OTP bit without parity detection 51
Figure 41. Burn OTP bit with parity detection 51
Figure 42. Read back OTP bit without parity detection 52
Figure 43. Read back OTP bit with parity detection. 52
Figure 44. Additional filter connection 58
Figure 45. PCB routing example 59
Figure 46. PCB routing example (components and copper side). 60
Figure 47. HTSSOP24 exposed pad package outline 61
Figure 48. HTSSOP24 exposed pad recommended footprint 62

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

STMicroelectronics:
ALED1262ZTTR

[^0]: 1. If PG is not asserted, FLG and/or load diagnosis are ignored.
