

STP36N60M6, STW36N60M6

N-channel 600 V, 85 mΩ typ., 30 A MDmesh™ M6 Power MOSFETs in TO-220 and TO-247 packages

Datasheet - production data

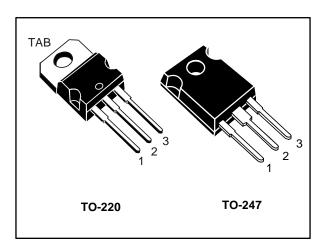
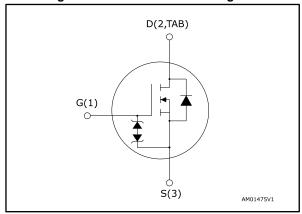



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID
STP36N60M6	600 V	000	20. 4
STW36N60M6	600 V	99 mΩ	30 A

- Reduced switching losses
- Lower R_{DS(on)} x area vs previous generation
- Low gate input resistance
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

The new MDmeshTM M6 technology incorporates the most recent advancements to the well-known and consolidated MDmesh family of SJ MOSFETs. STMicroelectronics builds on the previous generation of MDmesh devices through its new M6 technology, which combines excellent $R_{DS(on)}^{*}$ area improvement with one of the most effective switching behaviors available, as well as a user-friendly experience for maximum endapplication efficiency.

Table 1: Device summary

Order code	Marking	Package	Packaging
STP36N60M6	OCNICOMO	TO-220	Tuba
STW36N60M6	36N60M6	TO-247	Tube

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	TO-220 type A package information	11
	4.2	TO-247 package information	13
5	Revisio	n history	15

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	±25	V
I_D	Drain current (continuous) at T _C = 25 °C	30	Α
ΙD	Drain current (continuous) at T _C = 100 °C	19	Α
I _D ⁽¹⁾	Drain current (pulsed)	102	Α
P _{TOT}	Total dissipation at T _C = 25 °C	208	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature range	-55 to 150	°C
Tj	Operating junction temperature range	-55 10 150	C

Notes:

Table 3: Thermal data

Symbol	Parameter		Value		Unit
Symbol			TO-247	Offic	
R _{thj-case}	Thermal resistance junction-case	0.6		°C/W	
R _{thj-amb}	Thermal resistance junction-ambient	62.5	50	°C/W	

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	5	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	750	mJ

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(2)}}I_{SD} \leq 30$ A, di/dt ≤ 400 A/µs, $V_{DS(peak)} < V_{(BR)DSS}, \, V_{DD} = 400$ V.

 $^{^{(3)}}V_{DS} \le 480 \text{ V}$

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			V
	Zaro goto voltago drain	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1	μΑ
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{C} = 125 \text{ °C}^{(1)}$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±5	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	3.25	4	4.75	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 15 A		85	99	mΩ

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1960	ı	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,		93	-	pF
C _{rss}	Reverse transfer capacitance	Ves = 0 V	-	6	-	pF
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	1	332	ı	pF
Rg	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	1.6	ı	Ω
Q_g	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 30 \text{ A},$	-	44.3	-	nC
Qgs	Gate-source charge	V _{GS} = 0 to 10 V (see Figure 17: "Test circuit for	-	10.1	ı	nC
Q_{gd}	Gate-drain charge	gate charge behavior")	-	25	-	nC

Notes:

4/16

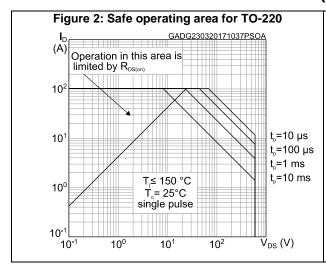
⁽¹⁾Defined by design, not subject to production test.

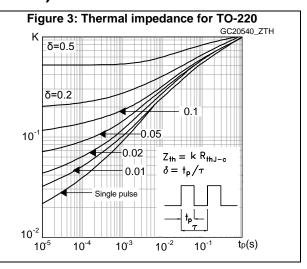
 $^{^{(1)}}C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

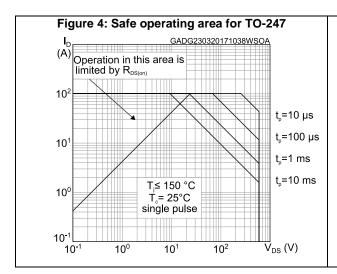
Table 7: Switching times

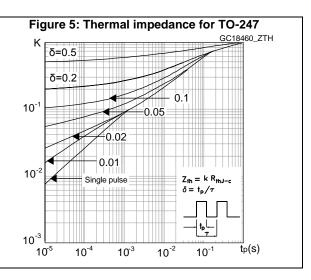
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 15 \text{ A},$	-	15.2	-	ns	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 18: "Test circuit for		5.3	-	ns	
t _{d(off)}	Turn-off-delay time	inductive load switching and	-	50.2	-	ns	
t _f	Fall time	diode recovery times" and Figure 21: "Switching time waveform")	-	7.3	-	ns	

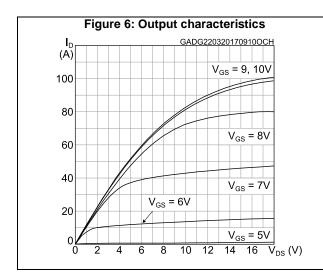
Table 8: Source drain diode

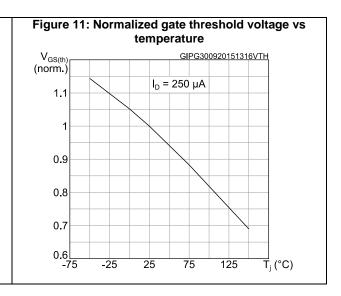

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		ı		30	Α
I _{SDM} ,(1)	Source-drain current (pulsed)		-		102	Α
V _{SD} (2)	Forward on voltage	V _{GS} = 0 V, I _{SD} = 30 A	ı		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 30 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	ı	340		ns
Q_{rr}	Reverse recovery charge	V _{DD} = 60 V (see Figure 18: "Test circuit for	-	5.3		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	1	31		А
t _{rr}	Reverse recovery time	$I_{SD} = 30 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	430		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$ (see Figure 18: "Test circuit for	-	7.7		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	36		Α

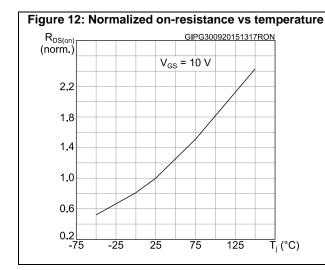

Notes:


⁽¹⁾Pulse width is limited by safe operating area.


 $^{^{(2)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%


2.1 Electrical characteristics (curves)





577

Figure 8: Gate charge vs gate-source voltage GADG030220171159QVG V_{DS} $V_{DD} = 480 \text{ V}$ 12 600 $I_{\rm D} = 30 \, {\rm A}$ 10 500 V_{DS} 8 400 300 6 200 4 100 2 0 0 $\overline{\overline{Q}}_{g}$ (nC) 50 10 20 30 40

Figure 10: Capacitance variations GADG220320170921CVR (pF) 10⁴ C_{ISS} 10^{3} 10² Coss f= 1MHz 10¹ C_{RSS} 10⁰ $\overline{V}_{DS}(V)$ 10⁻¹ 10° 10¹ 10^{2}

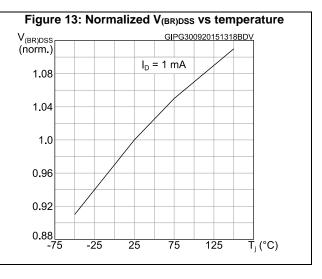


Figure 14: Output capacitance stored energy

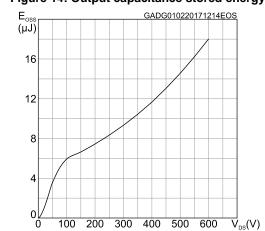
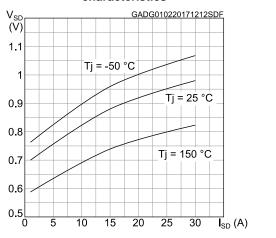
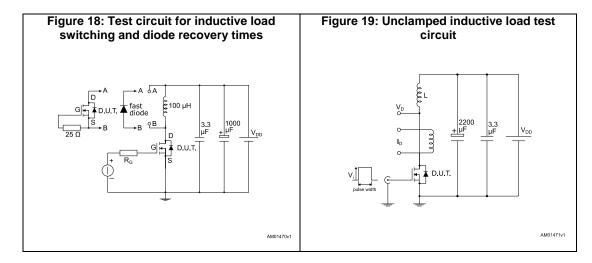



Figure 15: Source-drain diode forward characteristics



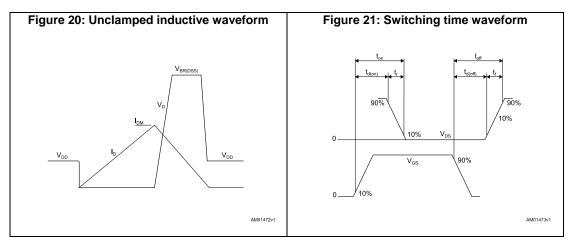

3 Test circuits

Figure 16: Test circuit for resistive load switching times

Figure 17: Test circuit for gate charge behavior

Figure 17: Test circuit for gate charge behavior

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220 type A package information

Figure 22: TO-220 type A package outline

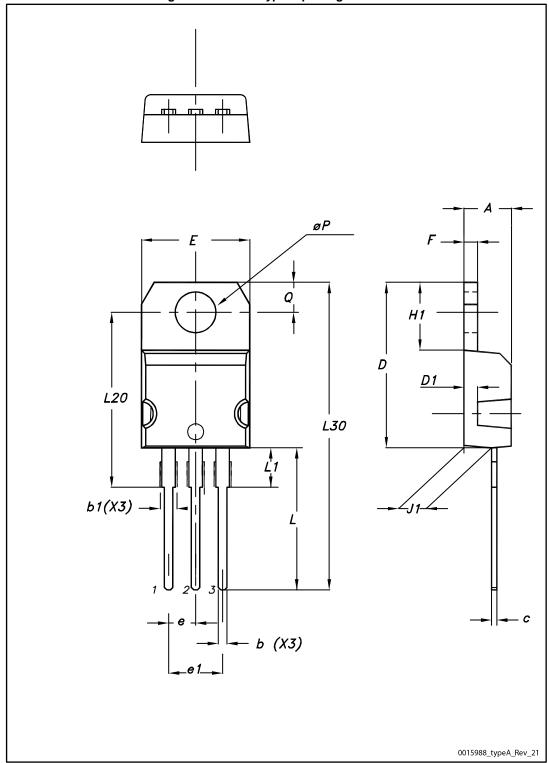


Table 9: TO-220 type A mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

4.2 TO-247 package information

Figure 23: TO-247 package outline

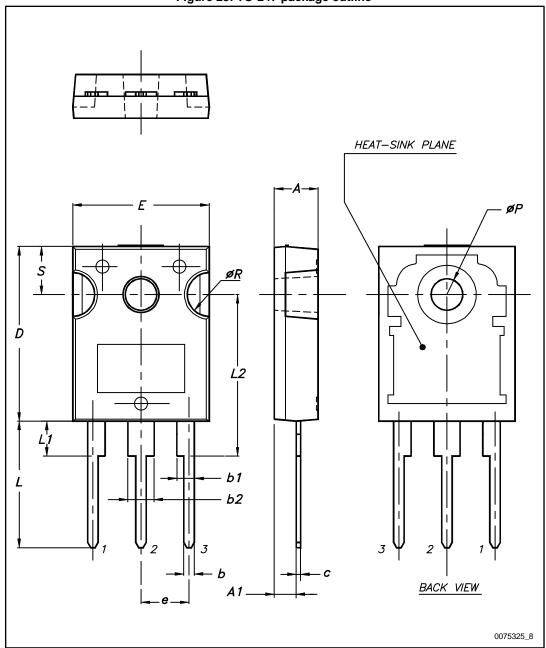


Table 10: TO-247 package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
Е	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
06-Oct-2015	1	First release
14-Oct-2015	2	Updated: V _{DD} value in <i>Table 8: "Source drain diode"</i> Minor text changes
27-Mar-2017	3	Updated Table 2: "Absolute maximum ratings". Updated Section 2: "Electrical characteristics". Updated Section 4: "Package information". Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

STP36N60M6 STW36N60M6