ReNESAS

FEATURES:

- 256×18-bit organization array (IDT72V205)
- 512×18-bit organization array (IDT72V215)
- $1,024 \times 18$-bit organization array (IDT72V225)
- $2,048 \times 18$-bit organization array (IDT72V235)
- $4,096 \times 18$-bit organization array (IDT72V245)
- 10 ns read/write cycle time
- 5 V input tolerant
- IDT Standard or First Word Fall Through timing
- Single or double register-buffered Empty and Full flags
- Easily expandable in depth and width
- Asynchronous or coincident Read and Write Clocks
- Asynchronous or synchronous programmable Almost-Empty and Almost-Full flags with default settings
- Half-Full flag capability
- Output enable puts output data bus in high-impedance state
- High-performance submicron CMOS technology
- Available in a 64-lead thin quad flatpack (TQFPISTQFP)
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available
- Green parts available, see ordering information

DESCRIPTION:

The IDT72V205/72V215/72V225/72V235/72V245 are functionally compatible versions of the IDT72205LB/72215LB/72225LB/72235LB/72245LB, designed to run off a 3.3V supply for exceptionally low power consumption. These devices are very high-speed, low-power First-In, First-Out (FIFO) memories with clocked read and write controls. These FIFOs are applicable for a wide variety of data buffering needs, such as optical diskcontrollers, Local Area Networks(LANs), and interprocessor communication.

These FIFOshave 18-bitinput and outputports. The inputportis controlled by a free-running clock (WCLK), and an inputenable pin ($\overline{\mathrm{WEN}}$). Data is read into the synchronous FIFO on every clock when $\overline{W E N}$ is asserted. The output port is controlled by another clock pin (RCLK) and another enable pin ($\overline{R E N}$). The ReadClock(RCLK) can betied totheWriteClock for singleclock operation or the two clocks can run asynchronous of one another for dual-clockoperation. An Output Enable pin $(\overline{\mathrm{OE}})$ is provided on the read port for three-state control of the output.

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION (CONTINUED)

The synchronous FIFOs have two fixed flags, Empty Flag/Output Ready ($\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$) and Full Flag/Input Ready ($\overline{\mathrm{FF}} / \overline{\mathrm{R}}$), and two programmable flags, Almost-Empty ($\overline{\mathrm{PAE}})$ and Almost-Full ($\overline{\mathrm{PAF}})$. The offset loading of the programmable flags is controlled by a simple state machine, and is initiated by asserting the Load pin ($\overline{\mathrm{LD}})$. A Half-Full flag $(\overline{\mathrm{HF}})$ is available when the FIFO is used in a single device configuration.

There are two possible timing modes of operation with these devices: IDT Standard mode and First Word Fall-Through (FWFT) mode.

InIDTStandardMode, thefirstwordwrittento anempty FIFO will notappear on the data outputlines unless a specific read operation is performed. A read
operation, which consists of activating $\overline{R E N}$ and enabling a rising RCLK edge, will shift the word from internal memory to the data output lines.

In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. A $\overline{R E N}$ does not have to be asserted for accessing the first word.

These devices are depth expandable using a Daisy-Chain technique or FirstWord Fall Throughmode(FWFT). The $\overline{\mathrm{Xl}}$ and $\overline{\mathrm{XO}}$ pins are used toexpand the FIFOs. In depth expansion configuration, First Load ($\overline{\mathrm{FL}})$ is grounded on the first device and set to HIGH for all other devices in the Daisy Chain.

The IDT72V205/72V215/72V225/72V235/72V245 are fabricated using high-speed submicron CMOS technology.

PIN CONFIGURATIONS

TQFP (PN64-1, order code: PF)
STQFP (PP64-1, order code: TF) TOP VIEW

PIN DESCRIPTION

Symbol	Name		I/O Description
D0-D17	Datalnputs	I	Data inputs for an 18-bit bus.
$\overline{\mathrm{RS}}$	Reset	1	When $\overline{\mathrm{RS}}$ is set LOW, internal read and write pointers are setto the firstlocation of the RAM array, $\overline{\mathrm{FF}}$ and $\overline{\mathrm{PAF}}$ go HIGH, and $\overline{\text { PAE }}$ and $\overline{\mathrm{EF}}$ go LOW. A reset is required before an initial WRITE after power-up.
WCLK	WriteClock	I	When \bar{W} EN is LOW, data is written into the FIFO on aLOW-to-HIGH transition ofWCLK, ifthe FIFO is not full.
$\overline{\text { WEN }}$	Write Enable	I	When $\overline{\text { WEN }}$ is LOW, data is written into the FIFO on every LOW-to-HIGH transition of WCLK. When $\overline{\text { WEN }}$ is HIGH, the FIFO holds the previous data. Data will not be written into the FIFO if the FF is LOW.
RCLK	Read Clock	1	When $\overline{R E N}$ is LOW, data is read fromtheFIFO onaLOW-to-HIGHtransition of RCLK, ifthe FIFO is notempty.
$\overline{\mathrm{REN}}$	Read Enable	1	When $\overline{R E N}$ is LOW, datais read from the FIFO on every LOW-to-HIGH transition of RCLK. When $\overline{R E N}$ is HIGH, the output register holds the previous data. Data will not be read from the FIFO if the $\overline{\mathrm{EF}}$ is LOW.
$\overline{\mathrm{OE}}$	OutputEnable	I	When $\overline{\mathrm{OE}}$ is LOW, the data output bus is active. If $\overline{\mathrm{OE}}$ is HIGH , the output data bus will be in ahigh-impedance state.
$\overline{\mathrm{LD}}$	Load	1	When $\overline{\mathrm{LD}}$ is LOW, data on the inputs D0-D11 is written to the offset and depth registers on the LOW-to-HIGH transition of the WCLK, when $\overline{W E N}$ is LOW. When $\overline{\text { LD }}$ is LOW, data on the outputs Q0-Q11 is read from the offset and depth registers on the LOW-to-HIGH transition of the RCLK, when REN is LOW.
$\overline{\mathrm{F}}$	FirstLoad	I	In the single device or width expansion configuration, $\overline{\mathrm{FL}}$ together with $\overline{\mathrm{WXI}}$ and $\overline{\mathrm{RXI}}$ determine if the mode is IDT Standard mode or First Word Fall Through (FWFT) mode, as well as whether the PAE/PAF flags are synchronous or asynchronous. (See Table 1.) In the Daisy Chain Depth Expansion configuration, FL is grounded on the first device (first load device) and set to HIGH for all other devices in the Daisy Chain.
$\overline{\mathrm{WXI}}$	Write Expansion Input	I	In the single device or width expansion configuration, $\overline{\mathrm{WXI}}$ together with $\overline{\mathrm{FL}}$ and $\overline{\mathrm{RXI}}$ determine if the mode is IDT Standard mode or FWFT mode, as well as whetherthe $\overline{\text { PAE }} / \overline{\mathrm{PAF}}$ flags are synchronous or asynchronous. (See Table 1.) Inthe Daisy Chain Depth Expansion configuration, $\overline{\mathrm{WXI}}$ is connected to $\overline{\mathrm{WXO}}$ (Write Expansion Out) of the previous device.
$\overline{\mathrm{RXI}}$	Read Expansion Input	I	In the single device or width expansion configuration, $\overline{\mathrm{RXI}}$ together with $\overline{\mathrm{FL}}$ and $\overline{\mathrm{WXI}}$, determine if the mode is IDT Standard mode orFWFT mode, as well as whetherthe PAE/PAF flags are synchronous or asynchronous. (See Table 1.) Inthe Daisy Chain Depth Expansion configuration, $\overline{\mathrm{RXI}}$ is connected to $\overline{\mathrm{RXO}}$ (Read Expansion Out) of the previous device.
$\overline{\mathrm{FF}} / \overline{\mathrm{I}}$	Full Flag/ Input Ready	0	In the IDT Standard mode, the $\overline{F F}$ function is selected. $\overline{\text { FF }}$ indicates whether or not the FIFO memory is full. In the FWFT mode, the $\overline{\mathrm{I}}$ function is selected. $\overline{\mathrm{R}}$ indicates whether or not there is space available for writing to the FIFO memory.
$\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$	Empty Flag/ OutputReady	0	In the IDT Standard mode, the $\overline{E F}$ function is selected. EF indicates whether or not the FIFO memory is empty. InFWFT mode, the $\overline{\mathrm{OR}}$ functionisselected. $\overline{\mathrm{OR}}$ indicates whetheror notthere is valid dataavailable atthe outputs.
$\overline{\text { PAE }}$	Programmable Almost-EmptyFlag	0	When $\overline{\text { PAE }}$ is LOW, the FIFO is almost-empty based on the offsetprogrammed into the FIFO. The default offsetatresetis31 fromemptyfor IDT72V205,63fromemptyfor IDT72V215, and 127 fromemptyfor IDT72V225/ 72V235/72V245.
$\overline{\text { PAF }}$	Programmable Almost-Full Flag	0	When $\overline{\text { PAF }}$ is LOW, the FIFO is almost-full based onthe offset programmed intothe FIFO. The defaultoffsetat resetis 31 from full for IDT72V205, 63 from full for IDT72V215, and 127 from full for IDT72V225/72V235/72V245.
$\overline{\mathrm{WXO}} / \mathrm{HF}$	Write Expansion Out/Half-FullFlag	0	In the single device or width expansion configuration, the device is more than halffull when $\overline{H F}$ is LOW. In the depth expansion configuration, apulse is sentfrom $\overline{W X O}$ to $\overline{W X I}$ of the nextdevice whenthe lastlocation inthe FIFO is written.
$\overline{\mathrm{RXO}}$	Read Expansion Out	0	In the depth expansion configuration, a pulse is sent from $\overline{\mathrm{RXO}}$ to $\overline{\mathrm{RXI}}$ of the next device when the last location in the FIFO is read.
Q0-Q17	DataOutputs	0	Data outputs for an 18-bit bus.
Vcc	Power		+3.3V power supply pins.
GND	Ground		Seven ground pins.

