

Digital Input, Mono 2 W, Class-D Audio Power Amplifier

Data Sheet

FEATURES

Filterless mono, digital input Class-D amplifier I²C control interface Serial digital audio interface supports common formats (I²S, PCM, LJ, RJ, TDM1-16, PDM) Supports wide range of sample rates: 8.0 kHz to 96.0 kHz MCLK and BCLK can be provided by built-in phase-locked loop (PLL) Supports single power supply mode; DVDD can be provided by built-in low dropout (LDO) regulator 2.5 V to 5.5 V SPKVDD operating supply voltage 1.08 V to 1.98 V DVDD operating supply voltage Support off-chip volume control without I²C 2.4 W into 4 Ω and 1.4 W into 8 Ω at 5 V supply with <1% THD + N Available in a 16-ball, 1.92 mm × 1.94 mm, 0.4 mm pitch WLCSP Efficiency 95% at full scale into 8 Ω Signal-to-noise ratio (SNR): 103 dB, A-weighted Power supply rejection ratio (PSRR): >80 dB at 217 Hz Digital volume control: -70 dB to +24 dB in 0.375 dB steps Ultralow idle current Autosample rate detection Pop-and-click suppression Short-circuit and thermal protection with programmable autorecovery Supports smart power-down when no input signal is detected Power-on reset and UVLO voltage monitoring Selectable ultralow EMI emission mode Supports SPKVDD voltage monitor **Digital audio processing** 7-band programmable equalizer Programmable dynamic range compression (DRC) with noise gate, expander, compressor, and limiter

APPLICATIONS

Mobile phones Portable media players Laptop PCs Wireless speakers Portable gaming Navigation systems

GENERAL DESCRIPTION

The SSM2529 is a digital input, Class-D power amplifier that combines a digital-to-analog converter (DAC), a low power audio specific digital signal processor, and a sigma-delta $(\Sigma - \Delta)$ Class-D modulator.

SSM2529

This unique architecture enables extremely low real-world power consumption from digital audio sources with excellent audio performance. The SSM2529 is ideal for power sensitive applications, such as mobile phones and portable media players, where system noise can the corrupt small analog signals that are sent to an analog input audio amplifier.

Using the SSM2529, audio data can be transmitted to the amplifier over a standard digital audio serial interface, thereby significantly reducing the effect of noise sources such as GSM interference or other digital signals on the transmitted audio. The closed-loop digital input design retains the benefits of an all-digital amplifier, yet enables very good PSRR and audio performance. The three-level, Σ - Δ Class-D modulator is designed to provide the least amount of EMI, the lowest quiescent power dissipation, and the highest audio efficiency without sacrificing audio quality.

The audio input is provided via a serial audio interface that can be programmed to accept all common audio formats, including I²S, TDM, and PDM. Control of the IC is provided via an I²C control interface. An alternative to I²C control is standalone operation mode, which allows several settings that are adjusted by off-chip external resistors. The SSM2529 can accept a variety of input MCLK frequencies and can use BCLK as the clock source in some configurations. An integrated PLL can also provide the device master clock.

The integrated DSP includes soft digital volume control circuits; a de-emphasis, high-pass filter; a seven-band programmable equalizer; and a programmable digital dynamic range compressor. In addition, the part includes a feedforward speaker temperature prediction module to protect the loudspeaker.

The SSM2529 supports single-supply mode, where DVDD is provided by the on-chip LDO regulator, eliminating the need for an external digital core supply.

The digital interface is very flexible and convenient. It can offer a better system solution for other products whose sole audio source is digital, such as wireless speakers, laptop PCs, portable digital televisions, and navigation systems.

The SSM2529 is specified over the industrial temperature range of -40° C to $+85^{\circ}$ C. It has built-in thermal shutdown and output shortcircuit protection. It is available in a 16-ball, 1.92 mm × 1.94 mm wafer level chip scale package (WLCSP).

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Data Sheet

TABLE OF CONTENTS

Features
Applications1
General Description
Revision History
Functional Block Diagram 4
Specifications
Performance Specifications5
Power Supply Requirements 6
Digital Input/Output6
Digital Interpolation Filter 6
Digital Timing6
Absolute Maximum Ratings
Thermal Resistance
ESD Caution
Pin Configuration and Function Descriptions
Typical Performance Characteristics
Theory of Operation14
Overview14
Master Clock
Internal Clock Generator14
Digital Input Serial Audio Interface14
PDM Mode Setup and Control15
High-Pass Filter15
Fully Programmable Seven-Band Equalizer15
Dynamic Range Control18
DRC Mode Control
Gain Ripple Remove
Speaker Protection
Power Supplies
Power Control
Power-On Reset/Voltage Supervisor
Standalone Mode22
I ² C Port
Register Summary
Register Details
Software Reset and Master Software Power-Down Control
(PWR_CTRL) Register
MCLK Ratio and Frequency27
Edge Speed and Clocking Control (SYS_CTRL) Register 28

Serial Audio Interface and Sample Rate Control (SAI_FMT1) Register
Serial Audio Interface Control (SAI_FMT2) Register 29
Channel Mapping Control Register
Volume Control Before FDSP (VOL_BF_FDSP) Register 31
Volume Control After FDSP (VOL_AF_FDSP) Register 31
Volume and Mute Control Register
DPLL_CTRL Register
APLL_CTRL1 Register
APLL_CTRL2 Register
APLL_CTRL3 Register
APLL_CTRL4 Register
APLL_CTRL5 Register
APLL_CTRL6 Register
FAULT_CTRL1 Register
FAULT_CTRL2 Register
DEEMP_CTRL Register
HPF_CTRL Register
EQ1_COEF0_HI Register
EQ1_COEF0_LO Register
EQ1_COEF1_HI Register
EQ1_COEF1_LO Register
EQ1_COEF2_HI Register
EQ1_COEF2_LO Register
EQ1_COEF3_HI Register
EQ1_COEF3_LO Register
EQ1_COEF4_HI Register
EQ1_COEF4_LO Register
EQ2_COEF0_HI Register
EQ2_COEF0_LO Register
EQ2_COEF1_HI Register
EQ2_COEF1_LO Register
EQ2_COEF2_HI Register
EQ2_COEF2_LO Register
EQ2_COEF3_HI Register
EQ2_COEF3_LO Register
EQ2_COEF4_HI Register
EQ2_COEF4_LO Register
EQ3_COEF0_HI Register
EQ3_COEF0_LO Register

Data Sheet

SSM2529

EQ3_COEF1_HI Register	EQ7_COEF1_LO Register	41
EQ3_COEF1_LO Register	EQ7_COEF2_HI Register	41
EQ3_COEF2_HI Register	EQ7_COEF2_LO Register	41
EQ3_COEF2_LO Register	EQ_CTRL1 Register	42
EQ3_COEF3_HI Register	EQ_CTRL2 Register	42
EQ3_COEF3_LO Register	DRC_CTRL1 Register	
EQ3_COEF4_HI Register	DRC_CTRL2 Register	
EQ3_COEF4_LO Register	DRC_CTRL3 Register	44
EQ4_COEF0_HI Register	DRC_CURVE1 Register	44
EQ4_COEF0_LO Register	DRC_CURVE2 Register	45
EQ4_COEF1_HI Register	DRC_CURVE3 Register	45
EQ4_COEF1_LO Register	DRC_CURVE4 Register	45
EQ4_COEF2_HI Register	DRC_CURVE5 Register	45
EQ4_COEF2_LO Register	DRC_HOLD_TIME Register	46
EQ4_COEF3_HI Register	DRC_RIPPLE_CTRL Register	46
EQ4_COEF3_LO Register	DRC Mode Control Register	46
EQ4_COEF4_HI Register	FDSP_EN Register	47
EQ4_COEF4_LO Register	SPK_PROT_EN Register	47
EQ5_COEF0_HI Register	TEMP_AMBIENT Register	47
EQ5_COEF0_LO Register	SPKR_DCR Register	47
EQ5_COEF1_HI Register	SPKR_TC Register	47
EQ5_COEF1_LO Register	SP_CF1_H Register	47
EQ5_COEF2_HI Register40	SP_CF1_L Register	47
EQ5_COEF2_LO Register40	SP_CF2_H Register	47
EQ5_COEF3_HI Register40	SP_CF2_L Register	
EQ5_COEF3_LO Register40	SP_CF3_H Register	
EQ5_COEF4_HI Register40	SP_CF3_L Register	
EQ5_COEF4_LO Register40	SP_CF4_H Register	
EQ6_COEF0_HI Register40	SP_CF4_L Register	
EQ6_COEF0_LO Register40	SPKR_TEMP Register	
EQ6_COEF1_HI Register40	SPKR_TEMP_MAG Register	
EQ6_COEF1_LO Register40	MAX_SPKR_TEMP Register	
EQ6_COEF2_HI Register41	SPK_GAIN Register	49
EQ6_COEF2_LO Register41	SOFT_RST Register	49
EQ7_COEF0_HI Register41	Applications Information	50
EQ7_COEF0_LO Register41	Outline Dimensions	51
EQ7_COEF1_HI Register41	Ordering Guide	51

REVISION HISTORY

7/12—Revision 0: Initial Version

FUNCTIONAL BLOCK DIAGRAM

SPECIFICATIONS

Standard test condition: SPKVDD = 4.2 V; DVDD = 1.8 V; $f_s = 48 \text{ kHz}$; MCLK = $128 \times f_s$; $T_A = 25^{\circ}\text{C}$; $R_L = 8 \Omega + 33 \mu\text{H}$; LP_MODE = 0; 0 dB volume control setting, unless otherwise noted.

PERFORMANCE SPECIFICATIONS

Table 1.						
Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
DEVICE CHARACTERISTICS						
Output Power	P _{OUT}	f = 1 kHz, $BW = 20 kHz$				
		$R_L = 4 \Omega$, THD = 1%, SPKVDD = 5.0 V		2.4		W
		$R_L = 4 \Omega$, THD = 10%, SPKVDD = 5.0 V		3.1		W
		$R_L = 8 \Omega$, THD = 1%, SPKVDD = 5.0 V		1.4		W
		$R_L = 8 \Omega$, THD = 10%, SPKVDD = 5.0 V		1.8		W
		$R_L = 4 \Omega$, THD = 1%, SPKVDD = 4.2 V		1.7		W
		$R_L = 4 \Omega$, THD = 10%, SPKVDD = 4.2 V		2.2		W
		$R_L = 8 \Omega$, THD = 1%, SPKVDD = 4.2 V		0.95		W
		$R_L = 8 \Omega$, THD = 10%, SPKVDD = 4.2 V		1.2		W
		$R_L = 4 \Omega$, THD = 1%, SPKVDD = 3.6 V		1.2		W
		$R_L = 4 \Omega$, THD = 10%, SPKVDD = 3.6 V		1.6		W
		$R_L = 8 \Omega$, THD = 1%, SPKVDD = 3.6 V		0.7		W
		$R_L = 8 \Omega$, THD = 10%, SPKVDD = 3.6 V		0.9		W
		$R_L = 4 \Omega$, THD = 1%, SPKVDD = 2.5 V		0.55		W
		$R_L = 4 \Omega$, THD = 10%, SPKVDD = 2.5 V		0.72		W
		$R_L = 8 \Omega$, THD = 1%, SPKVDD = 2.5 V		0.32		W
		$R_L = 8 \Omega$, THD = 10%, SPKVDD = 2.5 V		0.42		W
Efficiency	η	$P_{OUT} = 2 W$ into 4 Ω , SPKVDD = 5.0 V		91		%
		$P_{OUT} = 1.4 \text{ W}$ into 8 Ω , SPKVDD = 5.0 V, normal operation		95		%
		$P_{OUT} = 1.4 \text{ W}$ into 8Ω , SPKVDD = 5.0 V, ultralow EMI operation		86		%
Total Harmonic Distortion Plus Noise	THD + N	$P_{OUT} = 1 \text{ W}$ into 8 Ω , f = 1 kHz, SPKVDD = 5.0 V		0.03		%
		$P_{OUT} = 0.7$ W into 8 Ω , f = 1 kHz, SPKVDD = 4.2 V		0.03		%
		$P_{OUT} = 0.5$ W into 8 Ω , f = 1 kHz, SPKVDD = 3.6 V		0.03		%
Average Switching Frequency	f _{sw}			280		kHz
Differential Output Offset Voltage	V _{oos}			2.0		mV
Power Supply Rejection Ratio	PSRR (DC)	SPKVDD = 2.5 V to 5.0 V	70	80		dB
	PSRR _{GSM}	V _{RIPPLE} = 100 mV rms at 217 Hz, dither input		80		dB
Supply Current	I _{SPKVDD}	Dither input, SPKVDD = 5.0 V		3.0		mA
		Dither input, SPKVDD = 4.2 V		2.8		mA
		Dither input, SPKVDD = 3.6 V		2.7		mA
		Dither input, SPKVDD = 2.5 V		2.4		mA
		Power-down		100		nA
Supply Current	I _{DVDD}	Dither input, DVDD = 1.8 V		0.6		mA
		Dither input, DVDD = 1.08 V		0.3		mA
		Power-down		2		μΑ
Output Voltage Noise	e _n	f = 20 Hz to 20 kHz, dither input		22		μV
Signal-to-Noise Ratio	SNR	A-weighted reference to 0 dBFS, SPKVDD = 4.2 V		103		dB
Mute Attenuation		Soft mute on	100			dB

POWER SUPPLY REQUIREMENTS

Table 2.

Parameter	Min	Тур	Max	Unit
SPKVDD	2.5	4.2	5.5	V
DVDD	1.08	1.8	1.98	V

DIGITAL INPUT/OUTPUT

Table 3.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
Input Voltage, High	V _{IH}		$0.7 \times \text{DVDD}$		3.6	V
Input Voltage, Low	VIL		-0.3		$+0.3 \times \text{DVDD}$	V
Input Leakage Current, High	I _{IH}	Excluding MCLK			1	μA
Input Leakage Current, Low	I _{IL}	Excluding MCLK and bidirectional pins			1	μA
MCLK Input Leakage, High	I _{IH}				3	μA
MCLK Input Leakage, Low	I _{IL}				3	μΑ
Input Capacitance					5	рF

DIGITAL INTERPOLATION FILTER

Table 4.

Parameter	Mode	Factor	Min	Тур	Max	Unit
Pass Band (–3 dB)	48 kHz mode, typical at 48 kHz	0.423 f _s		20		kHz
Pass-Band Ripple	48 kHz mode, typical at 48 kHz 0.5 f _s ±0.03				±0.03	dB
Transition Band	48 kHz mode, typical at 48 kHz			24		kHz
Stop Band	48 kHz mode, typical at 48 kHz 0.582 f _s 28				kHz	
Stop Band Attenuation	48 kHz mode, typical at 48 kHz		60			dB
Group Delay	48 kHz mode, typical at 48 kHz	14/f _s		292		μs

DIGITAL TIMING

All timing specifications are given for the default setting (I²S mode) of the serial input port.

Table 5.

	Limit			
Parameter	T _{MIN}	T _{MAX}	Unit	Description
MASTER CLOCK (See Figure 2)				
t _{BP}	74	136	ns	MCLK period, 256 f _s mode
t _{BP}	148	271	ns	MCLK period, 128 f _s mode
SERIAL PORT (See Figure 2)				
t _{BIL}	40		ns	BCLK low pulse width
t _{BIH}	40		ns	BCLK high pulse width
t _{LIS}	10		ns	LRCLK setup; time to BCLK rising
t _{un}	10		ns	LRCLK hold; time from BCLK rising
t _{sıs}	10		ns	SDATA setup; time to BCLK rising
t _{siH}	10		ns	SDATA hold; time from BCLK rising

Data Sheet

		Limit		
Parameter	T _{MIN}	T _{MAX}	Unit	Description
I ² C PORT (See Figure 3)				
f _{scl}		400	kHz	SCL frequency (not shown in Figure 3)
t _{sCLH}	0.6		μs	SCL high
t _{scll}	1.3		μs	SCL low
t _{sCS}	0.6		μs	Setup time, relevant for repeated start condition
t _{sCH}	0.6		μs	Hold time; after this period, the first clock is generated
t _{DS}	100		ns	Data setup time
t _{scr}		300	ns	SCL rise time
t _{sCF}		300	ns	SCL fall time
t _{sDR}		300	ns	SDA rise time (not shown in Figure 3)
t _{sDF}		300	ns	SDA fall time (not shown in Figure 3)
t _{BFT}	0.6		μs	Bus-free time; time between stop and start

Figure 3. I²C Port Timing

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings apply at 25°C, unless otherwise noted.

Table 6.

