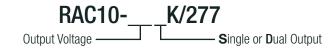
Features

Regulated Converter

- Wide input range 85-305VAC
- Operating temperature range: -40°C to +80°C
- · High efficiency over entire load range
- No external components necessary
- Household certification IEC/EN60335
- Overvoltage category OVCIII (IEC62477-1)
- 140% Peak load capability

Description


The RAC10-K/277 series are highly efficient PCB-Mount power conversion modules with ultra-low energy losses even in light load conditions. Built for worldwide usage, the AC/DC units cover an enhanced mains input range of 85VAC up to 305VAC and come with international safety certifications for both industrial and household standards. These AC/DC modules offer fully protected single or dual outputs as well as EMC Class B compliance without the need of any external components. The 140% peak power capability makes the RAC10-K/277 series suitable for inductive, high start-up current or nonlinear loads. With a full load temperature range of -40°C to +65°C, they are ideal for always-on and standby mode operations in process automation, loT and smart building applications.

Selection Guid	e				
Part Number	Input Voltage Range [VAC]	Output Voltage [VDC]	Output Current [mA]	Efficiency typ. ⁽¹⁾ [%]	Max. Capacitive Load [μF]]
RAC10-3.3SK/277	85-305	3.3	2500	79	10000
RAC10-05SK/277	85-305	5	2000	82	8000
RAC10-12SK/277	85-305	12	840	84	1500
RAC10-15SK/277	85-305	15	670	85	1000
RAC10-18SK/277	85-305	18	560	85	800
RAC10-24SK/277	85-305	24	420	84	330
RAC10-12DK/277	85-305	±12	±420	82	±1200
RAC10-15DK/277	85-305	±15	±340	83	±1000

Notes:

Note1: Efficiency is tested at 25°C with constant resistant mode at full load and 230VAC

Model Numbering

Ordering Examples:

RAC10-05SK/277	10 Watt	5Vout	Single Output
RAC10-24SK/277	10 Watt	24Vout	Single Output
RAC10-12DK/277	10 Watt	12Vout	Dual Output

RAC10-K/277

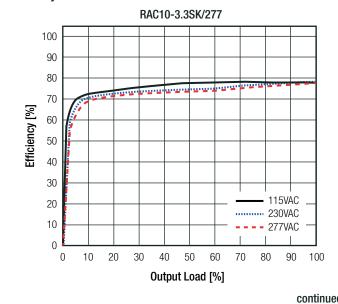
10 Watt 2" x 1" Single and Dual Output

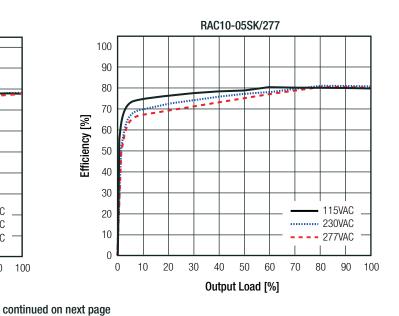
UL62368-1 certified CSA C22.2 No. 62368-1-14 certified IEC/EN60950-1 certified IEC/EN60335-1 certified IEC/EN62368-1 certified EN62233 certified EN62477-1 certified EN61204-3 compliant CB-Report

Series

Specifications (measured @ Ta= 25°C, nominal input voltage (115/230VAC), full load and after warm-up)

Parameter	Cond	Condition		Тур.	Max.
Internal Input Filter					Pi Type
Input Voltage Range (2,3)	nom. Vin-	= 277VAC	85VAC 120VDC	277VAC	305VAC 430VDC
Input Current	230	OVAC OVAC OVAC			250mA 210mA 190mA
Inrush Current	230	SVAC VVAC VVAC			15A 30A 36A
No load Power Consumption				150mW	250mW
ErP Standby Mode Conformity (Output Load Capability)	Input Power=	0.5W Input Power= 1.0W 2.0W			0.3W 0.7W 1.4W
Input Frequency Range			47Hz		63Hz
Overload Capability	peak duty cycle: 10 ⁴	peak duty cycle: 10%; TAMB +50°C max.			140%/10s
Minimum Load		Single Dual		10%	
Power Factor	230	115VAC 230VAC 277VAC			
Start-up Time				30ms	
Rise Time					25ms
Hold-up time	230	115VAC 230VAC 277VAC			
Internal Operating Frequency					100kHz
Output Ripple and Noise (4)	20MHz BW	3.3Vout, 5Vout others		60mVp-p	1% of Vout