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Commercial	Unit
VTERM $^{(2)}$	Terminal Voltage with respect to GND	-0.5 to +5	V
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
IOUT	DCOutputCurrent	$-50 \mathrm{to}+50$	mA

NOTES

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VCC terminal only.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max	Unit
Vcc	Supply Voltage Commercial/Industrial	3.0	3.3	3.6	V
GND	Supply Voltage	0	0	0	V
VIH	InputHigh Voltage Commercial/Industrial	2.0	-	5.5	V
VIL $^{(1)}$	InputLowVoltage Commercial/Industrial	-0.5	-	0.8	V
TA	Operating Temperature Commercial	0	-	70	${ }^{\circ} \mathrm{C}$
TA	Operating Temperature Industrial	-40	-	85	${ }^{\circ} \mathrm{C}$

NOTE:

1. 1.5 V undershoots are allowed for 10 ns once per cycle.

DCELECTRICALCHARACTERISTICS
(Commercial: $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	IDT72V205IDT72V215IDT72V225IDT72V235IDT72V245Commercial \& Industrial ${ }^{(1)}$tcLK $=10,15,20 \mathrm{~ns}$			Unit
		Min.	Typ.	Max.	
LLI(2)	InputLeakage Current(any input)	-1	-	1	$\mu \mathrm{A}$
ILO ${ }^{(3)}$	OutputLeakageCurrent	-10	-	10	$\mu \mathrm{A}$
Voh	Output Logic "1" Voltage, $\mathrm{IOH}=-2 \mathrm{~mA}$	2.4	-	-	V
Vol	Output Logic "0" Voltage, IoL $=8 \mathrm{~mA}$	-	-	0.4	V
Icc1 ${ }^{(4,5,6)}$	Active Power Supply Current	-	-	30	mA
Icc2 ${ }^{(4.7)}$	Standby Current	-	-	5	mA

NOTES:

1. Industrial Temperature Range Product for the 15 ns speed grade is available as a standard device.
2. Measurements with $0.4 \leq \mathrm{VIN} \leq \mathrm{Vcc}$.
3. $\overline{\mathrm{OE}} \geq \mathrm{VIH}, 0.4 \leq$ Vout $\leq \mathrm{Vcc}$.
4. Tested with outputs disabled (lout $=0$).
5. RCLK and WCLK toggle at 20 MHZ and data inputs switch at 10 MHz .
6. Typical IcC1 $=2.04+0.88 * f s+0.02 * C L * f s ~(i n ~ m A)$.

These equations are valid under the following conditions:
$\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, fs = WCLK frequency $=$ RCLK frequency (in MHz, using TTL levels), data switching at fs $/ 2, \mathrm{CL}_{\mathrm{L}}=$ capacitive load (in pF).
7. All Inputs $=\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{GND}+0.2 \mathrm{~V}$, except RCLK and WCLK, which toggle at 20 MHz .

CAPACITANCE ($\left.\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Max.	Unit
$\mathrm{CIN}^{(2)}$	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	10	pF
CouT $^{(1,2)}$	Output Capacitance	VouT $=0 \mathrm{~V}$	10	pF

NOTES:

1. With output deselected, ($\overline{\mathrm{OE}} \geq \mathrm{V} / \mathrm{H})$.
2. Characterized values, not currently tested.

AC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	CommercialIDT72V205L10IDT72V215L10IDT72V225L10IDT72V235L10IDT72V245L10		Com'I \& Ind'I(1)IDT72V205L15IDT72V215L15IDT72V225L15IDT72V235L15IDT72V245L15		Commercial IDT72V205L20 IDT72V215L20 IDT72V225L20 IDT72V235L20 IDT72V245L20		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
fs	Clock Cycle Frequency	-	100	-	66.7	-	50	MHz
ta	Data Access Time	2	6.5	2	10	2	12	ns
tclk	Clock Cycle Time	10	-	15	-	20	-	ns
tcLKH	Clock HIGH Time	4.5	-	6	-	8	-	ns
tcLKL	Clock LOW Time	4.5	-	6	-	8	-	ns
tos	DataSet-up Time	3	-	4	-	5	-	ns
toh	DataHold Time	0.5	-	1	-	1	-	ns
tens	Enable Set-up Time	3	-	4	-	5	-	ns
tenh	Enable Hold Time	0.5	-	1	-	1	-	ns
tRS	ResetPulse Width ${ }^{(2)}$	10	-	15	-	20	-	ns
tRSS	ResetSet-up Time	8	-	10	-	12	-	ns
trse	ResetRecovery Time	8	-	10	-	12	-	ns
trSF	Resetto Flag and Output Time	-	15	-	15	-	20	ns
tolz	OutputEnableto Outputin Low-Z ${ }^{(3)}$	0	-	0	-	0	-	ns
toe	OutputEnable to Output Valid	-	6	3	8	3	10	ns
tohz	OutputEnable to Outputin High-Z ${ }^{(3)}$	1	6	3	8	3	10	ns
twfF	Write Clock to Full Flag	-	6.5	-	10	-	12	ns
tref	Read Clock to Empty Flag	-	6.5	-	10	-	12	ns
tpafa	Clock to Asynchronous Programmable Almost-Full Flag	-	17	-	20	-	22	ns
tpars	Write Clockto Synchronous ProgrammableAlmost-Full Flag	-	8	-	10	-	12	ns
teaEA	Clock to Asynchronous Programmable Almost-Empty Flag	-	17	-	20	-	22	ns
teaes	Read Clock to Synchronous Programmable Almost-Empty Flag	-	8	-	10	-	12	ns
thF	Clock to Half-Full Flag	-	17	-	20	-	22	ns
txo	Clock to Expansion Out	-	6.5	-	10	-	12	ns
tx	Expansion In Pulse Width	3	-	6.5	-	8	-	ns
txis	Expansion In Set-Up Time	3	-	5	-	8	-	ns
tskew1	Skew time between Read Clock \& Write Clock for $\overline{F F} / / \bar{R}$ and $\overline{E F} / \overline{\mathrm{OR}}$	5	-	6	-	8	-	ns
tskew2 ${ }^{(4)}$	Skew time between Read Clock \& Write Clock for PAE and $\overline{\text { PAF }}$	14	-	18	-	20	-	ns

NOTES:

1. Industrial temperature range product for the 15 ns speed grade is available as a standard device. All other speed grades are available by special order.
2. Pulse widths less than minimum values are not allowed.
3. Values guaranteed by design, not currently tested.
4. tskewz applies to synchronous $\overline{\mathrm{PAE}}$ and synchronous $\overline{\mathrm{PAF}}$ only.

AC TEST CONDITIONS

Input Pulse Levels Input Rise/Fall Times

GND to 3.0V
$3 n s$
1.5 V
1.5 V

See Figure 1
D.U.T.

Figure 1. Output Load

* Includes jig and scope capacitances.

FUNCTIONALDESCRIPTION

TIMING MODES: IDT STANDARD vs FIRST WORD FALL THROUGH (FWFT) MODE

The IDT72V205/72V215/72V225/72V235/72V245 support two different timing modes of operation. The selection of which mode will operate is determined during configuration at Reset $(\overline{\mathrm{RS}})$. During a $\overline{\mathrm{RS}}$ operation, the First Load ($\overline{\mathrm{FL}}$), Read Expansion Input $(\overline{\mathrm{RXI}})$, and Write Expansion Input $(\overline{\mathrm{WXI}})$ pins are used to select the timing mode per the truth table shown in Table 3. In IDT Standard Mode, the first word written to an empty FIFO will not appear on the dataoutputlinesunless aspecific readoperation is performed. A read operation, which consists of activating Read Enable ($\overline{\mathrm{REN}}$) and enabling a rising Read Clock (RCLK) edge, will shift the word from internal memory to the data output lines. InFWFT mode, the firstword written to an empty FIFO is clocked directly to the data outputlines after three transitions of the RCLK signal. A $\overline{R E N}$ does not have to be asserted for accessing the first word.