Parameter	Rating
SPKVDD Supply Voltage	–0.3 V to +5.5 V
DVDD Supply Voltage	–0.3 V to +1.98 V
Input Voltage (Signal Source)	–0.3 V to +3.6 V
ESD Susceptibility	4 kV
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	-40°C to +85°C
Junction Temperature Range	–65°C to +165°C
Lead Temperature (Soldering, 60 sec)	300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 7. Thermal Resistance

Package Type	θ _{JA}	Unit
16-Ball, 1.92 mm × 1.94 mm WLCSP	56.1	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 8. Pin Function Descriptions

Pin Number	Mnemonic	Function	Description
A1	SCL/VOLUME CONTROL A	Input	I ² C Clock in I ² C Mode/Volume Controller A in Standalone Mode
A2	SDA/VOLUME CONTROL B	Input/Output	I ² C Data in I ² C Mode/Volume Controller B in Standalone Mode
A3	SPKVDD	Power	2.5 V to 5.5 V Amplifier Power
A4	OUTP	Output	Positive Output
B1	STDBN	Input	Power-Down Control; Active Low
B2	SA_MODE	Input	Standalone and Hardware Selection; 1 = Standalone Mode
B3	ADDR/PDM	Input	I ² C Chip Address Select/Input Interface Select in Standalone Mode
B4	OUTN	Output	Negative Output
C1	DVDD	Power	Digital Power
C2	LDO_OUT	Power	LDO Output
C3	GND	Power	Digital and Analog Ground
C4	SPKGND	Power	Amplifier Ground
D1	MCLK	Input	Serial Audio Interface Master Clock and I ² S/TDM/PDM Channel Select
D2	SDATA	Input	I ² S Serial Data/PDM Data
D3	BCLK	Input	I ² S Bit Clock/PDM Clock
D4	LRCLK	Input	I ² S Left-Right Frame Clock

SSM2529

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. THD + N vs. Output Power into 8 Ω , 5.0 V Gain Setting

Figure 6. THD + N vs. Output Power into 4 Ω , 5.0 V Gain Setting

Figure 7. THD + N vs. Output Power into 8 Ω , 3.6 V Gain Setting

Figure 8. THD + N vs. Output Power into 4 Ω , 3.6 V Gain Setting

Figure 9. THD + N vs. Frequency into 8 Ω , SPKVDD = 5.0 V

Figure 10. THD + N vs. Frequency into 4 Ω , SPVKDD = 5.0 V

Data Sheet

SSM2529

Figure 12. THD + N vs. Frequency into 4 Ω , SPVKDD = 3.6 V

Figure 13. THD + N vs. Frequency into 8 Ω , SPKVDD = 2.5 V

Figure 14. THD + N vs. Frequency into 4 Ω , SPVKDD = 2.5 V

SSM2529

Figure 17. Maximum Output Power vs. Supply Voltage, $R_L = 8 \Omega$

Figure 18. Maximum Output Power vs. Supply Voltage, $R_L = 4 \Omega$

Figure 19. Efficiency vs. Output Power into 8 Ω

Figure 22. Power Supply Current vs. Output Power, $R_L = 4 \Omega$

Data Sheet

SSM2529

THEORY OF OPERATION overview

The SSM2529 is a fully integrated, mono, digital switching audio amplifier. The SSM2529 receives digital audio inputs and produces the PDM differential switching outputs using the internal power stage. The part has built-in protections for overtemperature and overcurrent conditions. The SSM2529 also has built-in soft turn-on and soft turn-off for pop-and-click suppression. The part has programmable register control via the I²C port.

MASTER CLOCK

In master mode, the built-in PLL can provide the master clock. In slave mode, the SSM2529 receives an external clock at the MCLK or BCLK input pin. The external clock must be fully synchronous with the incoming digital audio on the serial interface. The internal clock for the SSM2529 always runs at 5.6448 MHz to 8.192 MHz, depending on the input sample rate. The three options for providing the master clock to the part are as follows:

- Using the clock generated by the built-in PLL
- Using the BCLK pin
- Using the MCLK pin

The MCLK option can use the built-in PLL or the BCLK pin to generate the internal clock as long as the clock is provided at the same rate that is required by the MCLK pin. By setting the PLLEN bit in Register 0x0E, this is enabled. In this case, there is no need to provide the master clock to the MCLK pin, which in turn saves a pin connection from the audio source. If using the MCLK pin, various multiples of the sample frequency can be used for MCLK. See Table 48 for all available options and settings. When the SSM2529 enters its power-down state, it is possible to gate this clock to further conserve system power. However, an MCLK must be present for the audio amplifier to operate. The input MCLK rate is determined by setting the MCS bits in Register 0x00. For more information, see Table 48.

INTERNAL CLOCK GENERATOR

The digital core clock can be derived directly from the external clock, or it can be generated using the PLL. Clocks for the DSPs, the serial ports, and the converters are derived from the core clock. The core clock rate is always an integer multiple of the sample rate used for the part.

The clock generation block is composed of a digital PLL and an analog PLL. The analog PLL can accept input frequencies in the 8 MHz to 27 MHz range. To support lower frequencies (8 kHz to 8 MHz), the chip provides a digital PLL. It can boost the input clock frequency by 2^N , where N = 1 to 10.

Figure 25 shows the clock generation block diagram.

For the digital PLL, the source clock is selected by the DPLL_REF_SEL bits (Register 0x08), and the frequency relationship between the DPLL input and the output clock is defined by the DPLL_NDIV bit.

The frequency relationship between the APLL input and output is

$$f_{PLL} = f_{IN} \times (R + (N/M))/X$$

where *R*, *N*, *M*, and *X* are defined by the corresponding PLL registers (Register 0x09 to Register 0x0D).

DIGITAL INPUT SERIAL AUDIO INTERFACE

The SSM2529 includes a standard serial audio interface that is slave only. The interface is capable of receiving I²S, left justified, right justified, PCM/TDM, or PDM input formats. The number of data bits must be set when in right-justified mode only.

Figure 25. Clock Generation Block Diagram

PDM MODE SETUP AND CONTROL

If the ADDR pin is tied to DVDD while in standalone mode, or the PDM_MODE bit (Register 0x01, Bit 7) is set to 1 while in I²C mode, the SSM2529 operates in PDM mode. In PDM mode, the SDATA pin receives the 1-bit PDM input to the DAC, and the BCLK pin provides the system clock for registering the input data. The PDM data input is registered directly on each clock edge.

The left or right data can be registered on either the rising or falling BCLK edge in both standalone mode or in I^2C mode by setting the BCLK_EDGE bit (Register 0x03, Bit 0).

When the part is in standalone mode and the PDM interface is selected, pull the MCLK pin to logic level low to register the left channel data (L data) on the rising BCLK edge, and the right channel data (R data) on the falling BCLK edge. When the MCLK pin is connected to logic high, the R data is registered on the rising BCLK edge, and the L data is registered on the falling BCLK edge.

When this part is in I²C PDM mode, if BCLK_EDGE = 0, the L data is registered on the rising BCLK edge and the R data is registered on the falling BCLK edge. If BCLK_EDGE = 1, the L data is registered on the falling BCLK edge, and the R data is registered on the rising BCLK edge.

Table 9. PDM Timing Parameters

HIGH-PASS FILTER

The audio processing block contains a configurable first-order, high-pass filter. When the high-pass filter is enabled, the dc values are continuously calculated and subtracted from the input signal. By setting HPFOR (Register 0x15, Bit 1), the last calculated dc value is stored. When the high-pass filter is disabled, the stored value is still subtracted from the input signal until the HPFOR is cleared to 0.

The high-pass filter can work in audio mode or application mode, as configured by the HPF_CTRL register. In audio mode, the high-pass filter's 3 dB cutoff frequency is 3.7 Hz when the

sampling rate is 48 kHz. In application mode, the 3 dB cutoff frequency varies from 50 Hz to 750 Hz, which is selected by using the HPFCUT bits (Register 0x15, Bits[5:2]).

Figure 27. High-Pass Filter Response from HPFCUT Adjustment

Table 10. HPF_CTRL Register

			-					
D7		D6	D5	D4	D3	D2	D1	D0
Reserved			HPFCUT				HPFEN	

Table 11. Bit Description of HPF_CTRL Register

Bit Name	Description	Settings
HPFCUT[3:0]	HPF cut-off frequency selection	See the Table 66
HPFOR	HPF mode selection	0: audio mode (cutoff frequency is 3.7 Hz) 1: application mode (cut-
HPFEN	HPF enable	0: disable 1: enable

FULLY PROGRAMMABLE SEVEN-BAND EQUALIZER

The programmable seven-band equalizer comprises five biquad filters (Band 1 to Band 5) and two first-order IIR filters (Band 6 and Band 7). Figure 28 shows the system block diagram.

All filter coefficients are programmable via the corresponding registers. When not all five midfrequency bands are needed, the filter bank can be configured as other filters, such as de-emphasis and notch filters.

To operate as a seven-band equalizer, the two first-order IIR filters are usually configured as one low-pass shelving filter and one highpass shelving filter, and the biquad filters are configured as peak filters. By using the coefficient registers, the cutoff frequencies and peak gains of the shelving filters and the center frequencies and bandwidths of the peak filters are programmable. For frequency bands lower than 200 Hz, the low-pass shelving filter is suggested.

The common biquad filter transfer function is

$$H(z) = \frac{P0 + P1 \times Z^{-1} + P2 \times Z^{-2}}{1 - D1 \times Z^{-1} - D2 \times Z^{-2}}$$

The first-order IIR filter transfer function is

$$H(z) = \frac{P0 + P1 \times Z^{-1}}{1 - D1 \times Z^{-1}}$$

In normal mode, the supported coefficients range from -4 to approximately +4. For equalizer mode, this range means that the cutoff and center frequencies can vary from 40 Hz to 12 kHz when the input sampling rate is 48 kHz, and the peak gain varies from -18 dB to +18 dB.

The EQ_FORMAT bit in Register 0x54 defines the coefficient format. The default value is 0, and the corresponding format is Q3.13. Setting this bit to 1 achieves a larger coefficient range (from –8 to approximately +8), which enables a larger gain boost or decreases the range.

Online coefficient update is supported. If the filter bank coefficients are updated when the EQ is operating, set the EQ_UPD bit after the coefficient is written. The coefficient update procedure requires approximately 0.05 ms to complete. The read only bit, EQ_UPDING, in the EQ_CTRL1 register represents the coefficient update status. If the system clock is removed during this period, the update procedure cannot be finished, and the EQ_UPD_CLR bit must be set to cancel this update.

The filter bank can be disabled, and all seven bands can be bypassed separately to save power. The corresponding bits are EQEN and EQBP1 to EQBP7 in Register 0x55.

Table 12. EQ Coefficients Registers

Register	De sister News	Description
Address	Register Name	Description
0x16	EQ1_COEF0_HI[15:8]	EQ Band 1, Coefficient 0 MSB
0x17	EQ1_COEF0_LO[7:0]	EQ Band 1, Coefficient 0 LSB
0x18	EQ1_COEF1_HI[15:8]	EQ Band 1, Coefficient 1 MSB
0x19	EQ1_COEF1_LO[7:0]	EQ Band 1, Coefficient 1 LSB
0x1A	EQ1_COEF2_HI[15:8]	EQ Band 1, Coefficient 2 MSB
0x1B	EQ1_COEF2_LO[7:0]	EQ Band 1, Coefficient 2 LSB
0x52	EQ7_COEF2_HI[15:8]	EQ Band 7, Coefficient 2 MSB
0x53	EQ7_COEF2_LO[7:0]	EQ Band 7, Coefficient 2 LSB

Table 13. EQ_CTRL1 Register

D7	D6	D5	D4	D3	D2	D1	D0
E	Q_RES	SERVED)	eq_ Upding	EQ_UPD_ CLR	EQ_ FORMAT	EQ_ UPD

Bit Name	Description	Settings		
EQ_RESERVED	Reserved			
EQ_UPDING	EQ coefficient updating flag	0: EQ coefficients updating		
		1: None		
EQ_UPD_CLR	EQ coefficient update	0: normal operation		
	clear	1: interrupt coefficient update		
EQ_FORMAT	EQ coefficient format	0: normal		
	selection	1: large gain		
EQ_UPD	EQ coefficient registers	1: update		
	update flag	0: none		

Table 14. Bit Description of EQ_CTRL1 Register

Table 15. EQ_CTRL2 Register

D7	D6	D5	D4	D3	D2	D1	D0
EQEN	EQBP7	EQBP6	EQBP5	EQBP4	EQBP3	EQBP2	EQBP1

Table 16. Bit Description of EQ_CTRL2 Register

Bit Name	Description	Settings
EQEN	EQ enabled	0: EQ disabled
		1: EQ enabled
EQBP7	EQ Band 7 bypass	0: no bypass
	when EQ enabled	1: bypass EQ Band 7
EQBP6	EQ Band 6 bypass	0: no bypass
	when EQ enabled	1: bypass EQ Band 6
EQBP5	EQ Band 5 bypass	0: no bypass
	when EQ enabled	1: bypass EQ Band 5
EQBP4	EQ Band 4 bypass	0: no bypass
	when EQ enabled	1: bypass EQ Band 4
EQBP3	EQ Band 3 bypass	0: no bypass
	when EQ enabled	1: bypass EQ Band 3
EQBP2	EQ Band 2 bypass	0: no bypass
	when EQ enabled	1: bypass EQ Band 2
EQBP1	EQ Band 1 bypass	0: no bypass
	when EQ enabled	1: bypass EQ Band 1

The typical characteristic of each EQ band is shown in Figure 29 to Figure 36.

Figure 29. Low-Pass Shelving Filter Frequency Response Across Bandwidth Settings

Data Sheet 15 15 10 10 5 5 GAIN (dBFS) GAIN (dBFS) 0 ſ -5 -5 -10 -10 _15 └ 1k -15 0749-032 10k 100k 1M 10M 100M

FREQUENCY (Hz) Figure 30. Low-Pass Shelving Filter Frequency Response Across Gain Settings

Figure 31. Peak Filter Frequency Response with Different Center Frequencies

Figure 32. Peak Filter Frequency Response Across Bandwidth Settings

SSM2529

Figure 33. Peak Filter Frequency Response Across Gain Settings

Figure 34. Notch Filter Response (A0 = +1982 to +2048, A1 = -2041 to +2048, Bandwidth = 251 Hz, Center Frequency = 631 Hz)

Figure 35. Treble Band Frequency Response Across Bandwidth Settings

SSM2529

DYNAMIC RANGE CONTROL

The dynamic range control function is used to alter (usually reduce) the dynamic range of the audio signal so that a loud signal can be heard without disturbing the hearing perception, and a weak signal can still be heard. In addition, very large signals and very weak signals are usually treated with different methods to ensure the overall sound quality. The DRC functions include the following:

- Limiter
- Compressor
- Expander
- Noise Gate

The dynamic range is not altered when the signal level is in the middle. These functions can be enabled or disabled individually.

Limiter

If the input audio samples are large, the output is clipped at a predefined level so that the speakers are not overdriven.

If the ADC power tracking function is enabled, the maximum output level is set automatically to correspond to the speaker SPKVDD power.

Compressor

The compressor is used to reduce the signal dynamic range when the input level is large and within predefined boundaries. This helps reduce the loudness when the signal level is high.

Expander

The expander is used to increase the signal dynamic range when the input signal level is small and within predefined upper and lower boundaries. This helps increase the loudness when the signal is weak.

Noise Gate

When the signal level is lower than a predefined threshold level, it is treated as noise. Under this condition, the output is set to zero. The overall DRC characteristics are illustrated in Figure 37. A number of threshold levels (referred to the input) are used, which are defined as the limiter threshold (LT), compressor threshold (CT), expander threshold (ET), noise gate threshold (NT), maximum output signal amplitude (SMAX), and minimum output signal amplitude (SMIN). The corresponding bits are DRC_LT, DRC_CT, DRC_ET, DRC_NT, DRC_SMAX, and DRC_SMIN and can be found in Register 0x59 to Register 0x5D.

Figure 37. DRC Input/Output Relationship

DRC MODE CONTROL

The DRC_EN bits in Register 0x60 control the DRC. The noise gating function can be disabled by setting the NG_EN bit in Register 0x60.

Table 17. DRC Mode Control Register

D7	D6	D5	D4	D3	D2	D1	D0
VBAT_ EN	LIM_ SRC	LIM_ EN	COMP_ EN	EXP_EN	NG_EN	DRC	_EN

Table 18. Bit Description of DRC Mode Control Register

Bit Name	Description	Settings
VBAT_EN	VBAT tracking enabled	0: disable
		1: enable
LIM_SRC	Limiter source selection	0: peak
		1: RMS
LIM_EN	Limiter enabled	0: disable
		1: enable
COMP_EN	Compressor disabled	0: disable
		1: enable
EXP_EN	Expander enabled	0: disable
		1: enable
NG_EN	Noise gating enabled	0: disable
		1: enable
DRC_EN	DRC enabled	0: disable
		1: enable

Data Sheet

Figure 38 shows a high level system block diagram of the DRC function.

Figure 38. DRC Block Diagram

Level Measurement

The DRC level measurement includes the peak and rms value measurements. The parameters that affect the peak measurement are attack time and release time (AT and RT). The parameter that affects the rms measurement is average time (T_{AV}). The attack time can vary from 0 ms to 1.536 sec; the release time and average time can vary from 0 ms to 24.576 sec. The corresponding bits are PEAK_ATT, PEAK_REL, and DRCLELTAV and can be found in Register 0x56 and Register 0x57.

Table 19. DRC_CTRL1 Register

D7	D6	D5	D4	D3	D2	D1	D0	
	Rese	rved		DRCLELTAV[3:0]				
Table	20. Bit D	escripti	ion of D	RC_CT	RL1 Reg	ister		
Bit Na	me	Desc	Description			Settings		
DRCLE	LTAV[3:0]	DRC	rms dete	ctor	0000: 0 ms			
		avera	average time		0001:0.	075 ms		
					0011:0.	30 ms (c	lefault)	
					1111:24	1.576 see	c	

Table 21. DRC_CTRL2 Register

D7	D6	D5	D4	D3	D2	D1	D0
	PEAK_A	ATT[3:0]			PEAK_F	REL[3:0]	

Table 22. Bit Description of DRC_CTRL2 Register

Bit Name	Description	Settings
PEAK_ATT[3:0]	DRC peak detector	0000: 0 ms
	attack time	0001: 0.09 ms
		0010: 0.19 ms
		0011: 0.37 ms
		0100: 0.75 ms
		0101: 1.5 ms
		0110: 3.0 ms
		0111: 6.0 ms
		1111: 1.536 sec
PEAK_REL[3:0]	DRC peak detector	0000: 0 ms
	decay time	0001: 1.5 ms
		0010: 3 ms
		0011: 6 ms
		0100: 12 ms
		1111: 24.576 sec

Static Curve

The static curve is the DRC core function used to define the targeted input and output relationship. The role for the DRC block is to find the appropriate gain values with the various signal levels. To change the dynamic range of the original audio signal, the gain values vary with the input signal level.