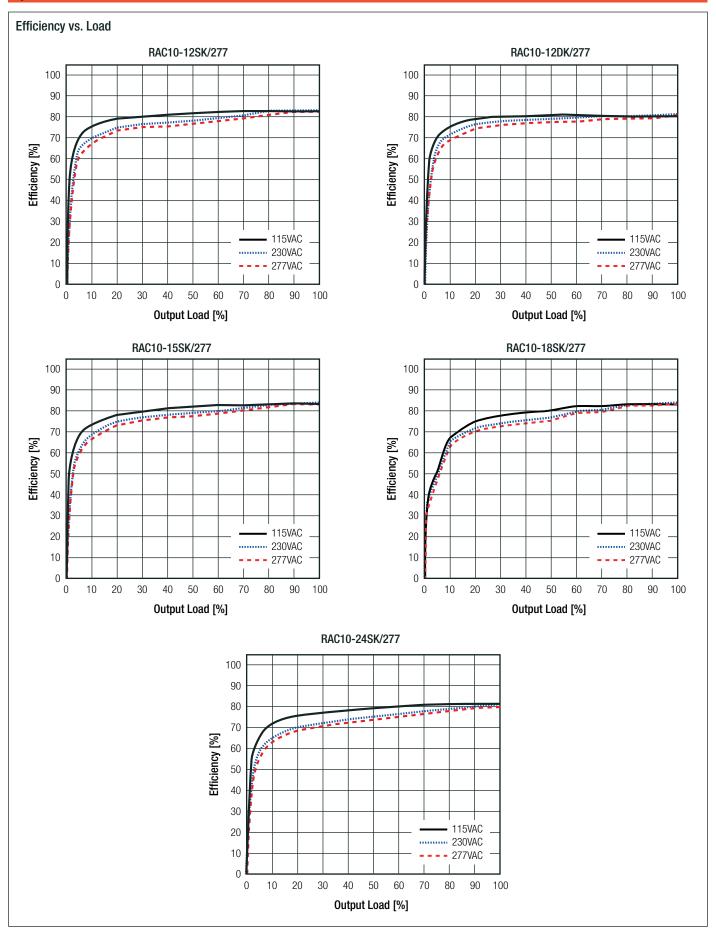

Notes:


Note2: The products were submitted for safety files at AC-Input operation

Note3: Refer to "Line Derating"

Note4: Measurements are made with a $0.1\mu F$ MLCC & $10\mu F$ E-cap in parallel across output. (low ESR)

Efficiency vs. Load



www.recom-power.com REV.: 8/2020 PA-2

Series

Specifications (measured @ Ta= 25°C, nominal input voltage (115/230VAC), full load and after warm-up)