Varioussignals, bothinputand outputsignals operate differently depending on whichtiming mode is in effect.

IDT STANDARD MODE

In this mode, the status flags, $\overline{\mathrm{FF}}, \overline{\mathrm{PAF}}, \overline{\mathrm{HF}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{EF}}$ operate in the manner outlinedinTable1. To write datainto totheFIFO, Write Enable ($\overline{\mathrm{WEN}})$ mustbeLOW. Datapresented totheDATAINlines will be clockedintotheFIFO on subsequent transitions of the Write Clock (WCLK). After the first write is performed, the Empty Flag ($\overline{\mathrm{EF}})$ will go HIGH. Subsequent writes will continue to fill up the FIFO. The Programmable Almost-Empty flag ($\overline{\mathrm{PAE}})$ will go HIGH after $n+1$ words have been loaded into the FIFO, where n is the empty offset value. The default setting for this value is stated inthe footnote of Table 1. This parameter is also user programmable. See section on Programmable Flag OffsetLoading.

If one continued to write data into the FIFO, and we assumed no read operationswere taking place, the Half-FullFlag $(\overline{\mathrm{HF}})$ would toggle to LOW once the 129th (72V205), 257th (72V215), 513th (72V225), 1,025th(72V235), and 2,049th (72V245) word respectively was written into the FIFO. Continuing to write data into the FIFO will cause the Programmable Almost-Full Flag ($\overline{\mathrm{PAF}}$) togoLOW. Again, ifno reads are performed, the $\overline{\mathrm{PAF}}$ willgoLOW after (256-m) writes for the IDT72V205, (512-m) writes for the IDT72V215, (1,024-m) writes forthe IDT72V225, (2,048-m) writes for the IDT72V235 and (4,096-m) writes for the IDT72V245. The offset "m" is the full offsetvalue. This parameter is also userprogrammable. See sectiononProgrammableFlag OffsetLoading. Ifthere is no full offset specified, the $\overline{P A F}$ will be LOW when the device is 31 away from completely full for IDT72V205,63 away from completely full for IDT72V215, and 127 away from completely full for the IDT72V225/72V235/72V245.

Whenthe FIFO is full, the Full Flag $(\overline{\mathrm{FF}})$ will go LOW, inhibiting further write operations. Ifno reads are performedafterareset, $\overline{F F}$ will goLOW afterD writes to theFIFO. $D=256$ writes for the IDT72V205, 512 for the IDT72V215, 1,024 for the IDT72V225, 2,048 for the IDT72V235 and 4,096 for the IDT72V245, respectively.

If the FIFO is full, the first read operation will cause $\overline{\mathrm{FF}}$ to go HIGH. Subsequent read operations will cause $\overline{\mathrm{PAF}}$ and the Half-Full Flag $(\overline{\mathrm{HF}})$ to go HIGH at the conditions described in Table 1. If further read operations occur, withoutwrite operations, the Programmable Almost-Empty Flag ($\overline{\mathrm{PAE}})$ will go LOW when there are n words in the FIFO, where n is the empty offset value. Ifthere is no empty offset specified, the $\overline{\mathrm{PAE}}$ will be LOW when the device is 31 away from completely empty for IDT72V205, 63 away from completely empty for IDT72V215, and 127 away from completely empty for IDT72V225/72V235/

72V245. Continuing read operations will cause the FIFO to be empty. When the lastword has been read from the FIFO, the $\overline{\mathrm{EF}}$ will go LOW inhibiting further read operations. $\overline{\operatorname{REN}}$ is ignored when the FIFO is empty.

FIRST WORD FALL THROUGH MODE (FWFT)

In this mode, the status flags, $\overline{\mathrm{IR}}, \overline{\mathrm{PAF}}, \overline{\mathrm{HF}}, \mathrm{PAE}$, and $\overline{\mathrm{OR}}$ operate in the manner outlinedin Table 2. To write datainto to the FIFO, $\overline{\mathrm{WEN}}$ mustbe LOW. DatapresentedtotheDATAINlineswill beclocked intothe FIFO on subsequent transitions of WCLK. After the first write is performed, the Output Ready ($\overline{\mathrm{OR}})$ flag will go LOW. Subsequent writes will continue to fill up the FIFO. $\overline{\text { PAE will go }}$ HIGH aftern +2 words have been loaded into the FIFO, where n is the empty offset value. The defaultsetting forthis value is stated inthe footnote of Table2. This parameter is alsouser programmable. See sectiononProgrammableFlag OffsetLoading.

If one continued to write data into the FIFO, and we assumed no read operations were taking place, the $\overline{\mathrm{HF}}$ would toggle to LOW once the 130th (72V205), 258th (72V215), 514th (72V225), 1,026th (72V235), and 2,050th (72V245) word respectively was written into the FIFO. Continuing to write data into the FIFO will cause the PAF to go LOW. Again, if no reads are performed, the $\overline{\mathrm{PAF}}$ will go LOW after (257-m) writes for the IDT72V205, (513-m) writes forthe IDT72V215, (1,025-m) writes for the IDT72V225, (2,049-m) writes for the IDT72V235 and (4,097-m) writes for the IDT72V245, where m is the full offset value. The default setting for this value is stated in the footnote of Table 2.

Whenthe FIFO isfull, the Input Ready ($\overline{\mathrm{IR}})$ flag will go HIGH, inhibiting further write operations. If no reads are performed after a reset, $\overline{\mathrm{R}}$ will go HIGH after D writes to the FIFO. D $=257$ writesfor the IDT72V205, 513 for the IDT72V215, 1,025 for the IDT72V225, 2,049 for the IDT72V235 and 4,097 for the IDT72V245. Note that the additional word in FWFT mode is due to the capacity of the memory plus output register.

If the FIFO is full, the first read operation will cause the $\overline{\mathrm{R}}$ flag to go LOW. Subsequent read operations will cause the $\overline{\mathrm{PAF}}$ and $\overline{\mathrm{HF}}$ to go HIGH at the conditions described in Table 2. Iffurther read operations occur, without write operations, the $\overline{\mathrm{PAE}}$ will go LOW when there aren +1 words intheFIFO, where n is the empty offset value. Ifthere is no empty offset specified, the $\overline{\mathrm{PAE}}$ will be LOW when the device is 32 away from completely empty for IDT72V205, 64 away from completely empty for IDT72V215, and 128 away from completely empty for IDT72V225/72V235/72V245. Continuing read operations will cause the FIFO to be empty. When the last word has been read from the FIFO, $\overline{\mathrm{OR}}$ will go HIGH inhibiting further read operations. $\overline{\text { REN }}$ is ignored when the FIFO is empty.

PROGRAMMABLEFLAGLOADING

Fulland Emptyflag offsetvaluescanbeuserprogrammable. TheIDT72V205/ 72V215/72V225/72V235/72V245 has internal registers for these offsets. Default settings are stated inthe footnotes of Table 1 and Table 2. Offsetvalues are loaded into the FIFO using the data input lines Do-D11. To load the offset registers, the Load ($\overline{\mathrm{LD}}$) pin and $\overline{W E N}$ pin must be held LOW. Data presenton Do-D11 will betransferredintotheEmpty Offsetregister onthe firstLOW-to-HIGH transition ofWCLK. By continuing to holdthe $\overline{L D}$ and $\overline{W E N}$ pinlow, data present on Do-D11 will be transferred into the Full Offset register on the next transition oftheWCLK. Thethirdtransitionagain writestotheEmpty Offsetregister. Writing all offset registers does nothave to occur atone time. Oneor two offsetregisters can be written and then by bringing the $\overline{\mathrm{LD}}$ pin HIGH, the FIFO is returned to normal read/write operation. When the $\overline{L D}$ pin and $\overline{W E N}$ are again set LOW, the next offset register in sequence is written.

The contents of the offset registers can be read on the data output lines QoQ11 when the $\overline{\mathrm{LD}}$ pin is set LOW and $\overline{\mathrm{REN}}$ is set LOW. Data can then be read on the nextLOW-to-HIGH transition of RCLK. The first transition of RCLK will presenttheempty offsetvalue tothe dataoutputlines. Thenexttransition of RCLK will present the full offsetvalue. Offsetregister content can be read out in the IDT Standard mode only. It cannot be read in the FWFT mode.

SYNCHRONOUS vs ASYNCHRONOUS PROGRAMMABLE FLAG TIMING SELECTION

The IDT72V205/72V215/72V225/72V235/72V245 can be configured during the "Configuration at Reset" cycle described in Table 3 with either asynchronous or synchronous timing for $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ flags.