An example of such a static curve is given in Figure 39, which shows the input and output signal levels. The blue line shows a linear relationship where the output dynamic range is identical to the input dynamic range. The red line shows a different output dynamic range from the input. Furthermore, this curve indicates that the signal dynamic range is larger when the input signal is low.

Figure 40 shows the gain values at various input signal levels.

DRC Static Curve Function

A number of threshold levels (referred to the input) are used in Figure 39 and Figure 40; these levels are defined as the limiter threshold (LT), compressor threshold (CT), expander threshold (ET), noise gate threshold (NT), maximum output signal amplitude (SMAX), and minimum output signal amplitude (SMIN). The corresponding bits, DRC_LT, DRC_CT, DRC_ET, DRC_NT, DRC_SMAX, DRC_SMIN, can be found in Register 0x59 to Register 0x5D.

Table 23. DRC_CURVE1 Register

	_		0					
D7	D6	D5	D4	D3	D2	D1	D0	
Reserved		DRC LT[6:0]						

Table 24. Bit Description of DRC_CURVE1 Register

Bit Name	Description	Settings
DRC_LT[6:0]	DRC limiter threshold	0000000: +6 dB
		0000001: +5.5 dB
		–0.5 dB step to
		1010000:35 dB

Table 25. DRC_CURVE2 Register

D7	D6	D5	D4	D3	D2	D1	D0	
Reserved		DRC_CT[6:0]						

Table 26. Bit Description of DRC_CURVE2 Register

Bit Name	Description	Settings
DRC_CT[6:0]	DRC compressor	0000000: +6 dB
	threshold	0000001: +5.5 dB
		–0.5 dB step to
		1010000: –35 dB

Table 27. DRC_CURVE3 Register

D7	D6	D5	D4	D3	D2	D1	D0	
Reserved		DRC_SMAX[6:0]						

Table 28. Bit Description of DRC_CURVE3 Register

Bit Name	Description	Settings
DRC_SMAX[6:0]	DRC maximum output	0000000: +6 dB
	signal amplitude	0000001: +5.5 dB
		–0.5 dB step to
		1010000: –35 dB

Table 29. DRC_CURVE4 Register

D7	D6	D5	D4	D3	D2	D1	D0
	DRC_N	VT[3:0]			DRC	_ET[3:0]	

Table 30. Bit Description of DRC_CURVE4 Register

Bit Name	Description	Settings
DRC_NT[3:0]	DRC noise gating threshold	0000: -51 dB
		0001: -54 dB
		–3 dB step to 1111: –96 dB
DRC_ET[3:0]	DRC expander threshold	0000: -36 dB
		0001: -39 dB
		–3 dB step to 1111: –81 dB

Table 31. DRC_CURVE5 Register

D7	D6	D5	D4	D3	D2	D1	D0
	Rese	rved			DRC_	SMIN[3:0	0]

Table 32. Bit Description of DRC_CURVE5 Register

Bit Name	Description	Settings
DRC_SMIN[3:0]	DRC minimum output signal level	0000: -51 dB
		0001: -54 dB
		–3 dB step to 1111: –96 dB

DRC Gain Smooth

Before the gain calculated by the static curve function multiplies with the input signal, smooth it to ensure that it does not change rapidly for this can lead to noise.

The gain smooth is affected by its attack and decay time parameters. The attack time can vary from 0 ms to 1.536 sec, while the decay time can vary from 0 ms to 24.576 sec. The corresponding bits are DRC_ATT and DRC_DEC and can be found in Register 0x58.

Table 33. DRC_CTRL3 Register

			0				
D7	D6	D5	D4	D3	D2	D1	D0
	DRC_A	TT[3:0]			DRC_	DEC[3:0)]

Table 34. Bit Description of DRC_CTRL3 Register

Bit Name	Description	Settings
DRC_ATT[3:0]	DRC attack time	0000: 0 ms
		0001: 0.1 ms
		0010: 0.19 ms
		0011: 0.37 ms
		0100: 0.75 ms
		0101: 1.5 ms
		0110: 3 ms
		0111: 6 ms
		1111: 1.536 sec
DRC_DEC[3:0]	DRC decay time	0000: 0 ms
		0001: 1.5 ms
		0010: 3 ms
		0011: 6 ms
		0100: 12 ms
		1111: 24.576 sec

DRC Hold Time

Two types of hold time are used in the DRC. One is used in normal mode to prevent the calculated gain from increasing too quickly, and the other is used during DRC transiting from expander mode to noise gating mode to prevent the DRC from entering noise gating too quickly. The DRCHTNOR and DRCHTNG bits in Register 0x5E set which type is used.

Table 35. DRC_HOLD_	TIME Register
---------------------	---------------

D7	D6	D5	D4	D3	D2	D1	D0				
	DRCHT	NG[3:0]			DRCH	TNOR[3:	0]				

Table 36. Bit Description of DRC_HOLD_TIME Register

Bit Name	Description	Settings		
DRCHTNG[3:0]	DRC hold time for	0000: 0 ms		
	noise gating	0001: 0.67 ms		
		xxxx: double time		
		0111: 42.67 ms (default)		
		1111: 43.7 sec		
DRCHTNOR[3:0]	DRC hold time for	0000: 0 ms		
	normal operation	0001: 0.67 ms		
		0010: 1.33 ms		
		0011: 2.67 ms		
		0100: 5.33 ms		
		1111: 43.7 sec		

GAIN RIPPLE REMOVE

Due to the swing of the peak/rms value detected by the level measurement, the gain to apply to the input signal has a little ripple, which leads to the modulation of the output signal. The ripple remove function suppresses this effect. The ripple threshold is defined by the DRCRRH bit in Register 0x5F.

I able	Table 37. DRC_RIPPLE_CTRL Register										
D7	D6	D5	D4	D3	D2	D1	D0				
		DRC	RRH[1:0]								

Table 37. DRC_RIPPLE_CTRL Register

Table 38. Bit Description of DRC_RIPPLE_CTRL Register

	-	
Bit Name	Description	Settings
DRCRRH[1:0]	DRC ripple	00: 0 dB
	remove threshold	01: 0.28 dB
		10: 0.47 dB
		11: 0.75 dB (default)

SPEAKER PROTECTION

The IC includes a speaker temperature prediction module to protect the loudspeaker. Loudspeakers can be damaged when the voice coil overheats due to operation higher than the rated power. Typically, the thermal time constants of the loudspeakers are long, approximately 1 sec for voice coil and 60 sec for core. They can handle momentary power spikes without overheating; however, they cannot handle sustained high power. The speaker protection method used in the IC can reduce the volume when the temperature of the loudspeaker exceeds the temperature threshold set by the user while preserving the maximum power of the loudspeaker. The temperature prediction method is based on the general thermal model of the loudspeaker.

In this thermal model, R1, R2, C1, and C2 are temperature coefficients derived by measuring loudspeaker characteristics. They are set by the I²C control registers, Register 0x84 to Register 0x8B (SP_CF1_H, SP_CF1_L, SP_CF2_H, SP_CF2_L, SP_CF3_H, SP_CF3_L, SP_CF4_H and SP_CF4_L).

Other critical parameters needed include ambient temperature, dc resistance of the loudspeaker, and temperature coefficient of the voice coil material. These parameters are set by Register 0x81 to Register 0x83 (TEMP_AMBIENT, SPKR_DCR, and SPKR_TC).

After running the thermal model by setting the speaker protection enable bit (SP_EN, Register 0x80), the speaker voice coil temperature status and speaker magnet temperature status can be obtained by an I²C reading of the SPKR_TEMP register (Register 0x8C) and the SPKR_TEMP_MAG register (Register 0x8D). The user sets the voice coil temperature threshold (maximum speaker voice coil temperature before gain reduction occurs) by using the MAX_SPKR_TEMP register (Register 0x8E). If this threshold is crossed, the output volume is reduced according to the speed set by the SP_AR bits (speaker protection gain reduction attack rate, Register 0x8F, Bits[7:4]) and the SP_RR bits (speaker protection gain reduction release rate, Register 0x8F, Bits[3:0]).

POWER SUPPLIES

The SSM2529 has two internal power supplies that must be provided: SPKVDD and DVDD. The SPKVDD supply powers to the full bridge power stage of the MOSFET and its associated drive, control, and protection circuitry. SPKVDD can operate from 2.5 V to 5.5 V and must be present to obtain audio output. Lowering the SPKVDD supply results in lower output power and correspondingly lower power consumption, and it does not affect audio performance.

DVDD provides power to the digital logic and analog components. DVDD can operate from 1.08 V to 1.98 V, and it must be provided to write to the I²C or to obtain audio output. Lowering the supply voltage results in lower power consumption; however, it also results in lower audio performance.

POWER CONTROL

The SSM2529 includes various programmable power-down modes that are contained in the first I²C register (Register 0x00), power/ reset control. By default, the IC is set in software power-down, which is the I²C programmable master power-down. Only I²C functionality operates when in software power-down mode.

The SSM2529 also contains a smart power-down feature that, when enabled, looks at the incoming digital audio. In addition, if the audio is zero for 1024 consecutive samples, regardless of sample rate, it puts the IC in a smart power-down state. In this state, all circuitry, except the I²S and I²C ports, are placed in a low power state. After a single nonzero input is received, the SSM2529 leaves this state and resumes normal operation.

POWER-ON RESET/VOLTAGE SUPERVISOR

The SSM2529 includes an internal power-on reset and voltage supervisor circuit. This circuit provides an internal reset to all circuitry during initial power-up. It also monitors the power supplies to the IC, and it mutes the outputs and issues a reset when the voltages are lower than the minimum operating range. This ensures that no damage due to low voltage operation occurs and that no pops can occur under nearly any power removal conditions.

STANDALONE MODE

When the SA_MODE pin is pulled high, the SSM2529 can operate without any I²C control. In this mode, the automatic sample rate detection and smart power-down are always enabled. Volume Control A and Volume Control B can be controlled via the SCL and SDA pins.

In standalone mode, the DRC function is disabled. The EQ and HPF are also disabled. When ADDR = 1, the input interface is PDM. Otherwise, I²S and TDM serial interface formats can be selected via MCLK. In standalone mode, the working clock is generated by the internal PLL.

Table 39. Standalone Mode Pin Configuration

Conventional Operation Pin	SA_MODE = 1
SCL	Volume Control A
SDA	Volume Control B
STDBN	0: shutdown/mute
	1: normal operation
ADDR	1: PDM
	0: I ² S/TDM
BCLK	0: 16 BCLK cycles provided by PLL
	1: 32 BCLK cycles provided by PLL
	Clock: 32 BCLK cycles provided off chip
MCLK	0: I^2S (ADDR = 0) or PDM L channel (ADDR = 1)
	1: TDM (ADDR = 0) or PDM R channel (ADDR = 1)

I²C PORT

The SSM2529 supports a 2-wire serial (I²C-compatible) microprocessor bus driving multiple peripherals. Two pins, serial data (SDA) and serial clock (SCL), carry information between the SSM2529 and the system I²C master controller. The SSM2529 is always a slave on the bus, meaning that it cannot initiate a data transfer. Each slave device is recognized by a unique address. The address byte format is shown in Table 40. The address resides in the first seven bits of the I²C write. The LSB of this byte either sets a read or write operation. Logic Level 1 corresponds to a read operation, and Logic Level 0 corresponds to a write operation The full byte addresses are shown in Figure 41, where the subaddresses are automatically incremented at word boundaries, and can be used for writing large amounts of data to contiguous memory locations. This increment happens automatically after a singleword write unless a stop condition is encountered. A data transfer is always terminated by a stop condition.

Both SDA and SCL must have a 2.2 k Ω pull-up resistor on the lines connected to them. The voltage on these signal lines must not be more than 3.6 V.

Table 40. I²C Address Byte Format

Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
0	1	1	0	1	0	0	R/W

Addressing

Initially, each device on the I²C bus is in an idle state, monitoring the SDA and SCL lines for a start condition and the proper address. The I²C master initiates a data transfer by establishing a start condition, defined by a high-to-low transition on SDA, while SCL remains high. This indicates that an address/data stream follows. All devices on the bus respond to the start condition and shift the next eight bits (the 7-bit address plus the R/W bit) MSB first. The device that recognizes the transmitted address responds by pulling the data line low during the ninth clock pulse. The device address for the SSM2529 is 0x34. The ninth bit is known as the acknowledge bit. All other devices withdraw from the bus at this point and return to the idle condition.

The R/W bit determines the direction of the data. A Logic 0 on the LSB of the first byte means that the master writes information to the peripheral, whereas a Logic 1 means that the master reads information from the peripheral after writing the subaddress and repeating the start address. A data transfer takes place until a stop condition is encountered. A stop condition occurs when SDA transitions from low to high while SCL is held high. The timing for the I²C port is shown in Figure 3.

Stop and start conditions can be detected at any stage during the data transfer. If these conditions are asserted out of sequence with normal read and write operations, the SSM2529 immediately jumps to the idle condition. During an SCL high period, issue only one start condition, one stop condition, or a single stop condition followed by a single start condition. If an invalid subaddress is issued, the SSM2529 does not issue an acknowledge and returns to the idle condition. If the highest subaddress is exceeded while in auto-increment mode, one of two actions is taken. In read mode, the SSM2529 outputs the highest subaddress register contents until the master device issues a no acknowledge, indicating the end of the read. When the SDA line is not pulled low on the ninth clock pulse of SCL, a no acknowledge occurs. If the highest subaddress location is reached while in write mode, the data for the invalid byte is not loaded into any subaddress register, a no acknowledge is issued by the SSM2529, and the part returns to the idle condition.

I²C Read and Write Operations

Table 42 shows the timing of a single-word write operation. Every ninth clock, the SSM2529 issues an acknowledge by pulling SDA low.

Table 43 shows the timing of a burst mode write sequence as an example where the target destination registers are two bytes. The SSM2529 knows to increment its subaddress register every byte because the requested subaddress corresponds to a register or memory area with a byte word length.

The timing of a single-word read operation is shown in Table 44. Note that the first R/W bit is 0, indicating a write operation. This is because the subaddress still needs to be written to set up the internal address. After the SSM2529 acknowledges the receipt of the subaddress, the master must issue a repeated start command

followed by the chip address byte with the R/\overline{W} bit set to 1 (read). This causes the SSM2529 SDA to reverse and begin driving data back to the master. The master then responds every ninth pulse with an acknowledge pulse to the SSM2529.

Table 42 to Table 45 use the abbreviations shown in Table 41.

Table 41.	Symbols for	Table 42 to	Table 45
-----------	-------------	-------------	----------

Symbol	Meaning
Symbol	Meaning
S	Start bit
Р	Stop bit
A _M	Acknowledge by master
As	Acknowledge by slave

REGISTER SUMMARY

The SSM2529 contains eighteen 8-bit registers that can be accessed via the I^2C port. See Table 46 for the control register mapping. The register settings are described in detail in Table 47 through Table 159.