Series

EGUL	ATIONS																		
arame	meter					Condition						Val							
utput A	Accuracy													±1.0					
ne Reg	gulation			low line to high line										±0.5					
nad Re	Regulation			0-100% load 3.3, 5Vout											1.5				
							0 1007		L	other	S					1.0			
ross Re	egulation								put only						±10.0% m				
ansien	it Response							25% load s	step chang ry time	е									4.09
Devia	tion vs Load		1010	0.001/	/o==														
2	2.0	K	AC10-3	3.35K/	277			\neg		2.0				RAC	0-058	K/277	, 		
	1.5																		
										1.5									
	1.0									1.0									†
Deviation [%]	0.5		$\overline{}$						Deviation [%]	0.5			_						+
iatio	0								atior	0						_	_		_
Pe −	0.5		_	+		\rightarrow		\exists	Devi	-0.5				_	_			+	
	1.0		+	+		-		\dashv		-1.0									
	1.5							_		-1.5									
	2.0									-2.0									
:	2.0		Output AC10-1					\neg		2.0					out Loa 0-15S			<u> </u>	
	1.5			\perp						1.5									
	1.0									1.0									
									_										
%] u	0.5								Deviation [%]	0.5									
viation [%]	0			†					iatio	0									
Pev -	0.5		+	+-					Dev	-0.5									1
-	1.0		+	+-						-1.0									
	1.5		_	+-						-1.5				_					
-:	2.0		Ш_	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$						-2.0									
	0 10 2		40 5 Output	50 6		0 80	90	100		() 10	20	30	40	50	60	70	80	90 1
			AC10-1												out Loa 10-249		,		
	2.0		T							2.0									
-	1.5		-				+	\dashv		1.5				\top		\top			\top
-	1.0		+	+		\dashv	+	\dashv		1.0						+		+	+
<u>S</u>	0.5		_				-	\dashv	[%	0.5			+	+		+		+	+
Deviation [%]	0		_				\perp	_	Deviation [%]	0			\perp	\perp		+	-	+	+
via	0.5							_	evia	-0.5						\perp			
<u> </u>	v.v. 1	1	1	1 7	ı T	[1		0.0	1				1 -				

-2.0

10

30

50 60

Output Load [%]

80

100

-2.0

10

30

50 60

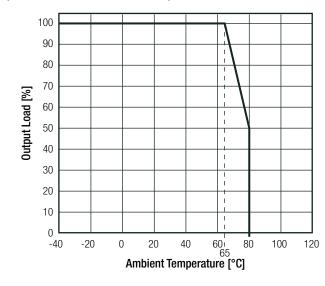
Output Load [%]

80 90 100

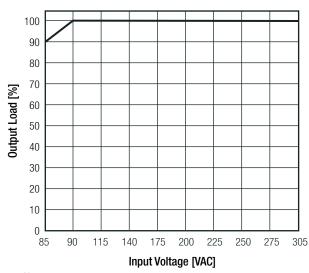
Series

Specifications (measured @ Ta= 25°C, nominal input voltage (115/230VAC), full load and after warm-up)

PROTECTIONS			
Parameter	-	Гуре	V alue
Input Fuse (5)			T2A, slow blow
Short Circuit Protection (SCP)			Hiccup, automatic restart
Over Voltage Protection (OVP)			150% - 195%, latch off mode
Over Load Protection (OLP)			150% - 195%, hiccup mode
Over Voltage Category (OVC)	according to	IEC/EN62477-1	OVC III
Class of Equipment			Class II
Isolation Voltage	tested f	or 1 minute	4kVAC
Isolation Resistance	I/D to O/D	Isolation Voltage 500VDC	1G Ω min.
Isolation Capacitance	I/P to O/P	100kHz/0.1V	100pF max.
Insulation Grade			reinforced
Leakage Current			0.25mA max.


Notes:

Note5: Refer to local safety regulations if input over-current protection is also required


ENVIRONMENTAL							
Parameter	Conditi	on		Value			
Operating Temperature Denge	@ natural convection 0.1m/a	full load		-40°C to +65°C			
Operating Temperature Range	@ natural convection 0.1m/s	refer to line derating		-40°C to +80°C			
Maximum Case Temperature				+100°C			
Temperature Coefficient				0.05%/K			
Operating Altitude				3000m			
Operating Humidity	non-conde	nsing		20% to 90% RH			
Design Lifetime	115VAC/60Hz and fu	ll load a	at +25°C	>194 x 10 ³ hours			
MTBF	according to MIL-HDBK-217F,	C B	+25°C	>1750 x 10 ³ hours			
INTE	according to MIL-HDDK-2171,	G.D.	+40°C	>1582 x 10 ³ hours			
Pollution Degree				PD2			
Vibration				10-500Hz, 2G 10min./1cycle, period 60min. each along x,y,z axes			