If asynchronous $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ configuration is selected (as per Table 3), the PAE is asserted LOW on the LOW-to-HIGH transition of RCLK. $\overline{\text { PAE }}$ is resetto HIGH onthe LOW-to-HIGH transition ofWCLK. Similarly, the $\overline{\text { PAF }}$ is asserted LOW onthe LOW-to-HIGHtransition ofWCLK and $\overline{\text { PAF is resetto HIGH onthe }}$ LOW-to-HIGHtransition of RCLK. For detail timing diagrams, see Figure 13for asynchronous $\overline{\mathrm{PAE}}$ timing and Figure 14 for asynchronous $\overline{\mathrm{PAF}}$ timing.

Ifsynchronous $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ configuration is selected, the $\overline{\mathrm{PAE}}$ is asserted and updated on the rising edge of RCLK only and not WCLK. Similarly, $\overline{\text { PAF }}$ is asserted andupdated onthe rising edge ofWCLK only and notRCLK. For detail timing diagrams, see Figure 22 for synchronous $\overline{\text { PAE timing and Figure } 23 \text { for }}$ synchronous $\overline{\mathrm{PAF}}$ timing.

REGISTER-BUFFERED FLAG OUTPUT SELECTION

The IDT72V205/72V215/72V225/72V235/72V245 can be configured during the "ConfigurationatReset" cycledescribedin Table 4with single, double or triple register-buffered flag outputsignals. The various combinations available are described in Table 4 and Table 5. In general, going from single to double or triple buffered flag outputs removes the possibility of metastable flag indications onboundary states (i.e, empty orfull conditions). Thetrade-offisthe addition of clock cycle delays for the respective flag to be asserted. Not all combinations of register-bufferedflag outputs are supported. Register-buffered outputs apply tothe Empty Flag and Full Flag only. Partial flags are noteffected. Table 4 and Table 5 summarize the options available.

TABLE 1 - STATUS FLAGS FOR IDT STANDARD MODE

Number of Words in FIFO					$\overline{\text { FF }}$	$\overline{\text { PAF }}$	$\overline{\mathrm{HF}}$	$\overline{\text { PAE }}$	EF
IDT72V205	IDT72V215	IDT72V225	IDT72V235	IDT72V245					
0	0	0	0	0	H	H	H	L	L
1 to $\mathrm{n}^{(1)}$	H	H	H	L	H				
$(\mathrm{n}+1)$ to 128	$(\mathrm{n}+1)$ to 256	$(\mathrm{n}+1)$ to 512	$(\mathrm{n}+1)$ to 1,024	$(\mathrm{n}+1)$ to 2,048	H	H	H	H	H
129 to (256-(m+1) $)^{(2)}$	257 to (512-(m+1) $)^{(2)}$	513 to (1,024-(m+1)) ${ }^{(2)}$	1,025 to (2,048-(m+1) ${ }^{(2)}$	2,049 to (4,096-(m+1) ${ }^{(2)}$	H	H	L	H	H
(256-m)to 255	(512-m)to511	(1,024-m) to 1,023	(2,048-m) to 2,047	(4,096-m) to 4,095	H	L	L	H	H
256	512	1,024	2,048	4,096	L	L	L	H	H

NOTES:

1. $\mathrm{n}=$ Empty Offset (Default Values: IDT72V205 $\mathrm{n}=31$, IDT72V215 $\mathrm{n}=63$, IDT72V225/72V235/72V245 $\mathrm{n}=127$)
2. $m=$ Full Offset (Default Values : IDT72V205 $m=31$, IDT72V215 $m=63$, IDT72V225/72V235/72V245 $m=127$)

TABLE 2 - STATUS FLAGS FOR FWFT MODE

Number of Words in FIFO					$\overline{\text { IR }}$	$\overline{\text { PAF }}$	$\overline{\mathrm{HF}}$	$\overline{\text { PAE }}$	$\overline{\mathrm{OR}}$
IDT72V205	IDT72V215	IDT72V225	IDT72V235	IDT72V245					
0	0	0	0	0	L	H	H	L	H
1 to ($\mathrm{n}+1)^{(1)}$	1 to ($\mathrm{n}+1)^{(1)}$	1 to $(\mathrm{n}+1)^{(1)}$	1 to ($\mathrm{n}+1)^{(1)}$	1 to ($\mathrm{n}+1)^{(1)}$	L	H	H	L	L
$(\mathrm{n}+2)$ to 129	$(\mathrm{n}+2)$ to 257	$(\mathrm{n}+2)$ to 513	$(\mathrm{n}+2)$ to 1,025	$(\mathrm{n}+2)$ to 2,049	L	H	H	H	L
130 to $(257-(m+1))^{(2)}$	258 to (513-(m+1) $)^{(2)}$	514 to $(1,025-(m+1))^{(2)}$	1,026 to (2,049-(m+1) ${ }^{(2)}$	2,050 to (4,097-(m+1) ${ }^{(2)}$	L	H	L	H	L
(257-m) to 256	(513-m) to 512	(1,025-m) to 1,024	(2,049-m) to 2,048	$(4,097-m)$ to 4,096	L	L	L	H	L
257	513	1,025	2,049	4,097	H	L	L	H	L

NOTES:

1. $\mathrm{n}=$ Empty Offset (Default Values: IDT72V205 $\mathrm{n}=31$, IDT72V215 $\mathrm{n}=63$, IDT72V225/72V235/72V245 $\mathrm{n}=127$)
2. $\mathrm{m}=$ Full Offset (Default Values : IDT72V205 $\mathrm{m}=31$, IDT72V215 $\mathrm{m}=63$, IDT72V225/72V235/72V245 $\mathrm{m}=127$)

TABLE 3 - TRUTH TABLE FOR CONFIGURATION AT RESET

$\overline{\text { FL }}$	$\overline{\mathrm{RXI}}$	$\overline{\mathrm{WXI}}$	$\overline{\mathrm{EF} / \overline{\mathrm{OR}}}$	$\overline{\text { FF/IR }}$	$\overline{\text { PAE, }} \overline{\text { PAF }}$	FIFO Timing Mode
0	0	0	Single register-buffered Empty Flag	Single register-buffered Full Flag	Asynchronous	Standard
0	0	1	Triple register-buffered Output Ready Flag	Double register-buffered Input Ready Flag	Asynchronous	FWFT
0	1	0	Double register-buffered Empty Flag	Double register-buffered Full Flag	Asynchronous	Standard
$0(1)$	1	1	Single register-buffered Empty Flag	Single register-buffered Full Flag	Asynchronous	Standard
1	0	0	Single register-buffered Empty Flag	Single register-buffered Full Flag	Synchronous	Standard
1	0	1	Triple register-buffered Output Ready Flag	Double register-buffered Input Ready Flag	Synchronous	FWFT
1	1	0	Double register-buffered Empty Flag	Double register-buffered Full Flag	Synchronous	Standard
$1(2)$	1	1	Single register-buffered Empty Flag	Single register-buffered Full Flag	Synchronous	Standard

NOTES:

1. In a daisy-chain depth expansion, $\overline{F L}$ is held LOW for the "first load device". The $\overline{\mathrm{RXI}}$ and $\overline{\mathrm{WXI}}$ inputs are driven by the corresponding $\overline{\mathrm{RXO}}$ and $\overline{\mathrm{WXO}}$ outputs of the preceding device.
2. In a daisy-chain depth expansion, $\overline{\mathrm{FL}}$ is held HIGH for members of the expansion other than the "first load device". The $\overline{\mathrm{RXI}}$ and $\overline{\mathrm{WXI}}$ inputs are driven by the corresponding $\overline{\mathrm{RXO}}$ and $\overline{\mathrm{WXO}}$ outputs of the preceding device.

TABLE 4 - REGISTER-BUFFERED FLAG OUTPUT OPTIONS - IDT STANDARD MODE

Empty Flag ($\overline{\mathrm{EF}}$)	Full Flag ($\overline{\mathrm{FF}}$)	Partial Flags	Programming at Reset			Flag Timing Diagrams
Buffered Output	Buffered Output	Timing Mode	FL	$\overline{\mathrm{RXI}}$	$\overline{\mathrm{WXI}}$	
Single	Single	Asynch	0	0	0	Figure 9, 10
Single	Single	Sync	1	0	0	Figure 9, 10
Double	Double	Asynch	0	1	0	Figure 24, 26
Double	Double	Synch	1	1	0	Figure 24, 26

TABLE 5 - REGISTER-BUFFERED FLAG OUTPUT OPTIONS - FWFT MODE

Output Ready ($\overline{\mathrm{OR})}$	Input Ready (可)	Partial Flags	Programming at Reset		Flag Timing	
			$\overline{\mathrm{FL}}$	$\overline{\mathrm{RXI}}$	$\overline{\mathrm{WXI}}$	Diagrams
Triple	Double	Asynch	0	0	1	Figure 27
Triple	Double	Sync	1	0	1	Figure 20,21

SIGNALDESCRIPTIONS:

INPUTS:

DATA IN (D0 - D17)
Datainputs for 18-bitwide data.