Inde InterpretationalBit BBit ABit A </th <th>Tab</th> <th colspan="8">Table 46.</th> <th></th> <th></th>	Tab	Table 46.											
or <th>Hex</th> <th>Name</th> <th>Bits</th> <th>Bit 7</th> <th>Bit 6</th> <th>Bit 5</th> <th>Bit 4</th> <th>Bit 3</th> <th>Bit 2</th> <th>Bit 1</th> <th>Bit 0</th> <th>Reset</th> <th>RW</th>	Hex	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
Im PS PD MOC PDM, MOC PDM, MOC PDM, MOC PDM, MOC PDM, MOC SAL SAL </td <td>00</td> <td>PWR_CTRL</td> <td>[7:0]</td> <td>SYS_RST</td> <td>APWDN_ANA</td> <td>APWDN_EN</td> <td>LP_MODE</td> <td></td> <td>MCS</td> <td></td> <td>SPWDN</td> <td>0x23</td> <td>RW</td>	00	PWR_CTRL	[7:0]	SYS_RST	APWDN_ANA	APWDN_EN	LP_MODE		MCS		SPWDN	0x23	RW
XALMATI DOAL_MATI SAL Mag DOAL DATA_MATI SAL Mag DOAL DATA_MATI SAL Mag DATA_MATI SAL Mag DATA_MATI DATA_MATINI SAL Mag DATA_MATINI CAL SAL CAL SAL DATA_MATINI CAL CAL SAL DATA DATA DATA	01	SYS_CTRL	[7:0]	PDM_MODE PDM_FS PDB_ADC BCLK_RAT			BCLK_RATE	BCLK_GEN	EDGE ASR				RW
or. N.M.Y. Op. UST I.R.SR. IRCLK.MODE RICLK.TOMC RULK.TOMC	02	SAI_FMT1	[7:0]	SDATA	SDATA_FMT SAI			•		SR		0x02	RW
Deck Chundi mapping 70 CH_SEL,R CH_SEL,L 0x10 RV 65 VOLA,F FDSP 70 DEG,VOL -0x40 RV 66 VOLA,F FDSP 70 DEG,VOL -0x40 RV 67 VOLA,F FDSP 70 DEG,VOL -0x40 RV 67 VOLA,F FDSP 70 DEG,VOL Reserved DPL_REF,SEL DPL_NDV -0x40 RV 68 PALL_CTRL 70 M_LD Dodd RV -0x00 RV 64 AAL_CTRL3 70 N_LB Dodd RV -0x00 RV 64 AAL_CTRL3 70 R N_LD Dodd RV	03	SAI_FMT2	[7:0]	LPST	ST LR_SEL LRCLK_MODE			LRCLK_POL	SAI_MSB	BCLK_TDMC	BCLK_EDGE	0x00	RW
by Dec. Vol. Dec.	04	Channel mapping control	[7:0]		CH_SEL_R CH_SEL_L							0x10	RW
by Description Description Description Description 06 Volume and mute 703 CLKL_LOSS_DET SR_AUTO Reserved PCP_VOL FORCE FORCE <td>05</td> <td>VOL BE EDSP</td> <td>[7:0]</td> <td></td> <td></td> <td></td> <td>DIG</td> <td>VOL</td> <td></td> <td></td> <td></td> <td>0x40</td> <td>RW</td>	05	VOL BE EDSP	[7:0]				DIG	VOL				0x40	RW
Dr. Volume and mute Poil CLC LOSS_DET SR_AUTO Reserved POP. VOL. FORCE ANA, GAN Aodo RW 06 OPLL_CTRL 700 M_1/4 DPL_VER	06	VOL AF FDSP	[7:0]				PDP	VOL				0x40	RW
B DPLL_REF_SE. DPL_MDW Bodd RW 99 APL_CTRL3 70 M_L10 0x00 RW 08 APL_CTRL3 70 M_L10 0x00 RW 08 APL_CTRL3 70 N_L1 0x00 RW 08 APL_CTRL3 70 N_L1 0x00 RW 08 APL_CTRL3 70 N_L1 0x00 RW 00 APL_CTRL3 70 Reserved R X Type 0x00 RW 00 APL_CTRL3 70 Reserved PPL_BUNE PDL_LOCK APLLA CORN 0x00 RW 10 FAULT_CTRL1 70 Reserved APL_CTRL5 PDL_NCK ARLA ARC ARC RW SO OC OT Do000 RW IS IPC_CTRL TO CORN NO RW IS IPC_CTRL RO CORN RW IS IPC_CTRL IND IDD IDD	07	Volume and mute	[7:0]	CLK_LOSS_DET	LK_LOSS_DET SR_AUTO Reserved PDP_VOL_ DIG_VOL_ ANA_GAIN						0x20	RW	
gen APAL_CTR1 Tol Dod RW 0A APAL_CTR2 Tol N_H Dod0 RW 0A APAL_CTR2 Tol N_H Dod0 RW 0A APAL_CTR2 Tol N_H Dod0 RW 0C APAL_CTR2 Tol N_H Dod0 RW 0C APAL_CTR2 Tol R V Dod0 RW 0C APAL_CTR2 Tol Reserved PD8_UNE PD8_LCCK APAL_CTR2 COREN Ox00 RW 0E FAUL_TCTR2 Tol Reserved MAX_AR ARCV Ox46 RW 15 EDE_CTR1 Tol Reserved MPCUT MAX_AR ARCV Ox46 RW 16 EDE_CTR1 Tol Reserved DELMP_CTR1 HPECD Ox00 RW 16 COCFP_H Tol EOI_COFF1_H Ox00 RW Ox00 RW 16 EOI_COFF1_H	08	DPLL CTRL	[7:0]	Reserved		DPLL REF SEL			DPLL I	NDIV		0x00	RW
AARLCTRL2 70 M.LO MOD RW 06 APALCTRL3 70 N.H 0.000 RW 06 APALCTRL4 70 N.LO 0.000 RW 00 APALCTRL5 70 Reserved R X Type 0.000 RW 00 APALCTRL5 70 Reserved PDB_2C CLK.LOSS OC OT 0.000 RW 06 FAULTCRL1 70 Reserved PDB_2C CLK.LOSS OC OT 0.000 RW 10 FAULT_CRL2 70 Reserved MRCV MAX_AR ARCV 0.000 RW 11 FEMP_CTL2 70 Reserved DELMP_CTL4 MRCV MAX_AR ARCV 0.000 RW 15 FO_1COFF1.LO 70 Reserved DELMP_CTL4 MAC MACV MAX_AR ARCV 0.000 RW NO RW NO RW NO RW NO RW	09	APLL CTRL1	[7:0]				М	HI				0x00	RW
no. no. n.Li bodie RW 06 APLL_CTRL3 7/30 NLO 0.000 RW 06 APLL_CTRL5 7/30 FSVS_DPLL DPL_UDK APL_CTRL5 FVS 0.000 RW 06 APL_CTRL5 7/30 FSVS_DPLL DPL_UDK APL_CTRL5 FVS DELMO 0.000 RW 06 FAULT_CTRL5 7/30 Reserved PDB_LVC MAX_AR ARCV 0.000 RW 10 FAULT_CTRL2 7/30 Reserved HPFCTH MPFOR ARCV 0.000 RW 11 DEMP_CTRL 7/30 Reserved HPFCTH HPFOR HPFOR 0.000 RW 12 E01_COFF1,HI 7/30 E01_COFF1,HI 0.000 RW 0.000 RW 15 E01_COFF2,HI 7/30 E01_COFF2,HI 0.000 RW 0.000 RW 0.000 RW 0.000 RW 0.000 RW 0.000 RW 0.000<	0A	APLL CTRL2	[7:0]					LO				0x00	RW
OC APLL CTRL4 7/0 N_LO Solo RW 00 APLL_CTRL5 7/0 Reserved R X Type 0.00 RW 00 APLL_CTRL5 7/0 Reserved PDL_DYRASS DPLL_OCK APLL_LOCK PLLE COREN 0.30 RW 00 FAULT_CTRL1 7/0 Reserved PDE_LINE PDE_ZCC CLL_LOSS OC OT 0.000 RW 14 DEEMP_CTRL 7/0 Reserved MRV MAX_AR ARCA ARCA ORAC RW 15 HFF_CTRL 7/0 Reserved HPFCUT HPFCN 0.000 RW 16 E01_COEF1_L0 7/0 E01_COEF1_L0 0.000 RW 18 0.000 RW 18 E01_COEF1_L0 7/0 E01_COEF1_L0 0.000 RW 18 0.000 RW 18 E01_COEF1_L0 7/0 E01_COEF1_L0 0.000 RW 18 0.000 RW	0B	APLL CTRL3	[7:0]				 N	HI				0x00	RW
DD AFL_CTRLS T/D Reserved R X Type 0x00 RW 0E AALL_CTRLG T/D FSYS_DPLL DPLL_BYRASS DPLL_LOCK APLL_ACKK PLEN CCREIN 0x30 RW 0E FAULT_CTRLI T/D Reserved PDB_LINK PDB_LINK ARL_STAR CCREIN 0x30 RW 10 FAULT_CTRLI T/D Reserved MECV MAX_A ARCV 0x46 RW 11 DEEMP_CTRL T/D Reserved DEEMP_FS DEEMP_FS 0c00 RW 12 EQ1_COEF1_HI T/D EQ1_COEF1_HI MAX RW MAX RW NAX 13 EQ1_COEF1_HI T/D EQ1_COEF1_LO 0x00 RW RW ISO0 ISO0 RW ISO	0C	APLL CTRL4	[7:0]				 N I	_0				0x00	RW
0E APLL_CTRL6 70 FSYS_DPLL DPLL_BYPASS APLL_SYRASS DPLL_LOCK APLL_OCK PLEN COREN 0.30 RW 0F FAUT_CTRL1 70 Reserved PDB_LINE PDB_Z CLK_LOSS OC OT 0.000 RW 10 DEEMP_CTRL 70 Reserved HPFCUT MAX_AR ARACV 0.446 RW 11 DEGMP_CTRL 70 Reserved HPFCUT MEDEMP_FS DEEMP_FS DEEMP_FN 0.000 RW 15 E01_COEF0_LO 70 E01_COEF0_LH MFOR HFFS 0.000 RW 16 E01_COEF1_LO 70 E01_COEF1_LH 0.000 RW 0.000 RW 18 E01_COEF1_LH 70 E01_COEF1_LH 0.000 RW 0.000 RW 18 E01_COEF1_LO 70 E01_COEF1_LH 0.000 RW 0.000 RW 16 E01_COEF1_LO 70 E01_COEF1_LH 0.000 RW	0D	APLL CTRL5	[7:0]	Reserved				-	×	(Type	0x00	RW
OF FAULT_CTR.1 [73] Reserved PDB_LINE PDB_ZC CLK_LOSS OC OT Dx000 RW 10 FAULT_CTR.2 [73] Reserved MRCV MAX.A ARCV 0x46 RW 15 HPF_CTR. [73] Reserved HPFCUT HPFON HPFON 0x00 RW 16 E01_COFF0_HI [79] Reserved HPFCUT HPFON HPFON 0x00 RW 16 E01_COFF1_HI [79] E01_COFF1_HI 0x00 RW 0x00 RW 18 E01_COFF1_HI [70] E01_COFF1_HI 0x00 RW 18 E01_COFF1_HI [70] E01_COFF2_HI 0x00 RW 18 E01_COFF3_LIO [70] E01_COFF3_LIO 0x00 RW 18 E01_COFF3_LIO [70] E01_COFF3_LIO 0x00 RW 18 E01_COFF3_LIO [70] E01_COFF3_LIO 0x00 RW 16 E01_COFF4_LIO	0E	APLL CTRL6	[7:0]	FSYS	DPLL	DPLL BYPASS	APLL BYPASS	DPLL LOCK	APLL LOCK	PLLEN	COREN	0x30	RW
10 FAULT_CTR.2 200 Reserved MRCV MAX_AR ARCV Dodd RW 14 DEEMP_CTR.L [730] Reserved DEEMP_FS DEEMP_EN 0x00 RW 15 HPF_CTR.L [730] Reserved HPFCOT HPFCN 0x00 RW 16 E01_COEF0_HI [730] E01_COEF0_HI 0x00 RW 17 E01_COEF1_L0 [70] E01_COEF1_L0 0x00 RW 18 E01_COEF1_L0 [70] E01_COEF1_L0 0x00 RW 18 E01_COEF1_L0 [70] E01_COEF2_HI 0x00 RW 18 E01_COEF3_LHI [70] E01_COEF3_HI 0x00 RW 16 E01_COEF3_LO [70] E01_COEF3_LO 0x00 RW 16 E01_COEF4_L0 [70] E01_COEF4_HI 0x00 RW 16 E01_COEF4_HI [70] E02_COEF0_HI 0x00 RW 17 E02_COEF4_HI [70] E02_C	OF	FAULT CTRL1	[7:0]		Reserved		PDB LINE	PDB ZC		OC	OT	0x000	RW
14 DEEMP_CTRL 7.0 Reserved HPFCUT HPFOR HPFEN 0.00 RW 15 HPF_CTRL 7.01 Reserved HPFCUT HPFOR HPFEN 0.000 RW 16 EQ1_COEF0_LH 7.01 EQ1_COEF0_LH 0.000 RW 17 EQ1_COEF0_LD 7.01 EQ1_COEF1_HI 0.000 RW 18 EQ1_COEF1_LD 7.01 EQ1_COEF1_LD 0.000 RW 18 EQ1_COEF2_LI 7.01 EQ1_COEF3_LI 0.000 RW 18 EQ1_COEF3_LI 7.01 EQ1_COEF3_LI 0.000 RW 10 EQ1_COEF3_LI 7.01 EQ1_COEF3_LI 0.000 RW 10 EQ1_COEF3_LI 7.01 EQ1_COEF3_LI 0.000 RW 11 EQ1_COEF4_LO 7.01 EQ1_COEF4_LI 0.000 RW 11 EQ1_COEF4_LO 7.01 EQ2_COEF0_LI 0.000 RW 12 EQ2_COEF1_LI 7.01 EQ2_COEF1_LI	10	FAULT CTRL2	[7:0]	Reserved	AR	TIME	MRCV	MA	X AR	AF	RCV	0x4C	RW
15 HPF_CTRL 7.0 Reserved HPFCUT HPFCUR MPFEN 0.00 RW 16 E01_COEF0_HI 7.0 E01_COEF0_LO 7.0 E00_COEF0_LO 7.0 E01_COEF0_LO 7.0 E01_COEF1_HI 7.00 E01_COEF1_HI 6.000 RW 18 E01_COEF1_LO 7.01 E01_COEF1_HI 6.000 RW 18 E01_COEF1_LO 7.01 E01_COEF1_HI 6.000 RW 18 E01_COEF1_LO 7.01 E01_COEF2_HI 6.000 RW 18 E01_COEF2_LO 7.01 E01_COEF3_HI 7.00 E01_COEF3_HI 6.000 RW 10 E01_COEF3_LO 7.01 E01_COEF4_HI 6.000 RW E02_COEF0_LI 6.000 RW E02_COEF0_HI 6.000 RW E02_COEF0_HI 7.01 E02_COEF0_HI 6.000 RW E02_COEF0_HI 6.000 RW E02_COEF0_HI 6.000 RW E02_COEF0_HI 6.000 RW E02_COEF1_HI 6.000 RW E02_COEF1_HI </td <td>14</td> <td>DEEMP_CTRL</td> <td>[7:0]</td> <td></td> <td></td> <td> Reserved</td> <td>-</td> <td>l</td> <td></td> <td>P FS</td> <td>DEEMP EN</td> <td>0x00</td> <td>RW</td>	14	DEEMP_CTRL	[7:0]			 Reserved	-	l		P FS	DEEMP EN	0x00	RW
Image: Section of the sectio	15		[7:0]	Rese	rved	neserved	HPF	CUT		HPFOR	HPFFN	0x00	RW
Explore Explore <t< td=""><td>16</td><td>FO1 COFF0 HI</td><td>[7:0]</td><td></td><td></td><td></td><td>FO1 C0</td><td>FFO HI</td><td></td><td></td><td></td><td>0x00</td><td>RW</td></t<>	16	FO1 COFF0 HI	[7:0]				FO1 C0	FFO HI				0x00	RW
Instruction Instruction Is Equi_COEF1_LH [70] EQU_COEF1_LH (xo0) RW Is Equi_COEF1_LO [70] EQU_COEF1_LO (xo0) RW Is Equi_COEF2_HI [70] EQU_COEF2_HI (xo0) RW Is Equi_COEF3_HI [70] EQU_COEF3_HI (xo0) RW ID EQU_COEF3_HI [70] EQU_COEF3_HI (xo0) RW ID EQU_COEF3_HI [70] EQU_COEF3_HI (xo0) RW ID EQU_COEF4_HI [70] EQU_COEF3_HI (xo0) RW ID EQU_COEF4_HI [70] EQU_COEF4_HI (xo0) RW ID EQU_COEF4_HI [70] EQU_COEF4_HI (xo0) RW ID EQU_COEF4_HI [70] EQU_COEF0_HI (xo0) RW ID EQU_COEF1_HI [70] EQU_COEF1_HI (xo0) RW I2 EQU_COEF1_HI [70] EQU_COEF1_HI (xo0) RW	17		[7:0]				FO1 CO	EF0 1 0				0x00	RW
Instruction Instruction Instruction Image: Instruction of the instructio	18	FO1 COFF1 HI	[7:0]				F01 C0	EF1 HI				0x00	RW
Display Display <t< td=""><td>19</td><td></td><td>[7:0]</td><td></td><td colspan="8"></td><td>RW</td></t<>	19		[7:0]										RW
Instructure Instructure Instructure Instructure Instructure Instructure Explored Explored </td <td>14</td> <td></td> <td>[7:0]</td> <td></td> <td colspan="8"></td> <td>RW</td>	14		[7:0]										RW
ID ED_LOGI_LO OND DOUB ID EQ_COEF3_HI [70] EQ_COEF3_HI OND RW ID EQ_COEF3_HI [70] EQ_COEF3_HI OND RW IE EQ_COEF4_HI [70] EQ_COEF4_HI OND RW IE EQ_COEF4_HI [70] EQ_COEF0_HI OND RW IE EQ_COEF0_HI [70] EQ_COEF0_HI OND RW IE EQ_COEF1_HI [70] EQ_COEF1_HI OND RW IE EQ_COEF1_LO [70] EQ_COEF2_HI OND RW IE EQ_COEF3_HI [70] EQ_COEF3_HI OND RW IE EQ_COEF3_HI [70] EQ_COEF3_HI OND RW	1R		[7:0]										RW
Inc. ExtCOLF_1II CMA CMA_COLF_1II CMA CMA CMA IE EQI_COEF3_LO 7/3 EQI_COEF3_LO 0x00 RW IE EQI_COEF4_HI 17/3 EQI_COEF4_HI 0x00 RW 20 EQ2_COEF0_LO 17/3 EQI_COEF4_LO 0x00 RW 21 EQ2_COEF0_LO 17/3 EQ2_COEF0_LO 0x00 RW 22 EQ2_COEF0_LO 17/3 EQ2_COEF0_LO 0x00 RW 22 EQ2_COEF1_HI 17/3 EQ2_COEF1_LO 0x00 RW 23 EQ2_COEF1_LO 17/9 EQ2_COEF1_LO 0x00 RW 24 EQ2_COEF2_LIO 17/9 EQ2_COEF2_HI 0x00 RW 25 EQ2_COEF3_LIO 17/9 EQ2_COEF3_LIO 0x00 RW 25 EQ2_COEF3_LIO 17/9 EQ2_COEF3_LIO 0x00 RW 26 EQ2_COEF3_LIO 17/9 EQ2_COEF3_LIO 0x00 RW 28 EQ2_COEF4_HI	10		[7:0]									0×00	RW/
Instructure Ext_Const_Lin Const_Lin Const_Lin Image: Instructure Ext_Const_Lin Frag Const_Lin Const_Lin Image:	1D		[7:0]				EQ1_CO	EF3 10				0x00	RW
Int Ext	1E	EQ1_COEF4_HI	[7:0]				EQ1_CO	FF4 HI				0x00	RW
Internation Extractor Extractor Extractor Internation Extractor Extractor Extractor Extractor Extractor Internation Extractor Extractor Extractor Extractor Extractor Extractor Internation Extractor Extractor </td <td>1E</td> <td></td> <td>[7:0]</td> <td></td> <td></td> <td></td> <td>EQ1_CO</td> <td>FF4 1 0</td> <td></td> <td></td> <td></td> <td>0x00</td> <td>RW</td>	1E		[7:0]				EQ1_CO	FF4 1 0				0x00	RW
Image: Del Content Image:	20		[7:0]				EQ1_CO					0x00	RW
In Description Data Description Data 21 EQ2_COEF1_HI [70] EQ2_COEF1_HI Ox00 RW 23 EQ2_COEF1_LO [70] EQ2_COEF1_LIO Ox00 RW 24 EQ2_COEF1_LO [70] EQ2_COEF2_LIO Ox00 RW 25 EQ2_COEF2_LO [70] EQ2_COEF2_LO Ox00 RW 26 EQ2_COEF3_LI [70] EQ2_COEF3_LIO Ox00 RW 26 EQ2_COEF3_LIO [70] EQ2_COEF3_LIO Ox00 RW 27 EQ2_COEF3_LIO [70] EQ2_COEF3_LIO Ox00 RW 28 EQ2_COEF4_LIO [70] EQ2_COEF4_LIO Ox00 RW 28 EQ2_COEF4_LIO [70] EQ3_COEF0_LIO Ox00 RW 29 EQ2_COEF4_LIO [70] EQ3_COEF0_LIO Ox00 RW 20 EQ3_COEF1_HI [70] EQ3_COEF1_HI Ox00 RW 20 EQ3_COEF1_HI [70] EQ3_	20		[7:0]				EQ2_CO					0x00	RW
Internation	27		[7:0]				EQ2_CO	EF1 HI				0x00	RW
Image: Display and the second secon	22		[7:0]				EQ2_CO					0x00	RW
1 Edg_coberg_i_0 (7:0) Edg_coberg_i_0 (8:0) (8:0) 26 Edg_coberg_i_0 (7:0) Edg_coberg_i_0 (8:0) (8:0) 27 Edg_coberg_i_0 (7:0) Edg_coberg_i_0 (8:0) (8:0) 28 Edg_coberg_i_0 (7:0) Edg_coberg_i_0 (8:0) (8:0) 28 Edg_coberg_i_0 (7:0) Edg_coberg_i_0 (8:0) (8:0) 29 Edg_coberg_i_0 (7:0) Edg_coberg_i_0 (8:0) (8:0) 24 Edg_coberg_i_1 (7:0) Edg_coberg_i_0 (8:0) (8:0) 24 Edg_coberg_i_0 (7:0) Edg_coberg_i_0 (8:0) (8:0) 25 Edg_coberg_i_0 (7:0) Edg_coberg_i_0 (8:0) (8:0) 26 Edg_coberg_i_0 (7:0) Edg_coberg_i_0 (8:0) (8:0) 26 Edg_coberg_i_0 (7:0) Edg_coberg_i_0 (8:0) (8:0) 27 Edg_coberg_i_0 (7:0) Edg_coberg_i_0 (8:0) (8:0) 26 Edg_coberg_i_0 (7:0) Edg_coberg_i_0 <	24	FO2 COFF2 HI	[7:0]				F02_C0	FF2 HI				0x00	RW
135 Edd_COEF_1_LO [7:0] Edd_COEF_1_LO 0x00 RW 26 EQ2_COEF3_HI [7:0] EQ2_COEF3_LI 0x00 RW 28 EQ2_COEF4_LI [7:0] EQ2_COEF4_LI 0x00 RW 29 EQ2_COEF4_LO [7:0] EQ2_COEF4_LI 0x00 RW 29 EQ2_COEF4_LO [7:0] EQ2_COEF4_LI 0x00 RW 24 EQ3_COEF0_LI [7:0] EQ3_COEF0_LI 0x00 RW 28 EQ3_COEF1_LI [7:0] EQ3_COEF0_LI 0x00 RW 28 EQ3_COEF1_LI [7:0] EQ3_COEF1_LI 0x00 RW 28 EQ3_COEF1_LI [7:0] EQ3_COEF1_LI 0x00 RW 20 EQ3_COEF1_LI [7:0] EQ3_COEF1_LI 0x00 RW 21 EQ3_COEF2_LI [7:0] EQ3_COEF2_LI 0x00 RW 22 EQ3_COEF3_LI [7:0] EQ3_COEF3_HI 0x00 RW 31 EQ3_COEF3_LI [7:0] EQ3_COEF3_LI 0x00 RW 32 EQ3_COEF4_LI	25		[7:0]				EQ2_CO	EF2 10				0x00	RW
10 Edg_CoEF3_IN 0x00 RW 27 EQ2_COEF3_LO (70) EQ2_COEF3_LO 0x00 RW 28 EQ2_COEF4_HI (70) EQ2_COEF4_HI 0x00 RW 29 EQ2_COEF4_LO (70) EQ2_COEF4_LO 0x00 RW 24 EQ3_COEF0_HI (70) EQ3_COEF0_HI 0x00 RW 28 EQ3_COEF0_LO (70) EQ3_COEF0_HI 0x00 RW 20 EQ3_COEF1_HI (70) EQ3_COEF1_HI 0x00 RW 28 EQ3_COEF1_HI (70) EQ3_COEF1_HI 0x00 RW 20 EQ3_COEF1_LO (70) EQ3_COEF1_HI 0x00 RW 20 EQ3_COEF1_LO (70) EQ3_COEF1_LO 0x00 RW 21 EQ3_COEF2_HI (70) EQ3_COEF2_HI 0x00 RW 22 EQ3_COEF3_LO (70) EQ3_COEF3_LO 0x00 RW 22 EQ3_COEF3_LO (70) EQ3_COEF3_LO 0x00 RW 31 EQ3_COEF3_LO (70) EQ3_COEF3_HI 0x00 </td <td>26</td> <td></td> <td>[7:0]</td> <td></td> <td></td> <td></td> <td>EQ2_CO</td> <td>EF3 HI</td> <td></td> <td></td> <td></td> <td>0x00</td> <td>RW</td>	26		[7:0]				EQ2_CO	EF3 HI				0x00	RW
Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interp	27		[7:0]				EQ2_CO	FF3 1 0				0x00	RW
10 100 100 100 100 100 29 EQ2_COEF4_LO [7:0] EQ2_COEF4_LO 0x00 RW 20 EQ3_COEF0_HI [7:0] EQ3_COEF0_HI 0x00 RW 28 EQ3_COEF0_LO [7:0] EQ3_COEF0_LO 0x00 RW 20 EQ3_COEF1_HI [7:0] EQ3_COEF1_HI 0x00 RW 20 EQ3_COEF1_LO [7:0] EQ3_COEF1_LO 0x00 RW 21 EQ3_COEF2_HI [7:0] EQ3_COEF1_LO 0x00 RW 22 EQ3_COEF2_HI [7:0] EQ3_COEF2_HI 0x00 RW 22 EQ3_COEF3_HI [7:0] EQ3_COEF3_HI 0x00 RW 24 EQ3_COEF3_HI [7:0] EQ3_COEF3_HI 0x00 RW 30 EQ3_COEF3_LO [7:0] EQ3_COEF3_LO 0x00 RW 31 EQ3_COEF4_HI [7:0] EQ3_COEF4_HI 0x00 RW 32 EQ3_COEF4_LO [7:0] EQ3_COEF4_LO 0x00 RW 33 EQ3_COEF4_LO [7:0]	28	FO2 COFF4 HI	[7:0]				F02 C0	FF4 HI				0x00	RW
Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	29		[7:0]				EQ2_CO	EF4 1 0				0x00	RW
28 EQ3_COEF0_LO [7:0] EQ3_COEF0_LO 0x00 RW 20 EQ3_COEF1_HI [7:0] EQ3_COEF1_HI 0x00 RW 20 EQ3_COEF1_LO [7:0] EQ3_COEF1_LO 0x00 RW 21 EQ3_COEF1_LO [7:0] EQ3_COEF1_LO 0x00 RW 22 EQ3_COEF1_LO [7:0] EQ3_COEF1_LO 0x00 RW 22 EQ3_COEF2_LI [7:0] EQ3_COEF2_LIO 0x00 RW 24 EQ3_COEF3_HI [7:0] EQ3_COEF3_HI 0x00 RW 30 EQ3_COEF3_LO [7:0] EQ3_COEF3_HI 0x00 RW 31 EQ3_COEF3_LO [7:0] EQ3_COEF3_LO 0x00 RW 32 EQ3_COEF4_LO [7:0] EQ3_COEF4_LO 0x00 RW 33 EQ3_COEF4_LO [7:0] EQ3_COEF4_LO 0x00 RW 33 EQ3_COEF6_LO [7:0] EQ4_COEF0_HI 0x00 RW 34 EQ4_COEF0_LO [7:0] EQ4_COEF0_LO 0x00 RW 35 EQ4_COEF0_LO	24		[7:0]				EQ2_CO	EF0 HI				0x00	RW
2C EQ3_COEF1_CO_EO FAG FAG FAG 2C EQ3_COEF1_LHI [7:0] EQ3_COEF1_LO Ox00 RW 2D EQ3_COEF1_LO [7:0] EQ3_COEF1_LO Ox00 RW 2E EQ3_COEF1_LO [7:0] EQ3_COEF1_LO Ox00 RW 2E EQ3_COEF2_LI [7:0] EQ3_COEF2_LIO Ox00 RW 30 EQ3_COEF3_HI [7:0] EQ3_COEF3_HI Ox00 RW 31 EQ3_COEF3_LO [7:0] EQ3_COEF3_LO Ox00 RW 32 EQ3_COEF4_LO [7:0] EQ3_COEF4_LI Ox00 RW 33 EQ3_COEF4_LO [7:0] EQ3_COEF4_LO Ox00 RW 34 EQ4_COEF0_HI [7:0] EQ3_COEF4_LO Ox00 RW 35 EQ4_COEF0_LO [7:0] EQ4_COEF0_LO Ox00 RW 36 EQ4_COEF1 HI [7:0] EQ4_COEF1 HI Ox00 RW	2R		[7:0]				EQ3_CO	EF0 1 0				0x00	RW
20 EQ3_COEF1_L0 [7:0] EQ3_COEF1_L0 [0:00] RW 21 EQ3_COEF1_L0 [7:0] EQ3_COEF1_L0 0x00 RW 22 EQ3_COEF2_HI [7:0] EQ3_COEF2_HI 0x00 RW 24 EQ3_COEF3_HI [7:0] EQ3_COEF2_LO 0x00 RW 30 EQ3_COEF3_HI [7:0] EQ3_COEF3_HI 0x00 RW 31 EQ3_COEF3_LO [7:0] EQ3_COEF3_LO 0x00 RW 32 EQ3_COEF4_LI [7:0] EQ3_COEF4_HI 0x00 RW 33 EQ3_COEF4_LO [7:0] EQ3_COEF4_LO 0x00 RW 34 EQ4_COEF0_HI [7:0] EQ4_COEF0_HI 0x00 RW 35 EQ4_COEF0_LO [7:0] EQ4_COEF0_LO 0x00 RW 36 EQ4_COEF1 HI [7:0] EQ4_COEF1 HI 0x00 RW	20	EQ3_COEF1_HI	[7:0]				EQ3_CO	FF1 HI				0x00	RW
2E EQ3_COEF1_ED 17.01 EQ3_COEF2_HI 0x00 RW 2E EQ3_COEF2_LO [7:0] EQ3_COEF2_LO 0x00 RW 30 EQ3_COEF3_HI [7:0] EQ3_COEF3_HI 0x00 RW 31 EQ3_COEF3_LO [7:0] EQ3_COEF3_LO 0x00 RW 32 EQ3_COEF4_HI [7:0] EQ3_COEF4_HI 0x00 RW 33 EQ3_COEF4_LO [7:0] EQ3_COEF4_HI 0x00 RW 34 EQ4_COEF0_HI [7:0] EQ3_COEF4_LO 0x00 RW 35 EQ4_COEF0_LO [7:0] EQ4_COEF0_LO 0x00 RW 36 EQ4_COEF1 HI [7:0] EQ4_COEF1 HI 0x00 RW	20		[7:0]				EQ3_CO	EE1 10				0x00	RW
ZE EQ3_COEF2_I.0 [7:0] EQ3_COEF2_LO 0x00 RW 30 EQ3_COEF3_HI [7:0] EQ3_COEF3_HI 0x00 RW 31 EQ3_COEF3_LO [7:0] EQ3_COEF3_LO 0x00 RW 32 EQ3_COEF4_HI [7:0] EQ3_COEF4_HI 0x00 RW 33 EQ3_COEF4_LO [7:0] EQ3_COEF4_LO 0x00 RW 34 EQ4_COEF0_HI [7:0] EQ4_COEF0_HI 0x00 RW 35 EQ4_COEF0_LO [7:0] EQ4_COEF0_LO 0x00 RW 36 EQ4_COEF1 HI [7:0] EQ4_COEF1 HI 0x00 RW	20 2F		[7:0]				EQ3_CO	EF 7_E0				0x00	RW
Image: Constraint of the second se	2E		[7:0]				EQ3_CO	EF2_10				0x00	RW
31 EQ3_COEF3_LO [7:0] EQ3_COEF3_LO 0x00 RW 32 EQ3_COEF4_HI [7:0] EQ3_COEF4_HI 0x00 RW 33 EQ3_COEF4_LO [7:0] EQ3_COEF4_LO 0x00 RW 34 EQ4_COEF0_HI [7:0] EQ4_COEF0_HI 0x00 RW 35 EQ4_COEF0_LO [7:0] EQ4_COEF0_LO 0x00 RW 36 EQ4_COEF1_HI [7:0] EQ4_COEF1_HI 0x00 RW	30	FO3 COFF3 HI	[7:0]				FO3 CO	EF3 HI				0x00	RW
32 EQ3_COEF4_HI [7:0] EQ3_COEF4_HI 0x00 RW 33 EQ3_COEF4_LO [7:0] EQ3_COEF4_LO 0x00 RW 34 EQ4_COEF0_HI [7:0] EQ4_COEF0_HI 0x00 RW 35 EQ4_COEF0_LO [7:0] EQ4_COEF0_LO 0x00 RW 36 EQ4_COEF1_HI [7:0] EQ4_COEF1_HI 0x00 RW	31		[7:0]				F03 C0	EF3 1 0				0x00	RW/
32 EQ3_COEF4_LO [7:0] EQ3_COEF4_LO 0x00 RW 33 EQ3_COEF4_LO [7:0] EQ3_COEF4_LO 0x00 RW 34 EQ4_COEF0_HI [7:0] EQ4_COEF0_HI 0x00 RW 35 EQ4_COEF0_LO [7:0] EQ4_COEF0_LO 0x00 RW 36 EQ4_COEF1 HI [7:0] EQ4_COEF1 HI 0x00 RW	32		[7:0]				FO3 CO	EF4 HI				0x00	RW/
34 EQ4_COEF0_HI [7:0] EQ4_COEF0_HI 0x00 RW 35 EQ4_COEF0_LO [7:0] EQ4_COEF0_LO 0x00 RW 36 EQ4_COEF1_HI [7:0] EQ4_COEF1_HI 0x00 RW	33	FO3 COFF4 10	[7:0]				F03 C0	FF4 1 0				0x00	RW
31 EQ4_COEF0_L0 [7:0] EQ4_COEF0_LO 0x00 RW 36 EQ4_COEF1 HI [7:0] EQ4_COEF1 HI 0x00 RW	34		[7:0]				FO4 CO	EF0 HI				0x00	RW/
36 EQ4 COEF1 HI [7:0] EO4 COEF1 HI [0x00 RW	35		[7:0]				F04 C0	EF0 1 0				0x00	RW
	36	EO4 COEF1 HI	[7:0]				EO4 CO	EF1 HI				0x00	RW