Derating Graph

(@ Chamber and natural convection 0.1m/s)

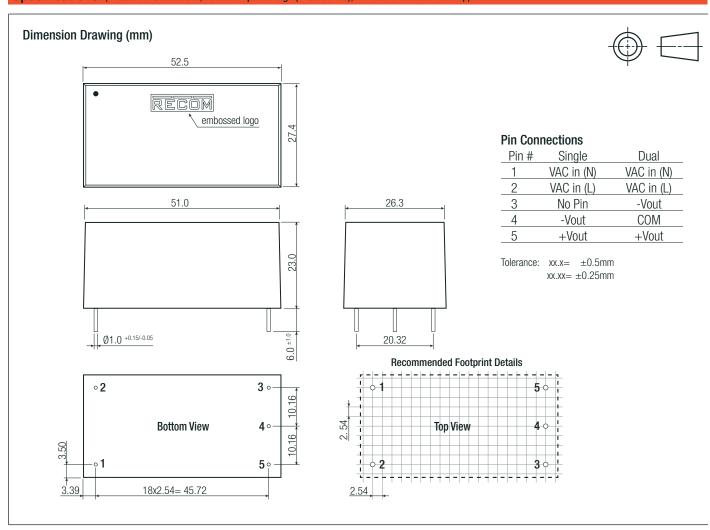
Line Derating (6)

Notes:

Note6: No derating required for the specified DC-input range

Series

Specifications (measured @ Ta= 25°C, nominal input voltage (115/230VAC), full load and after warm-up)


Certificate Type (Safety)	Report / File Number	Standard
Audio/Video, information and communication technology equipment - Safety requirements	E224736	UL62368-1, 2nd Edition, 2014 CAN/CSA C22.2 No. 62368-1-14, 2nd Edition, 2014
Information Technology Equipment, General Requirements for Safety (CB Scheme)	E401400 A4 0D 1	IEC60950-1:2005, 2nd Edition + A2:2013
Information Technology Equipment, General Requirements for Safety (LVD)	E491408-A4-CB-1	EN60950-1:2006 + A2:2013
Household and similar electrical appliances - Safety - Part 1: General requirements	LCS170821028CS	IEC60335-1:2010 + A2:2016 + C1:2016, 5th Edition EN60335-1:2012 + A11:2014
Audio/Video, information and communication technology equipment - Safety requirements (CB Scheme)	16BCS10045 11	IEC62368-1:2014, 2nd Edition
Audio/Video, information and communication technology equipment - Safety requirements (LVD)	1000310043 11	EN62368-1:2014 + A11:2017
Measurement methods for electromagnetic fields of household appliances and similar apparatus with regard to human exposure	LCS170821028CS	EN62233:2008
Safety requirements for power electronic converter systems and equipment - Part 1: General	LCS181212006CS	IEC62477-1:2012 + A1:2016, 1st Edition EN62477-1: 2012 + A1:2017
EAC Safety of Low Voltage Equipment	RU-AT.03.67361	TP TC 004/020, 2011
RoHS2		RoHS 2011/65/EU + AM2015/863
EMC Compliance (7)	Conditions	Standard / Criterion
Low-voltage power supplies DC output - Part 3: Electromagnetic compatibility	Ooriunions	EN61204-3:2000, Class B
2011 Voltago potrol dappilos Bo dapat i art o. Elocatoriagnotio derripationity		21101201 0.2000, 01000 0
Information technology equipment - Radio disturbance characteristics -	LCS170821088AE	AS/NZS CSPR 22:2009 + A1:2010, Class B
Limits and methods of measurement		
- · · ·	±8kV Air; ±4kV Contact 10V/m, 80MHz-1GHz 3V/m, 1.5GHz-2GHz 1V/m, 2GHz-2.7GHz	AS/NZS CSPR 22:2009 + A1:2010, Class B EN61000-4-2: 2009, Criteria B EN61000-4-3: 2006 + A2, 2010, Criteria A
Limits and methods of measurement ESD Electrostatic discharge immunity test	±8kV Air; ±4kV Contact 10V/m, 80MHz-1GHz 3V/m, 1.5GHz-2GHz	EN61000-4-2: 2009, Criteria B
Limits and methods of measurement ESD Electrostatic discharge immunity test Radiated, radio-frequency, electromagnetic field immunity test	±8kV Air; ±4kV Contact 10V/m, 80MHz-1GHz 3V/m, 1.5GHz-2GHz 1V/m, 2GHz-2.7GHz AC In Port: ±2.0kV	EN61000-4-2: 2009, Criteria B EN61000-4-3: 2006 + A2, 2010, Criteria A
Limits and methods of measurement ESD Electrostatic discharge immunity test Radiated, radio-frequency, electromagnetic field immunity test Fast Transient and Burst Immunity	±8kV Air; ±4kV Contact 10V/m, 80MHz-1GHz 3V/m, 1.5GHz-2GHz 1V/m, 2GHz-2.7GHz AC In Port: ±2.0kV DC Out Port: ±2.0kV AC In Port: ±1.0kV L-PE, N-PE ±2.0kV	EN61000-4-2: 2009, Criteria B EN61000-4-3: 2006 + A2, 2010, Criteria A EN61000-4-4:2012, Criteria B
Limits and methods of measurement ESD Electrostatic discharge immunity test Radiated, radio-frequency, electromagnetic field immunity test Fast Transient and Burst Immunity Surge Immunity	±8kV Air; ±4kV Contact 10V/m, 80MHz-1GHz 3V/m, 1.5GHz-2GHz 1V/m, 2GHz-2.7GHz AC In Port: ±2.0kV DC Out Port: ±2.0kV AC In Port: ±1.0kV L-PE, N-PE ±2.0kV DC Out Port: ±0.5kV	EN61000-4-2: 2009, Criteria B EN61000-4-3: 2006 + A2, 2010, Criteria A EN61000-4-4:2012, Criteria B EN61000-4-5:2014, Criteri B
Limits and methods of measurement ESD Electrostatic discharge immunity test Radiated, radio-frequency, electromagnetic field immunity test Fast Transient and Burst Immunity Surge Immunity Immunity to conducted disturbances, induced by radio-frequency fields	±8kV Air; ±4kV Contact 10V/m, 80MHz-1GHz 3V/m, 1.5GHz-2GHz 1V/m, 2GHz-2.7GHz AC In Port: ±2.0kV DC Out Port: ±2.0kV AC In Port: ±1.0kV L-PE, N-PE ±2.0kV DC Out Port: ±0.5kV 10Vrms	EN61000-4-2: 2009, Criteria B EN61000-4-3: 2006 + A2, 2010, Criteria A EN61000-4-4:2012, Criteria B EN61000-4-5:2014, Criteri B

DIMENSION and PHYSICAL CHARACTERISTICS							
Parameter	Туре	Value					
	case	black plastic (UL94V-0)					
Material	potting	silicone (UL94V-0)					
Material	PCB	FR4 (UL94V-0)					
	baseplate	plastic (UL94V-0)					
Dimension (LxWxH)		52.5 x 27.4 x 23.0mm					
Weight		65g typ.					
	continued on next page						

Series

Specifications (measured @ Ta= 25°C, nominal input voltage (115/230VAC), full load and after warm-up)

PACKAGING INFORMATION							
Parameter	Туре	Value					
Packaging Dimension (LxWxH)	tube	490.0 x 56.0 x 40.0mm					
Packaging Quantity		15pcs					
Storage Temperature Range		-40°C to +85°C					
Storage Humidtiy	non-condensing	20% to 90% RH					

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.