CONTROLS:

RESET ($\overline{\mathrm{RS}}$)

Reset is accomplished whenever the Reset $(\overline{\mathrm{RS}})$ input is taken to a LOW state. During reset, both internal read and write pointers are set to the first location. A resetis required after power-up before a write operation can take place. The Half-Full Flag $(\overline{\mathrm{HF}})$ and Programmable Almost-Full Flag $(\overline{\mathrm{PAF}})$ will be resetto HIGH aftertrsf. The Programmable Almost-Empty Flag ($\overline{\mathrm{PAE}})$ will be resetto LOW after trsf. The Full Flag ($\overline{\mathrm{FF}}$) will resetto HIGH. The Empty Flag(EF) will resetto LOW inIDTStandard mode butwill resetto HIGH inFWFT mode. During reset, the outputregister is initialized to all zeros and the offset registers are initialized to their default values.

WRITE CLOCK (WCLK)

A write cycle is initiated on the LOW-to-HIGH transition of the Write Clock (WCLK). Datasetup and holdtimes mustbemetwithrespecttotheLOW-to-HIGH transition ofWCLK.

The Write and Read Clocks can be asynchronous or coincident.

WRITE ENABLE ($\overline{\text { WEN }}$)

Whenthe WEN input is LOW, data may be loaded intothe FIFORAM array on the rising edge of every WCLK cycle ift he device is not full. Datais stored in the RAM array sequentially and independently of any ongoing read operation.

WhenWENis HIGH, no newdatais writteninthe RAM array on eachWCLK cycle.

To prevent data overflow in the IDT Standard Mode, $\overline{\text { FF }}$ will go LOW, inhibiting further write operations. Upon the completion of avalid read cycle, FF will go HIGH allowing a write to occur. The FF flag is updated on the rising edge ofWCLK.

To prevent data overflow in the FWFT mode, $\overline{\mathbb{R}}$ will go HIGH, inhibiting further write operations. Upon the completion of a valid read cycle, $\overline{\mathrm{R}}$ will go LOW allowing awritetooccur. The $\overline{\mathrm{R}}$ flagisupdatedonthe risingedge ofWCLK.

WENis ignored whenthe FIFO is full ineitherFWFT or IDT Standard mode.

READ CLOCK (RCLK)

Datacanbe read on the outputs onthe LOW-to-HIGHtransition of the Read Clock (RCLK), when Output Enable ($\overline{(\bar{E})}$ is set LOW.

The Write and Read Clocks can be asynchronous or coincident.

READ ENABLE ($\overline{\text { REN }})$

WhenReadEnable is LOW, dataisloadedfromthe RAM array intotheoutput register on the rising edge of every RCLK cycle if the device is not empty.

Whenthe $\overline{\text { RENinputis HIGH, the outputregister holds the previous data and }}$ nonewdatais loaded into the outputregister. The data outputs Qo-Qn maintain the previous data value.

In the IDT Standard mode, every word accessed at Qn, including the first word writento an empty FIFO, must be requested using REN. When the last word has been read from the FIFO, the Empty Flag(EF) will go LOW, inhibiting further read operations. $\overline{\text { REN }}$ is ignored when the FIFO is empty. Once a write is performed, EF will go HIGH allowing a read to occur. The EF flag is updated on the rising edge of RCLK.

IntheFWFT mode, the firstwordwrittentoanempty FIFO automatically goes to the outputs Qn, on the third valid LOW to HIGH transition of RCLK + tsKEw after the firstwrite. $\overline{\text { REN }}$ does notneed to be asserted LOW. In ordertoaccess all otherwords, a aead mustbe executedusing REN. The RCLKLOW to HIGH transition afterthe lastword has been read from the FIFO, Output Ready ($\overline{\mathrm{OR}}$) will go HIGH with a true read (RCLK with $\overline{\text { REN }}=\mathrm{LOW}$), inhibiting further read operations. $\overline{\text { REN }}$ is ignored when the FIFO is empty.

OUTPUTENABLE ($\overline{(\bar{O})}$

When Output Enable ($\overline{(\mathrm{E}}$) is enabled (LOW), the parallel output buffers receive datafrom the outputregister. When $\overline{\text { OE is disabled (HIGH), the Q output }}$ data bus is in ahigh-impedance state.

LOAD ($\overline{\mathrm{LD}})$

The IDT72V205/72V215/72V225/72V235/72V245 devices contain two 12 -bitoffsetregisterswith data on the inputs, or read on the outputs. Whenthe Load ($\overline{\mathrm{LD}}$) pin is set LOW and $\overline{\text { WEN is set LOW, data on the inputs DO-D11 is }}$ written intothe Empty Offsetregister on the firstLOW-to-HIGH transition ofthe Write Clock (WCLK). When the $\overline{\mathrm{D}}$ pin and WEN are held LOW then data is written into the Full Offsetregister on the second LOW-to-HIGH transition of WCLK. The third transition of WCLK again writes tothe Empty Offsetregister.

However, writing all offsetregisters does nothave to occur at one time. One or two offsetregisters can be written and then by bringing the $\overline{\text { LD }}$ pin HIGH, the FIFO is returned to normal read/write operation. When the $\overline{L D}$ pin is setLOW, and WEN is LOW, the next offset register in sequence is written.

$\overline{\mathrm{LD}}$	$\overline{\mathrm{WEN}}$	WCLK	Selection
0	0	$\boxed{\sim}$	Writingto offsetregisters: Empty Ofset Full Offset
0	1	$\boxed{\sim}$	No Operation
1	0	Write Into FIFO	
1	1	$\boxed{\sim}$	NoOperation

NOTE:

1. The same selection sequence applies to reading from the registers. REN is enabled and read is performed on the LOW-to-HIGH transition of RCLK.

Figure 2. Writing to Offset Registers

NOTE:
4294 drw 04

1. Any bits of the offset register not being programmed should be set to zero.

Figure 3. Offset Register Location and Default Values

When the $\overline{\mathrm{LD}}$ pin is LOW and $\overline{W E N}$ is HIGH, the WCLK input is disabled; then a signal atthis inputcan neither incrementthe write offsetregister pointer, nor execute a write.

The contents of the offse registers can be read on the output lines when the $\overline{L D}$ pinis setLOW and $\overline{R E N}$ is setLOW; then, datacanberead onthe LOW-to-HIGH transition of the Read Clock (RCLK). The act of reading the control registersemploys a dedicated read offset register pointer. (The read and write pointers operate independently). Offsetregister content canbe read out inthe IDT Standard mode only. It is inhibited in the FWFT mode.

A read and a write should not be performed simultaneously to the offset registers.

FIRST LOAD ($\overline{\mathrm{FL}}$)

For the single device mode, see Table 3 for additional information. In the Daisy Chain Depth Expansion configuration, $\overline{F L}$ is grounded to indicate itisthe first device loaded and is setto HIGH for all other devices in the Daisy Chain. (See Operating Configurations for further details.)

WRITE EXPANSION INPUT ($\overline{\text { WXI }})$

This is a dual purpose pin. For single device mode, see Table 3 for additional information. $\overline{\mathrm{WXI}}$ is connected to Write ExpansionOut $(\overline{\mathrm{WXO}})$ of the previous device in the Daisy Chain Depth Expansion mode.

READ EXPANSION INPUT ($\overline{\text { RXI }})$

This is a dual purpose pin. For single device mode, see Table 3 for additional information. $\overline{\mathrm{RXI}}$ is connected to Read ExpansionOut $(\overline{\mathrm{RXO}})$ of the previous device in the Daisy Chain Depth Expansion mode.

OUTPUTS:

FULL FLAGIINPUT READY (产I/R)
This is a dual purpose pin. In IDT Standard mode, the Full Flag ($\overline{\mathrm{FF}}$) function is selected. Whenthe FIFO isfull, $\overline{\mathrm{FF}}$ will goLOW, inhibiting furtherwrite operations. When $\overline{F F}$ is HIGH, the FIFO is not full. If no reads are performed after a reset, $\overline{\mathrm{FF}}$ will go LOW after D writes to the FIFO. $\mathrm{D}=256$ writes for the IDT72V205, 512 for the IDT72V215, 1,024 for the IDT72V225, 2,048 for the IDT72V235 and 4,096 for the IDT72V245.

In FWFT mode, the Input Ready ($\overline{\mathrm{IR}})$ function is selected. $\overline{\mathrm{R}}$ goes LOW when memory space is available for writing in data. When there is no longer any free space left, $\overline{\mathrm{R}}$ goes HIGH, inhibiting further write operations.
$\overline{\mathrm{R}}$ will goHIGH afterD writestotheFIFO. D=257 writes fortheIDT72V205, 513 for the IDT72V215, 1,025 for the IDT72V225, 2,049 for the IDT72V235 and 4,097 for the IDT72V245. Note that the additional word in FWFT mode is due to the capacity of the memory plus output register.
$\overline{F F} / \bar{R}$ is synchronous and updated on the rising edge of WCLK.