SSM2529

Hex	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
37	EQ4_COEF1_LO	[7:0]		EQ4_COEF1_LO								
38	EQ4_COEF2_HI	[7:0]		EQ4_COEF2_HI								
39	EQ4_COEF2_LO	[7:0]				EQ4_CO	EF2_LO				0x00	RW
3A	EQ4_COEF3_HI	[7:0]		EQ4_COEF3_HI								
3B	EQ4_COEF3_LO	[7:0]				EQ4_CO	EF3_LO				0x00	RW
3C	EQ4_COEF4_HI	[7:0]		EQ4_COEF4_HI								
3D	EQ4_COEF4_LO	[7:0]		EQ4_COEF4_LO								
3E	EQ5_COEF0_HI	[7:0]				EQ5_CC	EF0_HI				0x00	RW
3F	EQ5_COEF0_LO	[7:0]		EQ5_COEF0_LO								RW
40	EQ5_COEF1_HI	[7:0]		EQ5_COEF1_HI								
41	EQ5_COEF1_LO	[7:0]				EQ5_CO	EF1_LO				0x00	RW
42	EQ5_COEF2_HI	[7:0]				EQ5_CC)EF2_HI				0x00	RW
43	EQ5_COEF2_LO	[7:0]				EQ5_CO	EF2_LO				0x00	RW
44	EQ5_COEF3_HI	[7:0]				EQ5_CC)EF3_HI				0x00	RW
45	EQ5_COEF3_LO	[7:0]				EQ5_CO	EF3_LO				0x00	RW
46	EQ5_COEF4_HI	[7:0]				EQ5_CC	DEF4_HI				0x00	RW
47	EQ5_COEF4_LO	[7:0]				EQ5_CO	EF4_LO				0x00	RW
48	EQ6_COEF0_HI	[7:0]				EQ6_CC	DEF0_HI				0x00	RW
49	EO6 COEF0 LO	[7:0]				EO6 CO	EF0 LO				0x00	RW
4A	EO6 COEF1 HI	[7:0]				EO6 CC	DEF1 HI				0x00	RW
4B	EO6 COEF1 LO	[7:0]				EO6 CO	EF1 LO				0x00	RW
40	FOG COFF2 HI	[7:0]				F06_CC	DEF2 HI				0x00	RW
4D		[7:0]				F06 C0	FF2 10				0x00	RW
4F		[7:0]				F07 CC	DEF0_HI				0x00	RW
4F		[7:0]										RW
50		[7:0]		EQ7_COEF1_H								RW
51		[7:0]										RW
52		[7:0]										
53		[7:0]				EQ7_CC	EF2 10				0,00	RW/
5/		[7:0]		FO RE		LQ/_CO			EO EORMAT		0x00	RW/
55		[7:0]	FOEN		FORPE	FORP5		EQ_OFD_CER			0x00	RW/
55		[7.0]		LQDF7	LQDFU	LQDFJ	LQDF 4			LQDFT	0x00	
57		[7.0]		DEA				DICELL			0x00	
59	DRC_CTRL2	[7.0]			Γ_ΑΤΤ Γ ΑΤΤ						0x00	
50		[7.0]	Percentred	DRU	ATI			DRC_L	JEC		0x00	
59		[7.0]	Reserved								0x00	
		[7.0]	Reserved								0x00	
50		[7:0]	Reserved				DRC_SIVIAX	DBC	FT		0x00	RW
50		[7:0]									0x88	RW
50	DRC_CORVES	[7:0]		RESI				DRC_3			0000	RVV
5E	DRC_HOLD_TIME	[7:0]		DRC	HING			DRCHI			000	RW
5F	DRC_RIPPLE_CIRL	[7:0]			Res				DRC		0x00	RW
60	DRC mode control	[7:0]	VBA1_EN	LIM_SRC	LIM_EN	COMP_EN	EXP_EN	NG_EN	DRC	_EN	0x3C	RW
61	FDSP_EN	[/:0]				Reserved				FDSP_EN	0x00	RW
80	SPK_PRO1_EN	[7:0]				Reserved				SP_EN	0x00	RW
81	TEMP_AMBIENT	[7:0]				TEMP_A	MBIENT				0x19	RW
82	SPKR_DCR	[7:0]				SPKR_	_DCR				0x40	RW
83	SPKR_TC	[7:0]				SPKF	R_TC				0x08	RW
84	SP_CF1_H	[7:0]				SP_C	⊦1_H				0x3F	RW
85	SP_CF1_L	[7:0]				SP_C	F1_L				0x81	RW
86	SP_CF2_H	[7:0]				SP_C	F2_H				0x00	RW
87	SP_CF2_L	[7:0]				SP_C	F2_L				0x55	RW
88	SP_CF3_H	[7:0]	<u> </u>			SP_C	F3_H				0x01	RW
89	SP_CF3_L	[7:0]				SP_C	F3_L				0x22	RW
8A	SP_CF4_H	[7:0]				SP_C	F4_H				0x02	RW
8B	SP_CF4_L	[7:0]				SP_C	F4_L				0x09	RW

Data Sheet

SSM2529

Hex	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
8C	SPKR_TEMP	[7:0]		SPKR_TEMP								
8D	SPKR_TEMP_MAG	[7:0]		SPKR_TEMP_MAG								
8E	MAX_SPKR_TEMP	[7:0]		MAX_SPKR_TEMP								RW
8F	SPK_GAIN	[7:0]		SP_RR SP_AR							0x44	RW
FF	SOFT_RST	[7:0]	SOFT_RST							0x00	W	

REGISTER DETAILS

SOFTWARE RESET AND MASTER SOFTWARE POWER-DOWN CONTROL (PWR_CTRL) REGISTER

Bits	Bit Name	Settings	Description	Reset	Access
7	SYS_RST		Software reset	0x0	RW
		0	Normal operation		
		1	Software reset		
6	APWDN_ANA		Auto power-down mode	0x0	RW
		0	Only digital		
		1	Both analog and digital		
5	APWDN_EN		Auto power-down enable	0x1	RW
		0	Auto power-down disabled		
		1	Auto power-down enabled		
4	LP_MODE		Low power mode	0x0	RW
		0	Normal operation		
		1	Low power operation mode; DAC runs at half speed		
[3:1]	MCS		Master clock rate selection	0x1	RW
		000	Refer to Table 48		
		001	Refer to Table 48		
		010	Refer to Table 48		
		011	Refer to Table 48		
		100	Refer to Table 48		
		101	Refer to Table 48		
		110	Not applicable		
		111	Not applicable		
0	SPWDN		Master software power-down	0x1	RW
		0	Normal operation		
		1	Software master power-down		

Table 47. Address: 0x00, Reset: 0x23, Name: PWR_CTRL

Table 48 shows the MCS bit settings available with the possible input sample rates vs. the required master clock frequency, as well as the master clock to bit clock ratio. The b110 thru b111 settings are reserved and not available to the user.

MCLK RATIO AND FREQUENCY

Table 48. MCS Bit Field Setting—MCLK Ratio and Frequency (N/A = Not Applicable)

Input Sample Frequency, f _s (kHz)		Setting 0 b000	Setting 1 b001	Setting 2 b010	Setting 3 b011	Setting 4 b100	Setting 5 b101	Setting 6 b110 thru b111
8	Ratio	768 f _s	1024 f _s	1536 f _s	2048 f _s	3072 f _s	4096 f _s	Reserved
	MCLK	6.144 MHz	8.192 MHz	12.288 MHz	16.384 MHz	24.576 MHz	32.768 MHz	
11.025	Ratio	N/A	512 f _s	1024 f _s	1536 f _s	2048 f _s	3072 f _s	Reserved
	MCLK		5.6448 MHz	11.2896 MHz	16.9344 MHz	22.5792 MHz	33.8688 MHz	
12	Ratio	N/A	512 f _s	1024 f _s	1536 f _s	2048 f _s	3072 f _s	Reserved
	MCLK		6.144 MHz	12.288 MHz	18.432 MHz	24.576 MHz	38.864 MHz	
16	Ratio	384 f _s	512 f _s	768 f _s	1024 f _s	1536 f _s	2048 f _s	Reserved
	MCLK	6.144 MHz	8.192 MHz	12.288 MHz	16.384 MHz	24.576 MHz	32.768 MHz	
22.05	Ratio	N/A	256 f _s	512 f _s	768 f _s	1024 f _s	1536 f _s	Reserved
	MCLK		5.6448 MHz	11.2896 MHz	16.9344 MHz	22.5792 MHz	33.8688 MHz	
24	Ratio	N/A	256 f _s	512 f _s	768 f _s	1024 f _s	1536 f _s	Reserved
	MCLK		6.144 MHz	12.288 MHz	18.432 MHz	24.576 MHz	38.864 MHz	
32	Ratio	192 f _s	256 f _s	384 f _s	512 f _s	768 f _s	1024 f _s	Reserved
	MCLK	6.144 MHz	8.192 MHz	12.288 MHz	16.384 MHz	24.576 MHz	32.768 MHz	
44.1	Ratio	N/A	128 f _s	256 f _s	384 f _s	512 f _s	768 f _s	Reserved
	MCLK		5.6448 MHz	11.2896 MHz	16.9344 MHz	22.5792 MHz	33.8688 MHz	

Input Sample Frequency, f _s (kHz)		Setting 0 b000	Setting 1 b001	Setting 2 b010	Setting 3 b011	Setting 4 b100	Setting 5 b101	Setting 6 b110 thru b111
48	Ratio	N/A	128 f _s	256 f _s	384 f _s	512 f _s	768 f _s	Reserved
	MCLK		6.144 MHz	12.288 MHz	18.432 MHz	24.576 MHz	36.864 MHz	
88.2	Ratio	N/A	64 f _s	128 f _s	192 f _s	256 f _s	384 f _s	Reserved
	MCLK		5.6448 MHz	11.2896 MHz	16.9344 MHz	22.5792 MHz	33.8688 MHz	
96	Ratio	N/A	64 f _s	128 f _s	192 f _s	256 f _s	384 f _s	Reserved
	MCLK		6.144 MHz	12.288 MHz	18.432 MHz	24.576 MHz	36.864 MHz	

When using MCS = $0/64f_s$ mode, the chip automatically operates in low power mode.

EDGE SPEED AND CLOCKING CONTROL (SYS_CTRL) REGISTER

Table							
Bits	Bit Name	Settings	Description	Reset	Access		
7	PDM_MODE		PDM input enable	0x0	RW		
		0	Disable PDM input				
		1	Enable PDM input				
6	PDM_FS		PDM input sample rate	0x0	RW		
		0	About 3 MHz sample rate				
		1	About 6 MHz sample rate				
5	PDB_ADC		ADC power down	0x1	RW		
		0	Power down				
		1	Power on				
4	BCLK_RATE		BCLK cycles per channel frame	0x0	RW		
		0	32 cycles per channel				
		1	16 cycles per channel				
3	BCLK_GEN		Generate BCLK internally	0x0	RW		
		0	Disabled				
		1	Enabled				
[2:1]	EDGE		Edge rate control	0x0	RW		
		00	Normal operation				
		01	Low EMI mode operation				
0	ASR		Auto sample rate	0x0	RW		
		0	Sample rate setting determined by MCS register (Register 0x00, Bits[3:1])				
		1	Automatic sample rate detection				

Table 49. Address: 0x01, Reset: 0x20, Name: SYS_CTRL

SERIAL AUDIO INTERFACE AND SAMPLE RATE CONTROL (SAI_FMT1) REGISTER

Table 50. Address: 0x02, Reset: 0x02, Name: SAI_FMT1

Bits	Bit Name	Settings	Description	Reset	Access
[7:6]	SDATA_FMT		Serial data format	0x0	RW
		00	I ² S, BCLK delay by 1		
		01	Left justified		
		10	Right justified, 24-bit data		
		11	Right justified, 16-bit data		
[5:3]	SAI		Serial audio interface format	0x0	RW
		000	Stereo I ² S, left justified, right justified		
		001	TDM2		
		010	TDM4		
		011	TDM8		
		100	TDM16		
		101	Mono PCM		
		110	Reserved		
		111	Reserved		

SSM2529

Bits	Bit Name	Settings	Description	Reset	Access
[2:0]	SR		Sample rate selection	0x2	RW
		000	11.025 kHz, 12 kHz		
		001	22.05 kHz, 24 kHz		
		010	44.1 kHz, 48 kHz		
		011	96 kHz		
		100	8 kHz		
		101	16 kHz		
		110	32 kHz		
		111	Reserved		

SERIAL AUDIO INTERFACE CONTROL (SAI_FMT2) REGISTER

Table 51. Address: 0x03, Reset: 0x00, Name: SAI_FMT2

Bits	Bit Name	Settings	Description	Reset	Access
7	LPST		Small power stage enable	0x0	RW
		0	Disabled		
		1	Enabled		
[6:5]	LR_SEL		L/R channel selector	0x0	RW
		00	Select left channel		
		01	Select right channel		
		10	Select (left + right)/2		
		11	Select (left – right)/2		
4	LRCLK_MODE		LRCLK mode selection for TDM operation	0x0	RW
		0	50% duty cycle LRCLK		
		1	Pulse mode LRCLK		
3	LRCLK_POL		LRCLK polarity control	0x0	RW
		0	Normal LRCLK operation		
		1	Inverted LRCLK operation		
2	SAI_MSB		SDATA bit stream order	0x0	RW
		0	MSB first SDATA		
		1	LSB first SDATA		
1	BCLK_TDMC		BCLK cycles per frame in TDM modes select	0x0	RW
		0	32 BCLK cycles per slot		
		1	16 BCLK cycles per slot		
0	BCLK_EDGE		BCLK active edge select	0x0	RW
		0	Rising BCLK edge used (if PDM_MODE = 1, L data is registered on the		
			rising edge, and R data is registered on the falling edge)		
		1	Falling BCLK edge used (if PDM_MODE = 1, R data is registered on the rising edge, and L data is registered on the falling edge)		

CHANNEL MAPPING CONTROL REGISTER

Table 52. Address: 0x04, Reset: 0x10, Name: Channel Mapping Control

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	CH_SEL_R		Right channel mapping select	0x1	RW
		0000	Channel 0 from SAI to right output		
		0001	Channel 1 from SAI to right output		
		0010	Channel 2 from SAI to right output		
		0011	Channel 3 from SAI to right output		
		0100	Channel 4 from SAI to right output		
		0101	Channel 5 from SAI to right output		
		0110	Channel 6 from SAI to right output		
		0111	Channel 7 from SAI to right output		
		1000	Channel 8 from SAI to right output		
		1001	Channel 9 from SAI to right output		
		1010	Channel 10 from SAI to right output		
		1011	Channel 11 from SAI to right output		
		1100	Channel 12 from SAI to right output		
		1101	Channel 13 from SAI to right output		
		1110	Channel 14 from SAI to right output		
		1111	Channel 15 from SAI to right output		
[3:0]	CH_SEL_L		Left channel mapping select	0x0	RW
		0000	Channel 0 from SAI to left output		
		0001	Channel 1 from SAI to left output		
		0010	Channel 2 from SAI to left output		
		0011	Channel 3 from SAI to left output		
		0100	Channel 4 from SAI to left output		
		0101	Channel 5 from SAI to left output		
		0110	Channel 6 from SAI to left output		
		0111	Channel 7 from SAI to left output		
		1000	Channel 8 from SAI to left output		
		1001	Channel 9 from SAI to left output		
		1010	Channel 10 from SAI to left output		
		1011	Channel 11 from SAI to left output		
		1100	Channel 12 from SAI to left output		
		1101	Channel 13 from SAI to left output		
		1110	Channel 14 from SAI to left output		
		1111	Channel 15 from SAI to left output		

VOLUME CONTROL BEFORE FDSP (VOL_BF_FDSP) REGISTER

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DIG_VOL		Volume control before FDSP	0x40	RW
		00000000	+24 dB		
		00000001	+23.625 dB		
		00000010	+23.35 dB		
		00000011	+22.875 dB		
		00000100	+22.5 dB		
		00000101			
		00111111	+0.375 dB		
		01000000	0 dB		
		01000001	–0.375 dB		
		01000010			
		11111101	–70.875 dB		
		11111110	–71.25 dB		
		11111111	Mute		

Table 53. Address: 0x05, Reset: 0x40, Name: VOL_BF_FDSP

VOLUME CONTROL AFTER FDSP (VOL_AF_FDSP) REGISTER

Table 54. Address: 0x06, Reset: 0x40, Name: VOL_AF_FDSP

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	PDP_VOL		Volume control after FDSP	0x40	RW
		00000000	+24 dB		
		0000001	+23.625 dB		
		00000010	+23.35 dB		
		00000011	+22.875 dB		
		00000100	+22.5 dB		
		00000101			
		00111111	+0.375 dB		
		0100000	0 dB		
		01000001	–0.375 dB		
		01000010			
		11111101	–70.875 dB		
		11111110	–71.25 dB		
		11111111	Mute		

VOLUME AND MUTE CONTROL REGISTER

Table 55. Address: 0x07, Reset: 0x20, Name: Volume and Mute Control

Bits	Bit Name	Settings	Description	Reset	Access
7	CLK_LOSS_DET		Clock loss detect enable	0x0	RW
		0	Clock loss detect disabled		
		1	Clock loss detect enabled		
[6:4]	SR_AUTO		Auto detected sample rate	0x2	R
		000	11.025 kHz/12 kHz		
		001	22.05 kHz/24 kHz		
		010	44.1 kHz/48 kHz		
		011	96 kHz		
		100	8 kHz		
		101	16 kHz		
		110	32 kHz		
		111	Wrong sample rate		
3	Reserved		Reserved	0x0	RW

SSM2529

Bits	Bit Name	Settings	Description	Reset	Access
2	PDP_VOL_FORCE		PDP volume fade enable	0x0	RW
		0	Soft (default)		
		1	Force		
1	DIG_VOL_FORCE		DIG volume fade enable	0x0	RW
		0	Soft (default)		
		1	Force		
0	ANA_GAIN		Analog gain control	0x0	RW
		0	3.6 V gain		
		1	5 V gain		

DPLL_CTRL REGISTER

Table 56. Address: 0x08	, Reset: 0x00, Name	: DPLL_CTRL
-------------------------	---------------------	-------------

Bits	Bit Name	Settings	Description	Reset	Access
7	Reserved		Reserved	0x0	RW
[6:4]	DPLL_REF_SEL		DPLL source clock selection	0x0	RW
		000	Select MCLK as DPLL reference clock		
		001	Select BCLK as DPLL reference clock		
		010	Select LRCLK as DPLL reference clock		
[3:0]	DPLL_NDIV		DPLL output clock frequency	0x0	RW
		0000	Reference clock frequency × 1		
		0001	Reference clock frequency × 1024		
		0010	Reference clock frequency \times 512		
		0011	Reference clock frequency × 256		
		0100	Reference clock frequency × 128		
		0101	Reference clock frequency \times 64		
		0110	Reference clock frequency × 32		
		0111	Reference clock frequency $ imes$ 16		
		1000	Reference clock frequency × 8		
		1001	Reference clock frequency × 4		
		1010	Reference clock frequency × 2		

APLL_CTRL1 REGISTER

Table 57.	Address:	0x09.	Reset:	0x00,	Name:	APLL	CTRL 1
1 4010 071	11441000	0110/9		0.100,	1	· · · · · · · · · · · · · · · · · · ·	

BITS	Bit Name	Description	Reset	Access
[7:0]	M_HI	Denominator (M) of the fractional APLL upper byte	0x00	RW

APLL_CTRL2 REGISTER

Table 58. Address: 0x0A, Reset: 0x00, Name: APLL_CTRL2

Bits	Bit Name	Description	Reset	Access
[7:0]	M_LO	Denominator (M) of the fractional APLL lower byte	0x00	RW

APLL_CTRL3 REGISTER

Table 59. Address: 0x0B, Reset: 0x00, Name: APLL_CTRL3

Bits	Bit Name	Description	Reset	Access
[7:0]	N_HI	Numerator (N) of the fractional APLL upper byte	0x00	RW

APLL_CTRL4 REGISTER

Table 60. Address: 0x0C, Reset: 0x00, Name: APLL_CTRL4

Bits	Bit Name	Description	Reset	Access
[7:0]	N_LO	Numerator (N) of the fractional APLL lower byte	0x00	RW

APLL_CTRL5 REGISTER

Bits	Bit Name	Settings	Description	Reset	Access
7	Reserved		Reserved	0x0	RW
[6:3]	R		Integer part of APLL	0x0	RW
		0010	R = 2		
		0011	R = 3		
		0100	R = 4		
		0101	R = 5		
		0110	R = 6		
		0111	R = 7		
		1000	R = 8		
[2:1]	Х		APLL input clock divider	0x0	RW
		00	X = 1		
		01	X = 2		
		10	X = 3		
		11	X = 4		
0	Туре		APLL operation mode	0x0	RW
		0	Integer		
		1	Fractional		

Table 61. Address: 0x0D, Reset: 0x00, Name: APLL_CTRL5

APLL_CTRL6 REGISTER

Table 62. Address: 0x0E, Reset: 0x30, Name: APLL_CTRL6

Bits	Bit Name	Settings	Description	Reset	Access
[7:6]	FSYS_DPLL			0x0	RW
		00	Analog OSC Clock Rate 1		
		01	Analog OSC Clock Rate 2		
		10	Analog OSC Clock Rate 3		
		11	Analog OSC Clock Rate 4		
5	DPLL_BYPASS			0x1	RW
		0	Enable DPLL		
		1	Bypass DPLL (default)		
4	APLL_BYPASS			0x1	RW
		0	Enable APLL		
		1	Bypass APLL (default)		
3	DPLL_LOCK			0x0	R
		0	DPLL not locked		
		1	DPLL locked		
2	APLL_LOCK			0x0	R
		0	APLL not locked		
		1	APLL locked		
1	PLLEN			0x0	RW
		0	Disable internal PLL (default)		
		1	Enable internal PLL		
0	COREN		Core clock enable	0x0	RW
		0	Core clock disable (default)		
		1	Core clock enable		

FAULT_CTRL1 REGISTER

Table 63. Address: 0x0F, Reset: 0x00, Name: FAULT_CTRL1

Bits	Bit Name	Settings	Description	Reset	Access
[7:5]	Reserved			0x0	RW
4	PDB_LINE		Single end lineout enable	0x0	RW
		0	Disabled		
		1	Enabled		
3	PDB_ZC		Lineout calibration enable	0x0	RW
		0	Disabled		
		1	Enabled		
2	CLK_LOSS		Clock for DAC and Class-D lost	0x0	R
		0	Normal operation		
		1	Loss of clock signal		
1	OC		Right channel overcurrent fault	0x0	R
		0	Normal operation		
		1	Right channel overcurrent fault		
0	OT		Overtemperture fault status	0x0	R
		0	Normal operation		
		1	Overtemperature fault		

FAULT_CTRL2 REGISTER

Table 64. Address: 0x10, Reset: 0x4C, Name: FAULT_CTRL2

Bits	Bit Name	Settings	Description	Reset	Access
7	Reserved			0x0	RW
[6:5]	AR_TIME		Auto recovery time	0x2	RW
		00	10 ms auto fault recovery delay		
		01	20 ms auto fault recovery delay		
		10	40 ms auto fault recovery delay		
		11	80 ms auto fault recovery delay		
4	MRCV		Manual fault recovery	0x0	RW
		1	Writing of 1 causes a manual fault recovery attempt when ARCV = 11		
[3:2]	MAX_AR		Maximum fault recovery attempts	0x3	RW
		00	1 auto recovery attempt		
		01	3 auto recovery attempts		
		10	7 auto recovery attempts		
		11	Unlimited auto recovery attempts		
[1:0]	ARCV		Auto fault recovery control	0x0	RW
		00	Auto fault recovery for overtemperature and overcurrent faults		
		01	Auto fault recovery for overtemperature fault only		
		10	Auto fault recovery for overcurrent fault only		
		11	No auto fault recovery		

DEEMP_CTRL REGISTER

Ta	ble	65. .	Address:	0x14,	Reset:	0x00,	Name:	DEEMP	CTRL
----	-----	--------------	----------	-------	--------	-------	-------	-------	------

Bits	Bit Name	Settings	Description	Reset	Access
[7:3]	Reserved			0x00	RW
[2:1]	DEEMP_FS		De-emphasis sample rate selection	0x0	RW
		00	Set coefficients to all zero		
		01	48 kHz		
		10	44.1 kHz		
		11	32 kHz		
0	DEEMP_EN		De-emphasis enable	0x0	RW
		1	De-emphasis filter enable		
		0	De-emphasis filter disable		

HPF_CTRL REGISTER

Bits	Bit Name	Settings	Description	Reset	Access
[7:6]	Reserved			0x0	RW
[5:2]	HPFCUT		High-pass filter 3 dB cutoff frequency	0x00	RW
		0000	3.7 Hz (default)		
		0001	50 Hz		
		0010	100 Hz		
		0011	150 Hz		
		0100	200 Hz		
		0101	250 Hz		
		0110	300 Hz		
		0111	350 Hz		
		1000	400 Hz		
		1001	450 Hz		
		1010	500 Hz		
		1011	550 Hz		
		1100	600 Hz		
		1101	650 Hz		
		1110	700 Hz		
		1111	750 Hz		
1	HPFOR		Store/clear high-pass filter dc value when HPF disabled	0x0	RW
		0	Clear dc value		
		1	Store dc value		
0	HPFEN		High-pass filter enabled	0x0	RW
		0	HPF disabled (default)		
		1	HPF enabled		

Table 66. Address: 0x15, Reset: 0x00, Name: HPF_CTRL

EQ1_COEF0_HI REGISTER

Table 67. Address: 0x16, Reset: 0x00, Name: EQ1_COEF0_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ1_COEF0_HI	EQ coefficient	0x00	RW

EQ1_COEF0_LO REGISTER

Table 68. Address: 0x17, Reset: 0x00, Name: EQ1_COEF0_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ1_COEF0_LO	EQ coefficient	0x00	RW

EQ1_COEF1_HI REGISTER

Table 69. Address: 0x18, Reset: 0x00, Name: EQ1_COEF1_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ1_COEF1_HI	EQ coefficient	0x00	RW

EQ1_COEF1_LO REGISTER

Table 70. Address: 0x19, Reset: 0x00, Name: EQ1_COEF1_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ1_COEF1_LO	EQ coefficient	0x00	RW

EQ1_COEF2_HI REGISTER

Table 71. Address: 0x1A.	Reset: 0x00, Name: EC	1 COEF2 HI
rable / It Haarebot officity	iteoett onoo, i tunnet il q	

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ1_COEF2_HI	EQ coefficient	0x00	RW

EQ1_COEF2_LO REGISTER

Table 72. Address: 0x1B, Reset: 0x00, Name: EQ1_COEF2_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ1_COEF2_LO	EQ coefficient	0x00	RW

EQ1_COEF3_HI REGISTER

Table 73. Address: 0x1C, Reset: 0x00, Name: EQ1_COEF3_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ1_COEF3_HI	EQ coefficient	0x00	RW

EQ1_COEF3_LO REGISTER

Table 74. Address: 0x1D, Reset: 0x00, Name: EQ1_COEF3_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ1_COEF3_LO	EQ coefficient	0x00	RW

EQ1_COEF4_HI REGISTER

Table 75. Address: 0x1E, Reset: 0x00, Name: EQ1_COEF4_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ1_COEF4_HI	EQ coefficient	0x00	RW

EQ1_COEF4_LO REGISTER

Table 76. Address: 0x1F, Reset: 0x00, Name: EQ1_COEF4_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ1_COEF4_LO	EQ coefficient	0x00	RW

EQ2_COEF0_HI REGISTER

Table 77. Address: 0x20, Reset: 0x00, Name: EQ2_COEF0_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ2_COEF0_HI	EQ coefficient	0x00	RW

EQ2_COEF0_LO REGISTER

Table 78. Address: 0x21, Reset: 0x00, Name: EQ2_COEF0_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ2_COEF0_LO	EQ coefficient	0x00	RW

EQ2_COEF1_HI REGISTER

Table 79. Address: 0x22, Reset: 0x00, Name: EQ2_COEF1_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ2_COEF1_HI	EQ coefficient	0x00	RW

EQ2_COEF1_LO REGISTER

Table 80. Address: 0x23, Reset: 0x00, Name: EQ2_COEF1_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ2_COEF1_LO	EQ coefficient	0x00	RW

EQ2_COEF2_HI REGISTER

Table 81. Address: 0x24, Reset: 0x00, Name: EQ2_COEF2_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ2_COEF2_HI	EQ coefficient	0x00	RW

EQ2_COEF2_LO REGISTER

Table 82. Address: 0x25, Reset: 0x00, Name: EQ2_COEF2_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ2_COEF2_LO	EQ coefficient	0x00	RW

EQ2_COEF3_HI REGISTER

Table 83. Address: 0x26, Reset: 0x00, Name: EQ2_COEF3_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ2_COEF3_HI	EQ coefficient	0x00	RW

EQ2_COEF3_LO REGISTER

Table 84. Address: 0x27, Reset: 0x00, Name: EQ2_COEF3_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ2_COEF3_LO	EQ coefficient	0x00	RW

EQ2_COEF4_HI REGISTER

Table 85. Address: 0x28, Reset: 0x00, Name: EQ2_COEF4_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ2_COEF4_HI	EQ coefficient	0x00	RW

EQ2_COEF4_LO REGISTER

Table 86. Address: 0x29, Reset: 0x00, Name: EQ2_COEF4_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ2_COEF4_LO	EQ coefficient	0x00	RW

EQ3_COEF0_HI REGISTER

Table 87. Address: 0x2A, Reset: 0x00, Name: EQ3_COEF0_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ3_COEF0_HI	EQ coefficient	0x00	RW

EQ3_COEF0_LO REGISTER

Table 88. Address: 0x2B, Reset: 0x00, Name: EQ3_COEF0_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ3_COEF0_LO	EQ coefficient	0x00	RW

EQ3_COEF1_HI REGISTER

Table 89. Address: 0x2C, Reset: 0x00, Name: EQ3_COEF1_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ3_COEF1_HI	EQ coefficient	0x00	RW

EQ3_COEF1_LO REGISTER

Table 90. Address: 0x2D, Reset: 0x00, Name: EQ3_COEF1_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ3_COEF1_LO	EQ coefficient	0x00	RW

EQ3_COEF2_HI REGISTER

Table 91. Address: 0x2E, Reset: 0x00, Name: EQ3_COEF2_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ3_COEF2_HI	EQ coefficient	0x00	RW

EQ3_COEF2_LO REGISTER

Table 92. Address: 0x2F, Reset: 0x00, Name: EQ3_COEF2_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ3_COEF2_LO	EQ coefficient	0x00	RW

EQ3_COEF3_HI REGISTER

Table 93. Address: 0x30, Reset: 0x00, Name: EQ3_COEF3_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ3_COEF3_HI	EQ coefficient	0x00	RW

EQ3_COEF3_LO REGISTER

Table 94. Address: 0x31, Reset: 0x00, Name: EQ3_COEF3_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ3_COEF3_LO	EQ coefficient	0x00	RW

EQ3_COEF4_HI REGISTER

Table 95. Address	: 0x32, Rese	et: 0x00, Name	: EQ3_	_COEF4	_HI
-------------------	--------------	----------------	--------	--------	-----

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ3_COEF4_HI	EQ coefficient	0x00	RW

EQ3_COEF4_LO REGISTER

Table 96. Address: 0x33, Reset: 0x00, Name: EQ3_COEF4_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ3_COEF4_LO	EQ coefficient	0x00	RW

EQ4_COEF0_HI REGISTER

Table 97. Address: 0x34, Reset: 0x00, Name: EQ4_COEF0_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ4_COEF0_HI	EQ coefficient	0x00	RW

EQ4_COEF0_LO REGISTER

Table 98. Address: 0x35, Reset: 0x00, Name: EQ4_COEF0_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ4_COEF0_LO	EQ coefficient	0x00	RW

EQ4_COEF1_HI REGISTER

Table 99. Address: 0x36, Reset: 0x00, Name: EQ4_COEF1_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ4_COEF1_HI	EQ coefficient	0x00	RW
				•

EQ4_COEF1_LO REGISTER

Table 100. Address: 0x37, Reset: 0x00, Name: EQ4_COEF1_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ4_COEF1_LO	EQ coefficient	0x00	RW

EQ4_COEF2_HI REGISTER

Table 101, Address: 0x	38. Reset: 0x00.	Name: EO4	COEF2	н
Table Tor, muuress, or	LOO, ICOCLI UAUU,			

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ4_COEF2_HI	EQ coefficient	0x00	RW

EQ4_COEF2_LO REGISTER

Table 102. Address: 0x39, Reset: 0x00, Name: EQ4_COEF2_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ4_COEF2_LO	EQ coefficient	0x00	RW

EQ4_COEF3_HI REGISTER

Table 103. Address: 0x3A, Reset: 0x00, Name: EQ4_COEF3_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ4_COEF3_HI	EQ coefficient	0x00	RW

EQ4_COEF3_LO REGISTER

Table 104. Address: 0x3B, Reset: 0x00, Name: EQ4_COEF3_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ4_COEF3_LO	EQ coefficient	0x00	RW

EQ4_COEF4_HI REGISTER

Table 105. Address: 0x3C, Reset: 0x00, Name: EQ4_COEF4_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ4_COEF4_HI	EQ coefficient	0x00	RW

EQ4_COEF4_LO REGISTER

Table 106. Address: 0x3D, Reset: 0x00, Name: EQ4_COEF4_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ4_COEF4_LO	EQ coefficient	0x00	RW

EQ5_COEF0_HI REGISTER

Table 107. Address: 0x3E, Reset: 0x00, Name: EQ5_COEF0_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ5_COEF0_HI	EQ coefficient	0x00	RW

EQ5_COEF0_LO REGISTER

Table 108. Address: 0x3F, Reset: 0x00, Name: EQ5_COEF0_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ5_COEF0_LO	EQ coefficient	0x00	RW

EQ5_COEF1_HI REGISTER

Table 109. Address: 0x40, Reset: 0x00, Name: EQ5_COEF1_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ5_COEF1_HI	EQ coefficient	0x00	RW

EQ5_COEF1_LO REGISTER

Table 110. Address: 0x41, Reset: 0x00, Name: EQ5_COEF1_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ5_COEF1_LO	EQ coefficient	0x00	RW

EQ5_COEF2_HI REGISTER

Table 111. Address: 0x42, Reset: 0x00, Name: EQ5_COEF2_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ5_COEF2_HI	EQ coefficient	0x00	RW

EQ5_COEF2_LO REGISTER

Table 112. Address: 0x43, Reset: 0x00, Name: EQ5_COEF2_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ5_COEF2_LO	EQ coefficient	0x00	RW

EQ5_COEF3_HI REGISTER

Table 113. Address: 0x44, Reset: 0x00, Name: EQ5_COEF3_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ5_COEF3_HI	EQ coefficient	0x00	RW

EQ5_COEF3_LO REGISTER

Table 114. Address: 0x45, Reset: 0x00, Name: EQ5_COEF3_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ5_COEF3_LO	EQ coefficient	0x00	RW

EQ5_COEF4_HI REGISTER

Table 113. Address, VA40, Reset, VA00, Name, EQ3 COLTA 11.	Table 115.	Address: 0x46,	Reset: 0x00,	Name: EQ5	COEF4	HI
--	------------	----------------	--------------	-----------	-------	----

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ5_COEF4_HI	EQ coefficient	0x00	RW

EQ5_COEF4_LO REGISTER

Table 116. Address: 0x47, Reset: 0x00, Name: EQ5_COEF4_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ5_COEF4_LO	EQ coefficient	0x00	RW

EQ6_COEF0_HI REGISTER

Table 117. Address: 0x48, Reset: 0x00, Name: EQ6_COEF0_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ6_COEF0_HI	EQ coefficient	0x00	RW

EQ6_COEF0_LO REGISTER

Table 118. Address: 0x49, Reset: 0x00, Name: EQ6_COEF0_LO

2.10	Name	Description	Reset	Access
[7:0] EQ6_	6_COEF0_LO	EQ coefficient	0x00	RW

EQ6_COEF1_HI REGISTER

Table 119. Address: 0x4A, Reset: 0x00, Name: EQ6_COEF1_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ6_COEF1_HI	EQ coefficient	0x00	RW

EQ6_COEF1_LO REGISTER

Table 120. Address: 0x4B, Reset: 0x00, Name: EQ6_COEF1_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ6_COEF1_LO	EQ coefficient	0x00	RW

EQ6_COEF2_HI REGISTER

Table 121. Address:	0x4C.	Reset:	0x00.	Name:	EO6	COEF2	HI
1 abic 121, maarcoo,	UATC,	ICOCL.	UAUU	1 vanic.	LQU		

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ6_COEF2_HI	EQ coefficient	0x00	RW

EQ6_COEF2_LO REGISTER

Table 122. Address: 0x4D, Reset: 0x00, Name: EQ6_COEF2_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ6_COEF2_LO	EQ coefficient	0x00	RW

EQ7_COEF0_HI REGISTER

Table 123. Address: 0x4E, Reset: 0x00, Name: EQ7_COEF0_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ7_COEF0_HI	EQ coefficient	0x00	RW

EQ7_COEF0_LO REGISTER

Table 124. Address: 0x4F, Reset: 0x00, Name: EQ7_COEF0_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ7_COEF0_LO	EQ coefficient	0x00	RW

EQ7_COEF1_HI REGISTER

Table 125. Address: 0x50, Reset: 0x00, Name: EQ7_COEF1_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ7_COEF1_HI	EQ coefficient	0x00	RW

EQ7_COEF1_LO REGISTER

Table 120, Address, VAJ1, Reset, VAV0, Mallie, EQ7 COLLI LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ7_COEF1_LO	EQ coefficient	0x00	RW

EQ7_COEF2_HI REGISTER

Table 127. Address: 0x52, Reset: 0x00, Name: EQ7_COEF2_HI

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ7_COEF2_HI	EQ coefficient	0x00	RW

EQ7_COEF2_LO REGISTER

Table 128. Address: 0x53, Reset: 0x00, Name: EQ7_COEF2_LO

Bits	Bit Name	Description	Reset	Access
[7:0]	EQ7_COEF2_LO	EQ coefficient	0x00	RW

EQ_CTRL1 REGISTER

Table 129. Address: 0x54, Reset: 0x00, Name: EQ_CTRL1

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	EQ_RESERVED		Reserved	0x0	RW
3	EQ_UPDING		EQ coefficient updating flag	0x0	R
		0	None		
		1	EQ coefficients updating		
2	EQ_UPD_CLR		EQ coefficient update clear	0x0	W
		0	Normal operation		
		1	Interrupt coefficient update		
1	EQ_FORMAT		EQ coefficient format selection	0x0	RW
		0	Normal		
		1	Large gain		
0	EQ_UPD		EQ coefficient registers update flag	0x0	R
		1	Update		
		0	None		

EQ_CTRL2 REGISTER

Table 130. Address	0x55,	Reset:	0x00,	Name:	EQ_	CTRL2
--------------------	-------	--------	-------	-------	-----	-------

Bits	Bit Name	Settings	Description	Reset	Access
7	EQEN		EQ enable	0x0	RW
		0	EQ disable		
		1	EQ enable		
6	EQBP7		EQ Band 7 bypass when EQ enabled	0x0	RW
		0	No bypass		
		1	Bypass EQ Band 7		
5	EQBP6		EQ Band 6 bypass when EQ enabled	0x0	RW
		0	No bypass		
		1	Bypass EQ Band 6		
4	EQBP5		EQ Band 5 bypass when EQ enabled	0x0	RW
		0	No bypass		
		1	Bypass EQ Band 5		
3	EQBP4		EQ Band 4 bypass when EQ enabled	0x0	RW
		0	No bypass		
		1	Bypass EQ Band 4		
2	EQBP3		EQ Band 3 bypass when EQ enabled	0x0	RW
		0	No bypass		
		1	Bypass EQ Band 3		
1	EQBP2		EQ Band 2 bypass when EQ enabled	0x0	RW
		0	No bypass		
		1	Bypass EQ Band 2		
0	EQBP1		EQ Band 1 bypass when EQ enabled	0x0	RW
		0	No bypass		
		1	Bypass EQ Band 1		

DRC_CTRL1 REGISTER

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	Reserved			0x0	RW
[3:0]	DRCLELTAV		DRC rms detector average time	0x0	RW
		0000	0 ms(default)		
		0001	0.075 ms		
		0011	0.30 ms		
		1111	24.576 sec		

Table 131. Address: 0x56, Reset: 0x00, Name: DRC_CTRL1

DRC_CTRL2 REGISTER

Table 132. Address: 0x57, Reset: 0x00, Name: DRC_CTRL2

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	PEAK_ATT		DRC peak detector attack time setting; 16 possible values	0x0	RW
		0000	0 ms		
		0001	0.09 ms		
		0010	0.19 ms		
		0011	0.37 ms		
		0100	0.75 ms		
		0101	1.5 ms		
		0110	3 ms		
		0111	6 ms		
		1000	12 ms		
		1001	24 ms		
		1010	48 ms		
		1011	96 ms		
		1100	192 ms		
		1101	384 ms		
		1110	768 ms		
		1111	1.536 sec		
[3:0]	PEAK_REL		DRC peak detector decay time setting; 16 possible values	0x0	RW
		0000	0 ms		
		0001	1.5 ms		
		0010	3 ms		
		0011	6 ms		
		0100	12 ms		
		0101	24 ms		
		0110	48 ms		
		0111	96 ms		
		1000	192 ms		
		1001	384 ms		
		1010	768 ms		
		1011	1.536 sec		
		1100	3.072 sec		
		1101	6.144 sec		
		1110	12.288 sec		
		1111	24.576 sec		

DRC_CTRL3 REGISTER

Table 133. Address: 0x58, Reset: 0x00, Name: DRC_CTRL3

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	DRC_ATT		DRC attack time setting; 16 possible settings	0x0	RW
		0000	0 ms		
		0001	0.1 ms		
		0010	0.19 ms		
		0011	0.37 ms		
		0100	0.75 ms		
		0101	1.5 ms		
		0110	3 ms		
		0111	6 ms		
		1000	12 ms		
		1001	24 ms		
		1010	48 ms		
		1011	96 ms		
		1100	192 ms		
		1101	384 ms		
		1110	768 ms		
		1111	1.536 sec		
[3:0]	DRC_DEC		DRC decay time setting; 16 possible settings	0x0	RW
		0000	0 ms		
		0001	1.5 ms		
		0010	3 ms		
		0011	6 ms		
		0100	12 ms		
		0101	24 ms		
		0110	48 ms		
		0111	96 ms		
		1000	192 ms		
		1001	384 ms		
		1010	768 ms		
		1011	1.536 sec		
		1100	3.072 sec		
		1101	6.144 sec		
		1110	12.288 sec		
		1111	24.576 sec		

DRC_CURVE1 REGISTER

Table 134. Address: 0x59, Reset: 0x00, Name: DRC_CURVE1

Bits	Bit Name	Settings	Description	Reset	Access
7	Reserved			0x0	RW
[6:0]	DRC_LT		DRC limiter threshold setting, relative to input, in 0.5 dB steps	0x00	RW
		0000000	+6 dB		
		0000001	+5.5 dB		
		xxxxxxx	–0.5 dB step		
		1010000	-35 dB		

DRC_CURVE2 REGISTER

Bits	Bit Name	Settings	Description	Reset	Access
7	Reserved			0x0	RW
[6:0]	DRC_CT		DRC compressor threshold setting, relative to input in 0.5 dB steps	0x00	RW
		0000000	+6 dB		
		0000001	+5.5 dB		
		XXXXXXX	–0.5 dB step		
		1010000	-35 dB		

Table 135. Address: 0x5A, Reset: 0x00, Name: DRC_CURVE2

DRC_CURVE3 REGISTER

Table 136. Address: 0x5B, Reset: 0x00, Name: DRC_CURVE3

Bits	Bit Name	Settings	Description	Reset	Access
7	Reserved			0x0	RW
[6:0]	DRC_SMAX	0000000 0000001 xxxxxx 1010000	This is the DRC maximum output signal amplitude setting. This is the maximum output level produced by the DRC and is used to indicate the upper compressor threshold. The possible settings are in 0.5 dB steps. +6 dB +5.5 dB -0.5 dB step -35 dB	0x00	RW

DRC_CURVE4 REGISTER

Table 137. Address: 0x5C, Reset: 0x88, Name: DRC_CURVE4

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	DRC_NT		DRC noise gating threshold setting, relative to input; 16 possible values in 3 dB steps	0x8	RW
		0000	–51 dB		
		0001	–54 dB		
		хххх	-3 dB step		
		1111	-96 dB		
[3:0]	DRC_ET		DRC expander threshold setting, relative to input; 16 possible values in 3 dB steps	0x8	RW
		0000	-36 dB		
		0001	-39 dB		
		XXXX	-3 dB step		
		1111	-81 dB		

DRC_CURVE5 REGISTER

Table 138. Address: 0x5D, Reset: 0x00, Name: DRC_CURVE5

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	Reserved			0x0	RW
[3:0]	DRC_SMIN		DRC minimum output signal level	0x0	RW
		0000	–51 dB(default)		
		0001	–54 dB		
		XXXX	–3 dB step		
		1011	-84 dB		
		1111	–96 dB		

DRC_HOLD_TIME REGISTER

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	DRCHTNG		DRC hold time for noise gating	0x0	RW
		0000	0 ms(default)		
		0001	0.67 ms		
		xxxx	Double time		
		0111	42.67 ms		
		1111	43.7 sec		
[3:0]	DRCHTNOR		DRC hold time for normal operation	0x0	RW
		0000	0 ms(default)		
		0001	0.67 ms		
		xxxx	Double time		
		0111	42.67 ms		
		1111	43.7 sec		

Table 139. Address: 0x5E, Reset: 0x00, Name: DRC_HOLD_TIME

DRC_RIPPLE_CTRL REGISTER

Table 140. Address: 0x5F, Reset: 0x00, Name: DRC_RIPPLE_CTRL

Bits	Bit Name	Settings	Description	Reset	Access
[7:2]	Reserved			0x0	RW
[1:0]	DRCRRH		DRC ripple remove threshold	0x0	RW
		00	0 dB (default)		
		01	0.28 dB		
		10	0.47 dB		
		11	0.75 dB		

DRC MODE CONTROL REGISTER

Table 141. Address: 0x60, Reset: 0x3C, Name: DRC Mode Control

Bits	Bit Name	Settings	Description	Reset	Access
7	VBAT_EN		VBAT tracking enable	0x0	RW
		0	VBAT tracking disable		
		1	VBAT tracking enable		
6	LIM_SRC		Limiter source selection	0x0	RW
		0	RMS		
		1	Peak		
5	LIM_EN		Limiter enable	0x1	RW
		0	Limiter function disabled		
		1	Limiter function enabled		
4	COMP_EN		Compressor enable	0x1	RW
		0	Compressor function disabled		
		1	Compressor function enabled		
3	EXP_EN		Expander enable	0x1	RW
		0	Expander function disabled		
		1	Expander function enabled		
2	NG_EN		Noise gate enable	0x1	RW
		0	Noise gate function disabled		
		1	Noise gate function enabled		
[1:0]	DRC_EN		DRC enable	0x0	RW
		0	DRC disabled		
		1	DRC enabled		

FDSP_EN REGISTER

Table 1									
Bits	Bit Name	Settings	Description	Reset	Access				
[7:1]	Reserved			0x00	RW				
0	FDSP_EN		FDSP enable	0x0	RW				
		0	Disable FDSP						
		1	Enable FDSP						

Table 142. Address: 0x61, Reset: 0x00, Name: FDSP_EN

SPK_PROT_EN REGISTER

Table 143. Address: 0x80, Reset: 0x00, Name: SPK_PROT_EN

Bits	Bit Name	Settings	Description	Reset	Access
[7:1]	Reserved			0x00	RW
0	SP_EN		Speaker protection enable	0x0	RW
		0	Speaker protection disabled (default)		
		1	Speaker protection enabled		

TEMP_AMBIENT REGISTER

Table 144. Address: 0x81, Reset: 0x19, Name: TEMP_AMBIENT

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TEMP_AMBIENT		Ambient temperature in degrees Celsius (8.0 integer format)	0x19	RW
		0x19	25°C (default)		
		0x20	32°C		

SPKR_DCR REGISTER

Table 145. Address: 0x82, Reset: 0x40, Name: SPKR_DCR

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	SPKR_DCR		Nominal speaker dc resistance in ohms (5.3 unsigned format)	0x40	RW
		0x34	6.5 Ω		
		0x40	8Ω (default)		

SPKR_TC REGISTER

Table 146. Address: 0x83, Reset: 0x08, Name: SPKR_TC

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	SPKR_TC		Nominal speaker temperature coefficient, rise in ohms per degrees Celsius (0.8 fractional format).	0x08	RW
		0x08	$0.033 \Omega/^{\circ}C$ (default)		
		0x0A	0.04 Ω/°C		

SP_CF1_H REGISTER

Table 147. Address: 0x84, Reset: 0x3F, Name: SP_CF1_H

	Settings	Description	Keset	Access
[7:0] SP_CF1_H De	Default	Speaker Temperature Model Coefficient 1, Bits[15:8] in 0.8 fractional format	0x3F	RW

SP_CF1_L REGISTER

Table 148. Address: 0x85, Reset: 0x81, Name: SP_CF1_L

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	SP_CF1_L	Default	Speaker Temperature Model Coefficient 1, Bits[7:0] in 0.8 fractional format	0x81	RW

SP_CF2_H REGISTER

Table 149. Address: 0x86, Reset: 0x00, Name: SP_CF2_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	SP_CF2_H	Default	Speaker Temperature Model Coefficient 2, Bits[15:8] in 0.8 fractional format	0x00	RW

SP_CF2_L REGISTER

Table 150. Address: 0x87, Reset: 0x55, Name: SP_CF2_L

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	SP_CF2_L	Default	Speaker Temperature Model Coefficient 2, Bits[7:0] in 0.8 fractional format	0x55	RW

SP_CF3_H REGISTER

Table 151. Address: 0x88, Reset: 0x01, Name: SP_CF3_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	SP_CF3_H	Default	Speaker Temperature Model Coefficient 3, Bits[15:8] in 0.8 fractional format	0x01	RW

SP_CF3_L REGISTER

Table 152. Address: 0x89, Reset: 0x22, Name: SP_CF3_L

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	SP_CF3_L	Default	Speaker Temperature Model Coefficient 3, Bits[7:0] in 0.8 fractional format	0x22	RW

SP_CF4_H REGISTER

Table 153. Address: 0x8A, Reset: 0x02, Name: SP_CF4_H

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	SP_CF4_H	Default	Speaker Temperature Model Coefficient 4, Bits[15:8] in 0.8 fractional format	0x02	RW

SP_CF4_L REGISTER

Table 154. Address: 0x8B, Reset: 0x09, Name: SP_CF4_L

Bits	Bit Name	Settings	Description		Access
[7:0]	SP_CF4_L	Default	Speaker Temperature Model Coefficient 4, Bits[7:0] in 0.8 fractional format	0x09	RW

SPKR_TEMP REGISTER

Table 155. Address: 0x8C, Reset: 0x00, Name: SPKR_TEMP

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	SPKR_TEMP		Speaker voice coil temperature status (8.0 integer format)	0x00	R
		0x20	32°C		

SPKR_TEMP_MAG REGISTER

Table 156. Address: 0x8D, Reset: 0x00, Name: SPKR_TEMP_MAG

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	SPKR_TEMP_MAG		Speaker magnet temperature status (8.0 integer format)	0x00	R
		0x20	32°C		

MAX_SPKR_TEMP REGISTER

Table 157. Address: 0x8E, Reset: 0x64, Name: MAX_SPKR_TEMP

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	MAX_SPKR_TEMP	0x64	Maximum speaker voice coil temperature before gain reduction occurs, 8.0 integer format 100°C	0x64	RW

SPK_GAIN REGISTER

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	SP_RR		Speaker protection gain reduction release rate	0x4	RW
		0000	0.549 dB/s		
		0001	0.275 dB/s		
		0010	0.137 dB/s		
		0011	0.092 dB/s		
		0100	0.069 dB/s (default)		
		0101	0.034 dB/s		
		0110	0.017 dB/s		
		0111	0.008 dB/s		
[3:0]	SP_AR		Speaker protection gain reduction attack rate	0x4	RW
		0000	0.070 dB/ms		
		0001	0.035 dB/ms		
		0010	0.017 dB/ms		
		0011	0.012 dB/ms		
		0100	0.009 dB/ms (default)		
		0101	0.006 dB/ms		
		0110	0.004 dB/ms		
		0111	0.003 dB/ms		

Table 158. Address: 0x8F, Reset: 0x44, Name: SPK_GAIN

SOFT_RST REGISTER

Bits	Bit Name	Description	Reset	Access
[7:0]	SOFT_RST	Write 0x00 to reset all registers	0x00	W

APPLICATIONS INFORMATION

Figure 42. Software Mode (with I²C Interface)

Figure 43. Hardware Standalone Mode

Rev. 0 | Page 50 of 52

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
SSM2529ACBZ-RL	-40°C to +85°C	16-Ball Wafer Level Chip Scale Package [WLCSP]	CB-16-12	Y4D
SSM2529ACBZ-R7	-40°C to +85°C	16-Ball Wafer Level Chip Scale Package [WLCSP]	CB-16-12	Y4D
EVAL-SSM2529Z		Evaluation Board		

 1 Z = RoHS Compliant Part.

NOTES

I²C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

©2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D10749-0-7/12(0)

www.analog.com