EMPTYFLAG/OUTPUTREADY (EF/OR)

This is adual purpose pin. Inthe IDT Standard mode, the Empty Flag ($\overline{\mathrm{EF}}$) function is selected. Whenthe FIFO is empty, $\overline{E F}$ will go LOW, inhibiting further read operations. When $\overline{\mathrm{EF}}$ is HIGH, the FIFO is not empty.

InFWFT mode, the OutputReady ($\overline{\mathrm{OR}})$ function is selected. $\overline{\mathrm{OR}}$ goes LOW at the same time that the first word written to an empty FIFO appears valid on the outputs. $\overline{\text { OR }}$ stays LOW after the RCLKLOW to HIGH transition that shifts the last word from the FIFO memory to the outputs. $\overline{\text { OR goes HIGH only with }}$ atrue read (RCLK with $\overline{R E N}=L O W)$. The previous datastays at the outputs, indicating the last word was read. Further data reads are inhibited until $\overline{\mathrm{OR}}$ goes LOW again.
$\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ is synchronous and updated on the rising edge of RCLK.

PROGRAMMABLE ALMOST-FULL FLAG ($\overline{\mathrm{PAF}})$

The Programmable Almost-Full Flag ($\overline{\mathrm{PAF}})$ will go LOW when FIFO reaches the almost-full condition. In IDT Standard mode, if no reads are performed after Reset $(\overline{\mathrm{RS}})$, the $\overline{\mathrm{PAF}}$ will go LOW after ($256-\mathrm{m}$) writes for the IDT72V205, (512-m) writes for the IDT72V215, (1,024-m) writes for the IDT72V225, ($2,048-\mathrm{m}$) writes for the IDT72V235 and (4,096-m) writes for the IDT72V245. The offset " m " is defined in the Full Offset register.

In FWFT mode, if no reads are performed, $\overline{\text { PAF }}$ will go LOW after 257-m forthe IDT72V205,513-mfor the IDT72V215,1,025fortheIDT72V225, 2,049 for the IDT72V235 and 4,097 for the IDT72V245. The default values for mare noted in Table 1 and 2.

If asynchronous $\overline{\mathrm{PAF}}$ configuration is selected, the $\overline{\mathrm{PAF}}$ is asserted LOW ontheLOW-to-HIGHtransition oftheWriteClock(WCLK). $\overline{\text { PAF }}$ is resetto HIGH onthe LOW-to-HIGH transition ofthe Read Clock(RCLK). Ifsynchronous $\overline{P A F}$ configuration is selected (see Table 3), the $\overline{\mathrm{PAF}}$ is updated on the rising edge ofWCLK.

PROGRAMMABLE ALMOST-EMPTYFLAG ($\overline{\mathrm{PAE}})$

The $\overline{\text { PAE }}$ flag will go LOW when the FIFO reaches the almost-empty condition. In IDT Standard mode, $\overline{\text { PAE }}$ will go LOW when there are n words or less inthe FIFO. InFWFT mode, the $\overline{\text { PAE }}$ will go LOW whenthere aren + 1 words orless intheFIFO. Theoffset"n" isdefined astheempty offset. Thedefault values for n are noted in Table 1 and 2.

Ifthere is noempty offset specified, the Programmable Almost-Empty Flag $(\overline{\mathrm{PAE}})$ will be LOW when the device is 31 away from completely empty for IDT72V205, 63 away from completely empty for IDT72V215, and 127 away from completely empty for IDT72V225/72V235/72V245.

Ifasynchronous $\overline{\mathrm{PAE}}$ configuration is selected, the $\overline{\mathrm{PAE}}$ is asserted LOW on the LOW-to-HIGH transition of the Read Clock (RCLK). $\overline{\text { PAE }}$ is reset to HIGH on the LOW-to-HIGH transition oftheWriteClock (WCLK). Ifsynchronous $\overline{P A E}$ configuration is selected (see Table 3), the $\overline{\mathrm{PAE}}$ is updated on the rising edge of RCLK.

WRITE EXPANSION OUT/HALF-FULL FLAG ($\overline{\mathrm{WXO}} / \overline{\mathrm{HF}}$)

This is a dual-purpose output. In the Single Device and Width Expansion mode, when Write Expansion In $(\overline{\mathrm{WXI}})$ and/or Read Expansion In $(\overline{\mathrm{RXI}})$ are grounded, this output acts as an indication of a half-full memory.

Afterhalfofthe memory isfilled, and atthe LOW-to-HIGHtransition ofthenext write cycle, the Half-Full Flaggoes LOW and will remain setuntil the difference between the write pointer and read pointer is less than or equal to one half of the total memory of the device. The Half-Full Flag ($\overline{\mathrm{HF}}$) is then reset to HIGH by the LOW-to-HIGH transition of the Read Clock (RCLK). The $\overline{\mathrm{HF}}$ is asynchronous.

In the Daisy Chain Depth Expansion mode, $\overline{\mathrm{WXI}}$ is connected to $\overline{\mathrm{WXO}}$ of the previous device. This outputacts as asignal to the nextdevice inthe Daisy Chain by providing a pulse when the previous device writes to the lastlocation of memory.

READ EXPANSION OUT ($\overline{\mathrm{RXO}})$

In the Daisy Chain Depth Expansion configuration, Read Expansion In $(\overline{\mathrm{RXI}})$ is connected to Read Expansion Out $(\overline{\mathrm{RXO}})$ of the previous device. This outputacts as asignal tothe nextdevice inthe Daisy Chainby providing a pulse when the previous device reads from the last location of memory.

DATA OUTPUTS(Q0-Q17)

Qo-Q17 are data outputs for 18-bit wide data.

Figure 5. Reset Timing ${ }^{(2)}$

NOTES:

1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{FF}}$ will go HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW1, then $\overline{F F}$ may not change state until the next WCLK edge.
2. Select this mode by setting $(\overline{\mathrm{FL}}, \overline{\mathrm{RXI}}, \overline{\mathrm{WXI}})=(0,0,0),(0,1,1),(1,0,0)$ or $(1,1,1)$ during Reset.

Figure 6. Write Cycle Timing with Single Register-Buffered FF (IDT Standard Mode)

NOTES:

1. tSkEw1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{\mathrm{EF}}$ will go HIGH during the current clock cycle. If the time between the rising edge of WCLK and the rising edge of RCLK is less than tskew1, then $\overline{E F}$ may not change state until the next RCLK edge.
2. Select this mode by setting ($\overline{\mathrm{FL}}, \overline{\mathrm{RXI}}, \overline{\mathrm{WXI}})=(0,0,0),(0,1,1),(1,0,0)$ or $(1,1,1)$ during Reset.

Figure 7. Read Cycle Timing with Single Register-Buffered EF (IDT Standard Mode)

NOTES:

1. When tskewi minimum specification, tFRL (maximum) $=$ tCLK + tSKEW1. When tskew1 < minimum specification, tFRL (maximum) $=$ either $2^{\star t C L K}+$ tskEw1 or tCLK + tskew1. The Latency Timing applies only at the Empty Boundary ($\overline{\mathrm{EF}}=\mathrm{LOW}$).
2. The first word is available the cycle after $\overline{\mathrm{EF}}$ goes HIGH, always.
3. Select this mode by setting ($\overline{\mathrm{FL}}, \overline{\mathrm{RXI}}, \overline{\mathrm{WXI}})=(0,0,0),(0,1,1),(1,0,0)$ or $(1,1,1)$ during Reset.

Figure 8. First Data Word Latency with Single Register-Buffered EF (IDT Standard Mode)

NOTES:

1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{FF}}$ will go HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tskew1, then $\overline{F F}$ may not change state until the next WCLK edge.
2. Select this mode by setting $(\overline{\mathrm{FL}}, \overline{\mathrm{RXI}}, \overline{\mathrm{WXI}})=(0,0,0),(0,1,1),(1,0,0)$ or $(1,1,1)$ during Reset.

Figure 9. Single Register-Buffered Full Flag Timing (IDT Standard Mode)

NOTES:

1. When tSkew minimum specification, tFRL (maximum) $=$ tCLK + tSKEW1. When tSKEW1 < minimum specification, tFRL (maximum) $=$ either 2 * tCLK + tSKEW1, or tCLK + tSKEW1. The Latency Timing apply only at the Empty Boundary ($\overline{\mathrm{EF}}=\mathrm{LOW}$).
2. Select this mode by setting $(\overline{\mathrm{FL}}, \overline{\mathrm{RXI}}, \overline{\mathrm{WXI}})=(0,0,0),(0,1,1),(1,0,0)$ or $(1,1,1)$ during Reset.

Figure 10. Single Register-Buffered Empty Flag Timing (IDT Standard Mode)

Figure 11. Write Programmable Registers (IDT Standard and FWFT Modes)

Figure 12. Read Programmable Registers (IDT Standard Mode)

Figure 13. Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. $m=\overline{\text { PAF }}$ offset.
2. $D=$ maximum FIFO Depth.

In IDT Standard Mode: $\quad D=256$ for the IDT72V205, 512 for the IDT72V215, 1,024 for the IDT72V225, 2,048 for the IDT72V235 and 4,096 for the IDT72V245.
In FWFT Mode: $\quad \mathrm{D}=257$ for the IDT72V205, 513 for the IDT72V215, 1,025 for the IDT72V225, 2,049 for the IDT72V235 and 4,097 for the IDT72V245.
3. $\overline{\text { PAF }}$ is asserted to LOW on WCLK transition and reset to HIGH on RCLK transition.
4. Select this mode by setting $(\overline{\mathrm{FL}}, \overline{\mathrm{RXI}}, \overline{\mathrm{WXI}})=(0,0,0),(0,0,1),(0,1,0),(0,1,1)$ or $(1,1,1)$ during Reset.

Figure 14. Asynchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. $D=$ maximum FIFO Depth.

In IDT Standard Mode: $\quad D=256$ for the IDT72V205, 512 for the IDT72V215, 1,024 for the IDT72V225, 2,048 for the IDT72V235 and 4,096 for the IDT72V245.
In FWFT Mode: $\quad \mathrm{D}=257$ for the IDT72V205, 513 for the IDT72V215, 1,025 for the IDT72V225, 2,049 for the IDT72V235 and 4,097 for the IDT72V245.
2. For IDT Standard Mode.
3. For FWFT Mode.
4. Select this mode by setting $(\overline{\mathrm{FL}}, \overline{\mathrm{RXI}}, \overline{\mathrm{WXI}})=(0,0,0),(0,0,1),(0,1,0),(1,0,0),(1,0,1)$ or $(1,1,0)$ during Reset.

Figure 15. Half-Full Flag Timing (IDT Standard and FWFT Modes)

NOTE:

1. Write to Last Physical Location.

Figure 16. Write Expansion Out Timing

NOTE:

1. Read from Last Physical Location.

Figure 17. Read Expansion Out Timing

Figure 18. Write Expansion In Timing

Figure 19. Read Expansion In Timing

K cycles plus trew. If the time between the rising edge of WLCK and the rising edge of RCLK is less than tskewn then the $\overline{\mathrm{OR}}$ deassertion may be delayed one extra RCLK cycle.
 then the $\overline{\mathrm{PAE}}$ deassertion may be delayed one extra RCLK cycle.
3. $\overline{\mathrm{LD}}=\mathrm{HIGH}, \overline{\mathrm{OE}}=$ LOW 3. $\overline{\mathrm{LD}}=\mathrm{HIGH}, \overline{\mathrm{OE}}=\mathrm{LOW}$
4. $\mathrm{n}=\overline{\mathrm{PAE}}$ offset, $m=\overline{\mathrm{PAF}}$

[^0]

 then the $\overline{\mathrm{PA}} \bar{F}$ deassertion time may be delayed an extra WCLK cycle.
 5. Select this mode by setting $(\overline{F L}, \overline{R X I}, \overline{\mathrm{WXI}})=(1,0,1)$ during Reset.

NOTES:

1. $n=\overline{\mathrm{PAE}}$ offset.
2. For IDT Standard Mode.
3. For FWFT Mode.
4. tskew2 is the minimum time between a rising WCLK edge and a rising RCLK edge for $\overline{\text { PAE }}$ to go HIGH during the current clock cycle. If the time between the rising edge of WCLK and the rising edge of RCLK is less than tsKEW2, then the $\overline{\mathrm{PAE}}$ deassertion may be delayed one extra RCLK cycle
5. $\overline{\text { PAE }}$ is asserted and updated on the rising edge of RCLK only.
6. Select this mode by setting $(\overline{\mathrm{FL}}, \overline{\mathrm{RXI}}, \overline{\mathrm{WXI}})=(1,0,0)$, $(1,0,1)$, or $(1,1,0)$ during Reset.

Figure 22. Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. $\mathrm{m}=\overline{\mathrm{PAF}}$ offset.
2. $\mathrm{D}=$ maximum FIFO Depth.

In IDT Standard Mode: $\quad \mathrm{D}=256$ for the IDT72V205, 512 for the IDT72V215, 1,024 for the IDT72V225, 2,048 for the IDT72V235 and 4,096 for the IDT72V245.
In FWFT Mode: $\mathbf{D}=257$ for the IDT72V205, 513 for the IDT72V215, 1,025 for the IDT72V225, 2,049 for the IDT72V235 and 4,097 for the IDT72V245.
3. tskewz is the minimum time between a rising RCLK edge and a rising WCLK edge for $\overline{\text { PAF }}$ to go HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tskewz, then the PAF deassertion time may be delayed an extra WCLK cycle.
4. $\overline{\mathrm{PAF}}$ is asserted and updated on the rising edge of WCLK only.
5. Select this mode by setting $(\overline{\mathrm{FL}}, \overline{\mathrm{RXI}}, \overline{\mathrm{WXI}})=(1,0,0),(1,0,1)$, or $(1,1,0)$ during Reset.

Figure 23. Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. tskEw1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{FF}}$ will go HIGH after one WCLK cycle plus twFF. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW1, then the FF deassertion time may be delayed an extra WCLK cycle.
2. $\overline{\mathrm{LD}}=\mathrm{HIGH}$.
3. Select this mode by setting $(\overline{\mathrm{FL}}, \overline{\mathrm{RXI}}, \overline{\mathrm{WXI}})=(0,1,0)$ or $(1,1,0)$ during Reset.

Figure 24. Double Register-Buffered Full Flag Timing (IDT Standard Mode)

NOTES:

1. tskew1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{FF}}$ will go HIGH after one WCLK cycle plus trff. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tskew1. then the $\overline{F F}$ deassertion may be delayed an extra WCLK cycle.
2. $\overline{\mathrm{LD}}=\mathrm{HIGH}$.
3. Select this mode by setting $(\overline{F L}, \overline{\mathrm{RXI}}, \overline{\mathrm{WXI}})=(0,1,0)$ or $(1,1,0)$ during Reset.

Figure 25. Write Cycle Timing with Double Register-Buffered $\overline{\text { FF }}$ (IDT Standard Mode)

NOTES:

1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{\mathrm{EF}}$ will go HIGH after one RCLK cycle plus tref. If the time between the rising edge of WCLK and the rising edge of RCLK is less than tskew1. then the EF deassertion may be delayed an extra RCLK cycle.
2. $\overline{\mathrm{LD}}=\mathrm{HIGH}$
3. Select this mode by setting $(\overline{\mathrm{FL}}, \overline{\mathrm{RXI}}, \overline{\mathrm{WXI}})=(0,1,0)$ or $(1,1,0)$ during Reset.

Figure 26. Read Cycle Timing with Double Register-Buffered EF (IDT Standard Timing)

NOTES:

1. tsKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge for $\overline{\mathrm{OR}}$ to go HIGH during the current cycle. If the time between the rising edge of WLCK and the rising edge of RCLK is less than tsKEW1, then the OR deassertion may be delayed one extra RCLK cycle.
2. $\overline{\mathrm{LD}}=\mathrm{HIGH}, \overline{\mathrm{OE}}=\mathrm{LOW}$
3. Select this mode by setting $(\overline{\mathrm{FL}}, \overline{\mathrm{RXI}}, \overline{\mathrm{WXI}})=(0,0,1)$ or $(1,0,1)$ during Reset.

Figure 27. $\overline{\mathrm{OR}}$ Flag Timing and First Word Fall Through when FIFO is Empty (FWFT mode)

OPERATING CONFIGURATIONS

SINGLE DEVICE CONFIGURATION

A single IDT72V205/72V215/72V225/72V235/72V245 may be used when the application requirements are for 256/512/1,024/2,048/4,096 words or less.

These FIFOs are in a single Device Configuration when the First Load ($\overline{\mathrm{FL}})$, Write Expansion In ($\overline{\mathrm{WXI}})$ and Read Expansion In ($\overline{\mathrm{RXI})}$ control inputs are configured as ($\overline{F L}, \overline{R X I}, \overline{W X I}=(0,0,0),(0,0,1),(0,1,0),(1,0,0),(1,0,1)$ or (1,1,0) during reset (Figure 28).

RESET ($\overline{\mathrm{RS}}$)

Figure 28. Block Diagram of Single 256 x 18, $512 \times 18,1,024 \times 18,2,048 \times 18,4,096 \times 18$ Synchronous FIFO

WIDTH EXPANSION CONFIGURATION

Word width may be increased simply by connecting together the control signals of multiple devices. Statusflags can be detected from any one device. The exceptions arethe Empty Flag/Output Ready and Full Flag/Input Ready. Because of variations in skew between RCLK andWCLK, it is possible for flag assertion and deassertion to vary by one cycle between FIFOs. To avoid problemstheuser mustcreate compositeflagsby gatingthe EmptyFlags/Output Ready of every FIFO, and separately gating all Full Flags/InputReady. Figure

29 demonstrates a 36 -word width by using two IDT72V205/72V215/72V225/ $72 \mathrm{~V} 235 / 72 \mathrm{~V} 245 \mathrm{~s}$. Any word width can be attained by adding additional IDT72V205/72V215/72V225/72V235/72V245s. TheseFIFOs are in asingle Device Configuration when the FirstLoad ($\overline{\mathrm{FL}})$, Write Expansion $\ln (\overline{\mathrm{WXI}})$ and Read Expansion In $(\overline{\mathrm{RXI}})$ control inputs are configured as ($\overline{\mathrm{FL}}, \overline{\mathrm{RXI}}$, $\overline{\mathrm{WXI}}=(0,0,0),(0,0,1),(0,1,0),(1,0,0),(1,0,1)$ or $(1,1,0)$ during reset (Figure 29). Please see the Application Note AN-83.

NOTE:

1. Do not connect any output control signals directly together.

Figure 29. Block Diagram of $256 \times 36,512 \times 36,1,024 \times 36,2,048 \times 36,4,096 x 36$
Synchronous FIFO Memory Used in a Width Expansion Configuration

DEPTH EXPANSION CONFIGURATION — DAISY CHAIN TECHNIQUE (WITH PROGRAMMABLE FLAGS)

These devices can easily be adapted to applications requiring more than 256/512/1,024/2,048/4,096 words of buffering. Figure 30 shows Depth Expansion using three IDT72V205/72V215/72V225/72V235/72V245s. Maximum depth is limited only by signal loading.
Followthesesteps:

1. The first device must be designated by grounding the First Load $(\overline{\mathrm{FL}})$ control input.
2. All other devices must have \bar{F} in the HIGH state.
3. The Write Expansion Out (WXO) pin of each device must be tied to the Write Expansion In (WXI) pin of the next device. See Figure 30.
4. The Read Expansion Out $(\overline{\mathrm{RXO}})$ pin of each device must be tied to the Read Expansion In ($\overline{\mathrm{RXI}})$ pin of the next device. See Figure 30.
5. All Load ($\overline{\mathrm{LD}})$ pins are tied together.
6. The Half-Full Flag ($\overline{\mathrm{FF}}$) is not available in this Depth Expansion Configuration.
7. $\overline{E F}, \overline{\mathrm{FF}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{PAF}}$ are created with composite flags by ORing together every respective flags for monitoring. The composite $\overline{\mathrm{PAE}}$ and $\overline{\text { PAF }}$ flags are not precise.
8. In Daisy Chain mode, the flag outputs are single register-buffered and the partial flags are in asynchronoustiming mode.

Figure 30. Block Diagram of $768 \times 18,1,536 \times 18,3,072 \times 18,6,144 \times 18,12,288 \times 18$ Synchronous FIFO Memory With Programmable Flags used in Depth Expansion Configuration

DEPTH EXPANSION CONFIGURATION (FWFT MODE)

In FWFT mode, the FIFOs can be connected in series (the data outputs of one FIFO connected to the data inputs of the next) with no external logic necessary. The resulting configuration provides atotal depth equivalent to the sum of the depths associated with each singleFIFO. Figure 31 shows a depth expansion using two IDT72V205/72V215/72V225/72V235/72V245devices.

Careshould betakentoselectFWFTmodeduring MasterResetforall FIFOs in the depth expansion configuration. The first word written to an empty configuration will pass from one FIFO to the next ("ripple down") until it finally appears at the outputs of the last FIFO in the chain-no read operation is necessarybutthe RCLK ofeachFIFO mustbe free-running. Eachtime the data word appears at the outputs of one FIFO, that device's $\overline{\mathrm{OR}}$ line goes LOW, enabling a write to the next FIFO in line.

For an empty expansion configuration, the amount of time ittakes for $\overline{\mathrm{OR}}$ of the lastFIFO inthe chaintogo LOW (i.e.valid datato appear on the lastFIFO's outputs) after a word has been written to the firstFIFO is the sum of the delays for each individual FIFO:

$$
(\mathrm{N}-1)^{\star}\left(4^{\star t r a n s f e r ~ c l o c k}\right)+3^{\star} \text { TRCLK }
$$

whereNisthe number of FIFOs inthe expansionand TrcLkistheRCLKperiod. Note that extra cycles should be added for the possibility that the tSKEW1
specificationisnotmetbetweenWCLK andtransferclock, or RCLK andtransfer clock, for the $\overline{\mathrm{OR}}$ flag.

The "ripple down" delay is only noticeablefor the firstword writtento anempty depth expansion configuration. There will be no delay evidentfor subsequent words written to the configuration.
The first free location created by reading from a full depth expansion configuration will "bubble up" from the lastFIFO to the previous one untilitfinally moves intothefirstFIFO of the chain. Eachtime afree location is created in one FIFO of the chain, thatFIFO's \bar{R} line goes LOW, enabling the preceding FIFO to write a word to fill it.

For afull expansion configuration, the amount of time ittakesfor $\overline{\mathrm{R}}$ of the first FIFO in the chain to go LOW after a word has been read from the lastFIFO is the sum of the delays for each individual FIFO:

$$
(\mathrm{N}-1)^{\star}\left(3^{* t r a n s f e r ~ c l o c k}\right)+2 \text { TwcLK }
$$

where N is the number of FIFOs in the expansion and TwCLK is the WCLK period. Note thatextracyclesshould beaddedforthe possibility thatthe SSKEW1 specificationis notmetbetweenRCLKandtransferclock, orWCLKandtransfer clock, for the \bar{R} flag.

The Transfer Clockline should be tied to either WCLK or RCLK, whichever isfaster. Boththese actions resultindata moving, asquickly as possible, to the end of the chain and free locations to the beginning of the chain.

Figure 31. Block Diagram of $512 \times 18,1,024 \times 18,2,048 \times 18,4,096 \times 18,8,192 \times 18$ Synchronous FIFO Memory With Programmable Flags used in Depth Expansion Configuration

ORDERING INFORMATION

NOTES:

1. Industrial temperature range product for the 15 ns speed grade is available as a standard device. All other speed grades are available by special order.
2. Green parts are available. For specific speeds and packages contact your sales office.

LEAD FINISH (SNPB) PARTS ARE IN EOL PROCESS. PRODUCT DISCONTINUATION NOTICE - PDN\# SP-17-02

DATASHEET DOCUMENT HISTORY

05/02/2001
01/11/2002
02/01/2002
02/22/2006
10/22/2008
03/21/2013
03/19/2018
pgs. 4, 5 and 25 .
pg. 4.
pg. 4.
pgs. 1 and 25 .
pg. 25.
pg. 2 and 25 .
Product Discontinuation Notice-PDN\# SP-17-02
Last time buy expires June 15, 2018.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Renesas Electronics:
72V225L20TF8 72V215L20TF8 72V235L20TF8 72V225L20PF8 72V245L20PF8 72V205L20PF8 72V235L20PF8
72V215L20PF8 72V215L15TFGI 72V235L15TFGI 72V245L20TF8 72V205L20TF8 72V245L15TFGI
72V205L15PFGI 72V235L10TFG 72V215L10TFG 72V205L10TFG 72V245L10TFG 72V225L10TFG
72V245L10PFG 72V235L10PFG 72V205L10PFG 72V225L10PFG 72V205L10TF 72V225L10TF 72V235L10TF 72V215L10TF 72V245L10TF 72V245L10PF 72V205L10PF 72V225L10PF 72V215L10PF 72V235L10PF 72V245L15PF 72V205L15PF 72V235L15TF 72V215L15TF 72V245L15TF 72V205L15TF 72V225L15TF 72V235L15PF 72V245L15TFI8 72V205L15TFI8 72V215L15TFI8 72V235L15TFGI8 72V225L15TFI8 72V205L10TF8 72V245L10TF8 72V225L10TF8 72V215L10TF8 72V235L10TF8 72V245L15PFI8 72V225L15PFI8 72V205L15PFI8 72V235L15PFI8 72V225L10PF8 72V205L10PF8 72V245L10PF8 72V235L10PF8 72V215L10PF8 72V215L15PFI8 72V215L20PF 72V215L20TF 72V235L20TF 72V225L20TF 72V245L20TF 72V205L20TF 72V235L20PF 72V225L20PF 72V245L20PF 72V205L20PF 72V235L15PF8 72V215L15TF8 72V235L15TF8 72V225L15TF8 72V205L15TF8 72V245L15TF8 72V225L15PF8 72V245L15PF8 72V205L15PF8 72V215L15PF8 72V215L15TFGI8 72V205L15PFGI8 72V225L15PF 72V215L15PF 72V215L15TFI 72V225L15TFI 72V205L15TFI 72V245L15TFI 72V225L15PFI 72V245L15PFI 72V205L15PFI 72V235L15PFI 72V215L15PFI 72V205L10TFG8 72V235L10TFG8 72V225L10PFG8 72V235L10PFG8 72V245L10PFG8 72V205L10PFG8

[^0]:

