LT1498/LT1499

feATURES

- Rail-to-Rail Input and Output
- $475 \mu \mathrm{~V}$ Max $\mathrm{V}_{\text {os }}$ from V^{+}to V^{-}
- Gain-Bandwidth Product: 10MHz
- Slew Rate: 6V/us

■ Low Supply Current per Amplifier: 1.7mA

- Input Offset Current: 65nA Max
- Input Bias Current: 650nA Max
- Open-Loop Gain: 1000V/mV Min
- Low Input Noise Voltage: $12 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Typ
- Wide Supply Range: 2.2 V to $\pm 15 \mathrm{~V}$
- Large Output Drive Current: 30mA
- Stable for Capacitive Loads Up to 10,000pF
- Dual in 8-Pin PDIP and SO Package
- Quad in Narrow 14-Pin S0

APPLICATIONS

- Driving A-to-D Converters
- Active Filters
- Rail-to-Rail Buffer Amplifiers
- Low Voltage Signal Processing
- Battery-Powered Systems
©T, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and C-Load is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

DESCRIPTIOn

The LT®1498/LT1499 are dual/quad, rail-to-rail input and output precision C-LoadTM op amps with a 10 MHz gainbandwidth product and $\mathrm{aV} / \mathrm{Ls}$ slew rate.
The LT1498/LT1499 are designed to maximize input dynamic range by delivering precision performance over the full supply voltage. Using a patented technique, both input stages of the LT1498/LT1499 are trimmed, one at the negative supply and the other at the positive supply. The resulting guaranteed common mode rejection is much better than other rail-to-rail input op amps. When used as a unity-gain buffer in front of single supply 12 -bit A-to-D converters, the LT1498/LT1499 are guaranteed to add less than 1LSB of error even in single 3 V supply systems.
With 110dB of supply rejection, the LT1498/LT1499 maintain their performance over a supply range of 2.2 V to 36 V and are specified for $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ supplies. The inputs can bedriven beyond the supplies withoutdamage or phase reversal of the output. These op amps remain stable while driving capacitive loads up to $10,000 \mathrm{pF}$.
The LT1498 is available with the standard dual op amp configuration in 8-pin PDIP and SO packaging. The LT1499 features the standard quad op amp configuration and is available in a 14 -pin plastic SO package. These devices can be used as plug-in replacements for many standard op amps to improve input/output range and precision.

TYPICAL APPLICATION

Frequency Response

LT1498/LT1499

ABSOLUTE MAXIMUM RATINGS (Note 1)

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LT1498CN8\#PBF	LT1498CN8\#TRPBF	LT1498CN8	8-Lead Plastic PDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1498CS8\#PBF	LT1498CS8\#TRPBF	1498	8-Lead Plastic SO	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1498IN8\#PBF	LT1498IN8\#TRPBF	LT1498IN8	8-Lead Plastic PDIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1498IS8\#PBF	LT1498IS8\#TRPBF	14981	8-Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1498HS8\#PBF	LT1498HS8\#TRPBF	1498H	8-Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1498MPS8\#PBF	LT1498MPS8\#TRPBF	1498MP	8-Lead Plastic S0	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1499CS\#PBF	LT1499CS\#TRPBF	LT1499CS	14-Lead Plastic S0	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT14991S\#PBF	LT1499IS\#TRPBF	LT1499IS	14-Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1499HS\#PBF	LT1499HS\#TRPBF	LT1499HS	14-Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, v_{S}=5 v, 0 v ; v_{S}=3 v, 0 v ; v_{C m}=v_{\text {Out }}=$ hall supply, unless
otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 475 \\ & 475 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\triangle \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		150	425	$\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}, \mathrm{V}^{-}$(Note 5)		200	750	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$	$\begin{gathered} 0 \\ -650 \end{gathered}$	$\begin{gathered} \hline 250 \\ -250 \end{gathered}$	$\begin{gathered} 650 \\ 0 \end{gathered}$	nA nA
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		500	1300	nA
	Input Bias Current Match (Channel-to-Channel)	$\begin{aligned} & V_{C M}=V^{+}(\text {Note } 5) \\ & V_{C M}=V^{-}(\text {Note } 5) \end{aligned}$	$\begin{gathered} 0 \\ -100 \end{gathered}$	$\begin{gathered} 10 \\ -10 \end{gathered}$	$\begin{gathered} 100 \\ 0 \end{gathered}$	nA $n A$
10 S	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 65 \\ & 65 \end{aligned}$	nA
$\triangle{ }^{\Delta}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		10	130	nA
	Input Noise Voltage	0.1 Hz to 10Hz		400		$\mathrm{n} \mathrm{P}_{\mathrm{p}-\mathrm{p}}$
$\underline{e_{n}}$	Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}$		12		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\underline{\text { In }}$	Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$		0.3		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			5		pF
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=75 \mathrm{mV} \text { to } 4.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{0}=75 \mathrm{mV} \text { to } 2.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \end{aligned}$	$\begin{aligned} & 600 \\ & 500 \end{aligned}$	$\begin{aligned} & 3800 \\ & 2000 \end{aligned}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 V, V_{C M}=V^{-} \text {to } V^{+} \\ & V_{S}=3 V, V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	$\begin{aligned} & 81 \\ & 76 \end{aligned}$	$\begin{aligned} & 90 \\ & 86 \end{aligned}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 5)	$\begin{aligned} & V_{S}=5 V, V_{C M}=V^{-} \text {to } V^{+} \\ & V_{S}=3 V, V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & 91 \\ & 86 \end{aligned}$		dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.2 \mathrm{~V}$ to 12V, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0}=0.5 \mathrm{~V}$	88	105		dB
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{S}=2.2 \mathrm{~V}$ to 12V, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0}=0.5 \mathrm{~V}$	82	103		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing (Low) (Note 6)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=2.5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 14 \\ & 35 \\ & 90 \end{aligned}$	$\begin{gathered} 30 \\ 70 \\ 200 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing (High) (Note 6)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=2.5 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 2.5 \\ 50 \\ 140 \end{gathered}$	$\begin{gathered} \hline 10 \\ 100 \\ 250 \end{gathered}$	mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 12.5 \\ & \pm 12.0 \end{aligned}$	$\begin{aligned} & \pm 24 \\ & \pm 19 \end{aligned}$		mA mA
Is	Supply Current per Amplifier			1.7	2.2	mA
GBW	Gain-Bandwidth Product (Note 7)		6.8	10.5		MHz
SR	Slew Rate (Note 8)	$\begin{aligned} & V_{S}=5 \mathrm{~V}, A_{V}=-1, R_{L}=0 \text { pen, } V_{0}=4 \mathrm{~V} \\ & V_{S}=3 V, A_{V}=-1, R_{L}=0 \text { pen } \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$		V/ $/ \mathrm{S}$ $\mathrm{V} / \mathrm{\mu s}$

LT1498/LT1499

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the temperature range $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.1 V \end{aligned}$	\bullet		$\begin{aligned} & 175 \\ & 175 \end{aligned}$	$\begin{aligned} & 650 \\ & 650 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$	
$V_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 3)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+}$	\bullet		$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+}	\bullet		170	600	$\mu \mathrm{V}$	
	Input Offset Voltage Match (Channel-to-Channel)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}, \mathrm{~V}^{+}$(Note 5)	\bullet		200	900	$\mu \mathrm{V}$	
I_{B}	Input Bias Current	$\begin{aligned} & V_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V} \end{aligned}$	\bullet	$\begin{gathered} 0 \\ -780 \end{gathered}$	$\begin{gathered} 275 \\ -275 \end{gathered}$	$\begin{gathered} 780 \\ 0 \end{gathered}$	nA	
$\underline{\Delta \\|_{B}}$	Input Bias Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+}	\bullet		550	1560	nA	
	Input Bias Current Match (Channel-to-Channel)	$\begin{aligned} & V_{C M}=V^{+} \text {(Note 5) } \\ & V_{C M}=V^{-}+0.1 \mathrm{~V} \text { (Note 5) } \end{aligned}$	\bullet	$\begin{gathered} 0 \\ -170 \end{gathered}$	$\begin{gathered} \hline 15 \\ -15 \end{gathered}$	$\begin{gathered} 170 \\ 0 \end{gathered}$	nA nA	
10 S	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.1 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	nA nA	
$\Delta^{\text {OS }}$	Input Offset Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+}	\bullet		20	170	nA	
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{0}=75 \mathrm{mV} \text { to } 4.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{0}=75 \mathrm{mV} \text { to } 2.8 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \end{aligned}$	\bullet	$\begin{aligned} & 500 \\ & 400 \end{aligned}$	$\begin{aligned} & 2500 \\ & 2000 \end{aligned}$		V / mV V / mV	
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=V^{-}+0.1 \mathrm{~V} \text { to } \mathrm{V}^{+} \\ & V_{S}=3 V, V_{C M}=V^{-}+0.1 \mathrm{~V} \text { to } \mathrm{V}^{+} \end{aligned}$	\bullet	$\begin{aligned} & 78 \\ & 73 \end{aligned}$	$\begin{aligned} & 89 \\ & 85 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
	CMRR Match (Channel-to-Channel) (Note 5)	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=V^{-}+0.1 \mathrm{~V} \text { to } \mathrm{V}^{+} \\ & V_{S}=3 V, V_{C M}=V^{-}+0.1 \mathrm{~V} \text { to } \mathrm{V}^{+} \end{aligned}$	\bullet	$\begin{aligned} & 74 \\ & 69 \end{aligned}$	$\begin{aligned} & 90 \\ & 86 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.3 \mathrm{~V}$ to 12V, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0}=0.5 \mathrm{~V}$	\bullet	86	102		dB	
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{\mathrm{S}}=2.3 \mathrm{~V}$ to 12V, $\mathrm{V}_{\text {CM }}=\mathrm{V}_{0}=0.5 \mathrm{~V}$	\bullet	80	102		dB	
$\overline{\mathrm{V}} \mathrm{OL}$	Output Voltage Swing (Low) (Note 6)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & I_{\text {SINK }}=2.5 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 17 \\ & 40 \\ & 110 \end{aligned}$	$\begin{gathered} 35 \\ 80 \\ 220 \end{gathered}$	mV mV mV	
V_{OH}	Output Voltage Swing (High) (Note 6)	$\begin{array}{\|l} \hline \text { No Load } \\ I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ I_{\text {SOURCE }}=2.5 \mathrm{~mA} \\ \hline \end{array}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 3.5 \\ 55 \\ 160 \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \\ 120 \\ 300 \\ \hline \end{gathered}$	mV mV mV	
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 V \end{aligned}$	\bullet	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 23 \\ & \pm 20 \end{aligned}$		mA mA	
IS	Supply Current per Amplifier		\bullet		1.9	2.6	mA	
GBW	Gain-Bandwidth Product (Note 7)		\bullet	6.1	9		MHz	
SR	Slew Rate (Note 8)	$\begin{aligned} & V_{S}=5 V, A_{V}=-1, R_{L}=0 \text { pen, } V_{0}=4 V \\ & V_{S}=3 V, A_{V}=-1, R_{L}=0 \text { pen } \end{aligned}$	\bullet	$\begin{aligned} & 2.5 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$	

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the temperature range

 $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted. (Note 4)| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{0 S}$ | Input Offset Voltage | $\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.1 \mathrm{~V} \end{aligned}$ | \bullet | | $\begin{aligned} & 250 \\ & 250 \end{aligned}$ | $\begin{aligned} & 750 \\ & 750 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| Vos TC | Input Offset Voltage Drift (Note 3) | $V_{C M}=\mathrm{V}^{+}$ | \bullet | | $\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$ | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\Delta \mathrm{V}_{\text {OS }}$ | Input Offset Voltage Shift | $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+} | \bullet | | 250 | 650 | $\mu \mathrm{V}$ |
| | Input Offset Voltage Match (Channel-to-Channel) | $\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.1 V^{\text {, }} \mathrm{V}^{+}$(Note 5) | \bullet | | 300 | 1500 | $\mu \mathrm{V}$ |
| I_{B} | Input Bias Current | $\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.1 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{gathered} 0 \\ -975 \end{gathered}$ | $\begin{gathered} 350 \\ -350 \end{gathered}$ | $\begin{gathered} 975 \\ 0 \end{gathered}$ | nA nA |
| $\Delta \mathrm{l}_{\mathrm{B}}$ | Input Bias Current Shift | $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+} | \bullet | | 700 | 1950 | nA |
| | Input Bias Current Match (Channel-to-Channel) | $\begin{aligned} & V_{C M}=V^{+} \text {(Note 5) } \\ & V_{C M}=V^{-}+0.1 \mathrm{~V} \text { (Note 5) } \end{aligned}$ | \bullet | $\begin{gathered} 0 \\ -180 \end{gathered}$ | $\begin{gathered} 30 \\ -30 \end{gathered}$ | $\begin{gathered} 180 \\ 0 \end{gathered}$ | nA nA |
| 10 S | Input Offset Current | $\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.1 \mathrm{~V} \end{aligned}$ | \bullet | | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | $\begin{aligned} & \hline 110 \\ & 110 \end{aligned}$ | nA $n A$ |
| $\Delta \mathrm{l}_{0 S}$ | Input Offset Current Shift | $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+} | \bullet | | 30 | 220 | nA |
| AVOL | Large-Signal Voltage Gain | $\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=75 \mathrm{mV} \text { to } 4.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{0}=75 \mathrm{mV} \text { to } 2.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \end{aligned}$ | \bullet | $\begin{aligned} & 400 \\ & 300 \end{aligned}$ | $\begin{aligned} & 2500 \\ & 2000 \end{aligned}$ | | V / mV
 V / mV |
| CMRR | Common Mode Rejection Ratio | $\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=\mathrm{V}^{-}+0.1 \mathrm{~V} \text { to } \mathrm{V}^{+} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V} \text { to } \mathrm{V}^{+} \end{aligned}$ | \bullet | $\begin{aligned} & 77 \\ & 73 \end{aligned}$ | $\begin{aligned} & 86 \\ & 81 \end{aligned}$ | | dB dB |
| | CMRR Match (Channel-to-Channel) (Note 5) | $\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=\mathrm{V}^{-}+0.1 \mathrm{~V} \text { to } \mathrm{V}^{+} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V} \text { to } \mathrm{V}^{+} \end{aligned}$ | \bullet | $\begin{aligned} & \hline 72 \\ & 69 \end{aligned}$ | $\begin{aligned} & \hline 86 \\ & 83 \end{aligned}$ | | dB $d B$ |
| PSRR | Power Supply Rejection Ratio | $\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 12V, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0}=0.5 \mathrm{~V}$ | \bullet | 86 | 100 | | dB |
| | PSRR Match (Channel-to-Channel) (Note 5) | $\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to 12V, $\mathrm{V}_{\text {CM }}=\mathrm{V}_{0}=0.5 \mathrm{~V}$ | \bullet | 80 | 100 | | dB |
| V_{OL} | Output Voltage Swing (Low) (Note 6) | $\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=2.5 \mathrm{~mA} \\ & \hline \end{aligned}$ | $\stackrel{\bullet}{\bullet}$ | | $\begin{gathered} 18 \\ 45 \\ 110 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 40 \\ 80 \\ 220 \\ \hline \end{gathered}$ | mV mV mV |
| V_{OH} | Output Voltage Swing (High) (Note 6) | $\begin{array}{\|l\|} \hline \text { No Load } \\ I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ I_{\text {SOURCE }}=2.5 \mathrm{~mA} \\ \hline \end{array}$ | $\stackrel{\bullet}{\bullet}$ | | $\begin{gathered} 3.5 \\ 60 \\ 170 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 15 \\ 120 \\ 300 \\ \hline \end{gathered}$ | mV mV mV |
| ISC | Short-Circuit Current | $\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{aligned} & \pm 7.5 \\ & \pm 7.5 \end{aligned}$ | $\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$ | | mA mA |
| Is | Supply Current per Amplifier | | \bullet | | 2.0 | 2.7 | mA |
| GBW | Gain-Bandwidth Product (Note 7) | | \bullet | 5.8 | 8.5 | | MHz |
| SR | Slew Rate (Note 8) | $\begin{aligned} & V_{S}=5 \mathrm{~V}, A_{V}=-1, R_{L}=0 \text { pen, } V_{0}=4 V \\ & V_{S}=3 V, A_{V}=-1, R_{L}=0 \text { pen } \end{aligned}$ | \bullet | $\begin{aligned} & 2.2 \\ & 1.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.6 \\ & 3.2 \\ & \hline \end{aligned}$ | | $\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$ |

LT1498/LT1499

ELECARIPLCHARACTERSTICS The o denotes the specifications which apply over the temperature range $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=\mathrm{V}^{+}-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.5 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 1100 \\ & 1100 \end{aligned}$	${ }_{\mu}^{\mu \mathrm{V}}$
V OS $^{\text {TC }}$	Input Offset Voltage Drift (Note 3)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+}-0.5 \mathrm{~V}$	\bullet		$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$	\bullet		250	2300	$\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}, \mathrm{~V}^{+}-0.5 \mathrm{~V}$ (Note 5)	\bullet		300	1900	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+}-0.5 \mathrm{~V} \\ & V_{C M}=V^{-}+0.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{gathered} 0 \\ -1100 \end{gathered}$	$\begin{gathered} 450 \\ -450 \end{gathered}$	$\begin{gathered} 1100 \\ 0 \end{gathered}$	nA
$\Delta \mathrm{I}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$	\bullet		900	2200	nA
	Input Bias Current Match (Channel-to-Channel)	$\begin{aligned} & V_{C M}=V^{+}-0.5 \mathrm{~V}(\text { Note } 5) \\ & V_{C M}=V^{-}+0.5 \mathrm{~V} \text { (Note 5) } \end{aligned}$	\bullet	$\begin{gathered} 0 \\ -400 \end{gathered}$	$\begin{gathered} 40 \\ -40 \end{gathered}$	$\begin{gathered} 400 \\ 0 \end{gathered}$	nA
los	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+}-0.5 \mathrm{~V} \\ & V_{C M}=V^{-}+0.5 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	nA nA
$\Delta \mathrm{l}_{\text {OS }}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$	\bullet		80	600	nA
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, R_{L}=10 \mathrm{k} \end{aligned}$	\bullet	$\begin{aligned} & 40 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 210 \\ 210 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}^{-}+0.5 \mathrm{~V} \text { to } \mathrm{V}^{+}-0.5 \mathrm{~V} \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}^{-}+0.5 \mathrm{~V} \text { to } \mathrm{V}^{+}-0.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 66 \\ & 62 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	CMRR Match (Channel-to-Channel) (Note 5)	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}^{-}+0.5 \mathrm{~V} \text { to } \mathrm{V}^{+}-0.5 \mathrm{~V} \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.5 \mathrm{~V} \text { to } \mathrm{V}^{+}-0.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 62 \\ & 58 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$		$\overline{d B}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 12V, $\mathrm{V}_{\text {CM }}=\mathrm{V}_{0}=0.5 \mathrm{~V}$	\bullet	86	100		dB
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 12V, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0}=0.5 \mathrm{~V}$	\bullet	80	100		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing (Low) (Note 6)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=2.5 \mathrm{~mA} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 22 \\ 45 \\ 110 \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ 80 \\ 220 \\ \hline \end{gathered}$	mV mV mV
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Output Voltage Swing (High) (Note 6)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=2.5 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 3.5 \\ 60 \\ 170 \end{gathered}$	$\begin{gathered} \hline 20 \\ 120 \\ 350 \end{gathered}$	mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \pm 5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$		mA mA
I_{S}	Supply Current per Amplifier		\bullet		2.4	3.0	mA
GBW	Gain-Bandwidth Product (Note 7)		\bullet	5.8	8.5		MHz
SR	Slew Rate (Note 8)	$\begin{aligned} & V_{S}=5 V, A_{V}=-1, R_{L}=\text { Open, } V_{0}=4 V \\ & V_{S}=3 V, A_{V}=-1, R_{L}=0 \text { pen } \end{aligned}$	\bullet	$\begin{aligned} & 2.0 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.2 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$

ELECARACACHARACTERASTGS The • denotes the specifications which apply over the temperature range

 $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply, unless otherwise noted. (Note 4)| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | $\begin{aligned} & V_{C M}=\mathrm{V}^{+}-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.5 \mathrm{~V} \end{aligned}$ | \bullet | | $\begin{aligned} & 300 \\ & 300 \end{aligned}$ | $\begin{aligned} & 1100 \\ & 1100 \end{aligned}$ | ${ }_{\mu}^{\mu \mathrm{V}}$ |
| V OS $^{\text {TC }}$ | Input Offset Voltage Drift (Note 3) | $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+}-0.5 \mathrm{~V}$ | \bullet | | $\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$ | | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
 $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\Delta \mathrm{V}_{\text {OS }}$ | Input Offset Voltage Shift | $\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$ | \bullet | | 250 | 2300 | $\mu \mathrm{V}$ |
| | Input Offset Voltage Match (Channel-to-Channel) | $\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}, \mathrm{~V}^{+}-0.5 \mathrm{~V}$ (Note 5) | \bullet | | 300 | 1900 | $\mu \mathrm{V}$ |
| I_{B} | Input Bias Current | $\begin{aligned} & V_{C M}=V^{+}-0.5 \mathrm{~V} \\ & V_{C M}=V^{-}+0.5 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{gathered} 0 \\ -1100 \end{gathered}$ | $\begin{gathered} 450 \\ -450 \end{gathered}$ | $\begin{gathered} 1100 \\ 0 \end{gathered}$ | nA |
| $\Delta \mathrm{I}_{\mathrm{B}}$ | Input Bias Current Shift | $\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$ | \bullet | | 900 | 2200 | nA |
| | Input Bias Current Match (Channel-to-Channel) | $\begin{aligned} & V_{C M}=V^{+}-0.5 \mathrm{~V}(\text { Note } 5) \\ & V_{C M}=V^{-}+0.5 \mathrm{~V} \text { (Note 5) } \end{aligned}$ | \bullet | $\begin{gathered} 0 \\ -400 \end{gathered}$ | $\begin{gathered} 40 \\ -40 \end{gathered}$ | $\begin{gathered} 400 \\ 0 \end{gathered}$ | nA |
| los | Input Offset Current | $\begin{aligned} & V_{C M}=V^{+}-0.5 \mathrm{~V} \\ & V_{C M}=V^{-}+0.5 \mathrm{~V} \end{aligned}$ | \bullet | | $\begin{aligned} & 40 \\ & 40 \end{aligned}$ | $\begin{aligned} & 300 \\ & 300 \end{aligned}$ | nA nA |
| $\Delta \mathrm{l}_{\text {OS }}$ | Input Offset Current Shift | $\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$ | \bullet | | 80 | 600 | nA |
| AVOL | Large-Signal Voltage Gain | $\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, R_{L}=10 \mathrm{k} \end{aligned}$ | \bullet | $\begin{aligned} & 40 \\ & 20 \\ & \hline \end{aligned}$ | $\begin{array}{r} 210 \\ 210 \\ \hline \end{array}$ | | $\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$ |
| CMRR | Common Mode Rejection Ratio | $\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}^{-}+0.5 \mathrm{~V} \text { to } \mathrm{V}^{+}-0.5 \mathrm{~V} \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}^{-}+0.5 \mathrm{~V} \text { to } \mathrm{V}^{+}-0.5 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{aligned} & 66 \\ & 62 \end{aligned}$ | $\begin{aligned} & 80 \\ & 75 \end{aligned}$ | | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$ |
| | CMRR Match (Channel-to-Channel) (Note 5) | $\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}^{-}+0.5 \mathrm{~V} \text { to } \mathrm{V}^{+}-0.5 \mathrm{~V} \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.5 \mathrm{~V} \text { to } \mathrm{V}^{+}-0.5 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{aligned} & 62 \\ & 58 \\ & \hline \end{aligned}$ | $\begin{aligned} & 80 \\ & 75 \end{aligned}$ | | $\overline{d B}$ |
| PSRR | Power Supply Rejection Ratio | $\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 12V, $\mathrm{V}_{\text {CM }}=\mathrm{V}_{0}=0.5 \mathrm{~V}$ | \bullet | 86 | 100 | | dB |
| | PSRR Match (Channel-to-Channel) (Note 5) | $\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 12V, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0}=0.5 \mathrm{~V}$ | \bullet | 80 | 100 | | dB |
| $\mathrm{V}_{\text {OL }}$ | Output Voltage Swing (Low) (Note 6) | $\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=2.5 \mathrm{~mA} \\ & \hline \end{aligned}$ | $\stackrel{\bullet}{\bullet}$ | | $\begin{gathered} 22 \\ 45 \\ 110 \\ \hline \end{gathered}$ | $\begin{gathered} 50 \\ 80 \\ 220 \\ \hline \end{gathered}$ | mV mV mV |
| $\overline{\mathrm{V}_{\mathrm{OH}}}$ | Output Voltage Swing (High) (Note 6) | $\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=2.5 \mathrm{~mA} \end{aligned}$ | $\stackrel{\bullet}{\bullet}$ | | $\begin{gathered} 3.5 \\ 60 \\ 170 \end{gathered}$ | $\begin{gathered} \hline 20 \\ 120 \\ 350 \end{gathered}$ | mV mV mV |
| ISC | Short-Circuit Current | $\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{aligned} & \pm 5 \\ & \pm 5 \end{aligned}$ | $\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$ | | mA mA |
| I_{S} | Supply Current per Amplifier | | \bullet | | 2.4 | 3.0 | mA |
| GBW | Gain-Bandwidth Product (Note 7) | | \bullet | 5.8 | 8.5 | | MHz |
| SR | Slew Rate (Note 8) | $\begin{aligned} & V_{S}=5 V, A_{V}=-1, R_{L}=\text { Open, } V_{0}=4 V \\ & V_{S}=3 V, A_{V}=-1, R_{L}=0 \text { pen } \end{aligned}$ | \bullet | $\begin{aligned} & 2.0 \\ & 1.7 \end{aligned}$ | $\begin{aligned} & 3.6 \\ & 3.2 \end{aligned}$ | | $\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$ |

LT1498/LT1499

ELECTRICAL CHARACTGRISTICS $T_{A}=25^{\circ}$. $V_{S}= \pm 15 v, v_{c m}=0 v, V_{0 u r}=0 V$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		150	650	$\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}, \mathrm{V}^{-}$(Note 5)		250	1400	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{gathered} 0 \\ -715 \end{gathered}$	$\begin{gathered} 250 \\ -250 \end{gathered}$	$\begin{gathered} 715 \\ 0 \end{gathered}$	nA $n A$
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		500	1430	nA
	Input Bias Current Match (Channel-to-Channel)	$\begin{aligned} & V_{C M}=V^{+} \text {(Note 5) } \\ & V_{C M}=V^{-} \text {(Note 5) } \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ -120 \end{gathered}$	$\begin{gathered} 12 \\ -12 \end{gathered}$	$\begin{gathered} 120 \\ 0 \end{gathered}$	nA nA
los	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	nA $n A$
$\triangle{ }^{\text {US }}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		12	140	nA
	Input Noise Voltage	0.1 Hz to 10Hz		400		$\mathrm{n} \mathrm{P}_{\mathrm{P}-\mathrm{P}}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}$		12		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$		0.3		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-14.5 \mathrm{~V} \text { to } 14.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{0}=-10 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{gathered} 1000 \\ 500 \end{gathered}$	$\begin{aligned} & 5200 \\ & 2300 \end{aligned}$		V / mV V / mV
	Channel Separation	$V_{0}=-10 \mathrm{~V}$ to 10V, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	116	130		dB
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	93	106		dB
	CMRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	87	103		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	89	110		dB
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	83	105		dB
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing (Low) (Note 6)	$\begin{array}{\|l} \hline \text { No Load } \\ I_{\text {SINK }}=0.5 \mathrm{~mA} \\ \mathrm{I}_{\text {SINK }}=10 \mathrm{~mA} \\ \hline \end{array}$		$\begin{aligned} & 18 \\ & 40 \\ & 230 \end{aligned}$	$\begin{gathered} 30 \\ 80 \\ 500 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing (High) (Note 6)	$\begin{array}{\|l} \hline \text { No Load } \\ l_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ I_{\text {SOURCE }}=10 \mathrm{~mA} \\ \hline \end{array}$		$\begin{gathered} \hline 2.5 \\ 55 \\ 420 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 120 \\ 800 \\ \hline \end{gathered}$	mV mV mV
ISC	Short-Circuit Current		± 15	± 30		mA
Is	Supply Current per Amplifier			1.8	2.5	mA
GBW	Gain-Bandwidth Product (Note 7)		6.8	10.5		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=\text { Open, } V_{0}= \pm 10 \mathrm{~V} \\ & \text { Measure at } V_{0}= \pm 5 \mathrm{~V} \end{aligned}$	3.5	6		V/ $/ \mathrm{s}$

ELECTRICAL CHARACTERISTICS The e denotes the specifications which apply over the temperature range $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.1 V \end{aligned}$	\bullet		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 900 \\ & 900 \end{aligned}$	${ }_{\mu}^{\mu \mathrm{V}}$
$V_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 3)	$V_{C M}=V^{+}$	\bullet		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\triangle \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+}	\bullet		200	750	$\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}, \mathrm{~V}^{+}$(Note 5)	\bullet		350	1500	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.1 \mathrm{~V} \end{aligned}$	\bullet	$\begin{gathered} 0 \\ -875 \end{gathered}$	$\begin{gathered} 300 \\ -300 \end{gathered}$	$\begin{gathered} 875 \\ 0 \end{gathered}$	nA nA
$\Delta{ }^{\text {B }}$	Input Bias Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+}	\bullet		600	1750	nA
	Input Bias Current Match (Channel-to-Channel)	$\begin{aligned} & V_{C M}=V^{+}(\text {Note } 5) \\ & V_{C M}=V^{-}+0.1 V(\text { Note } 5) \end{aligned}$	\bullet	$\begin{gathered} 0 \\ -180 \end{gathered}$	$\begin{gathered} 20 \\ -20 \end{gathered}$	$\begin{gathered} 180 \\ 0 \end{gathered}$	nA nA
Ios	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.1 V \end{aligned}$	\bullet		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	nA
$\Delta \mathrm{l}_{\text {OS }}$	Input Offset Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+}	\bullet		30	180	nA
$\mathrm{A}_{\text {VOL }}$	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-14.5 \mathrm{~V} \text { to } 14.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{0}=-10 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	\bullet	$\begin{aligned} & 900 \\ & 400 \end{aligned}$	$\begin{aligned} & 5000 \\ & 2000 \end{aligned}$		V / mV V / mV
	Channel Separation	$\mathrm{V}_{0}=-10 \mathrm{~V}$ to 10V, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	\bullet	112	125		dB
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+}	\bullet	92	103		dB
	CMRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+}	\bullet	86	103		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet	88	103		dB
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet	82	103		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing (Low) (Note 6)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=10 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 18 \\ & 45 \\ & 270 \end{aligned}$	$\begin{gathered} 40 \\ 90 \\ 520 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing (High) (Note 6)	$\begin{array}{\|l} \hline \text { No Load } \\ I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ I_{\text {SOURCE }}=10 \mathrm{~mA} \\ \hline \end{array}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{aligned} & 3.5 \\ & 60 \\ & 480 \end{aligned}$	$\begin{gathered} \hline 15 \\ 120 \\ 1000 \end{gathered}$	mV mV mV
${ }_{\text {ISC }}$	Short-Circuit Current		\bullet	± 12	± 28		mA
IS	Supply Current per Amplifier		\bullet		1.9	2.8	mA
GBW	Gain-Bandwidth Product (Note 7)		\bullet	6.1	9		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=\text { Open, } V_{0}= \pm 10 \mathrm{~V} \\ & \text { Measured at } V_{0}= \pm 5 \mathrm{~V} \end{aligned}$	\bullet	3.4	5.3		V/us

LT1498/LT1499

ELECTRICAL CHARACTERISTICS The e denotes the speciifications which apply voer the temperature range $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} . \mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Vos	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.1 V \end{aligned}$	\bullet		$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 950 \\ & 950 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$V_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 3)	$V_{C M}=\mathrm{V}^{+}$	\bullet		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+}	\bullet		250	850	$\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}, \mathrm{~V}^{+}$(Note 5)	\bullet		350	1800	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.1 V \end{aligned}$	\bullet	$\begin{gathered} 0 \\ -1050 \end{gathered}$	$\begin{gathered} \hline 350 \\ -350 \end{gathered}$	$\begin{gathered} 1050 \\ 0 \end{gathered}$	nA n
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+}	\bullet		700	2100	nA
	Input Bias Current Match (Channel-to-Channel)	$\begin{aligned} & V_{C M}=\mathrm{V}^{+} \text {(Note 5) } \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V} \text { (Note 5) } \end{aligned}$	\bullet	$\begin{gathered} 0 \\ -200 \end{gathered}$	$\begin{gathered} 20 \\ -20 \end{gathered}$	$\begin{gathered} 200 \\ 0 \end{gathered}$	nA n
10 S	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.1 V \end{aligned}$	\bullet		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$	nA $n A$
$\Delta l_{0 S}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+}	\bullet		30	230	nA
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-14.5 \mathrm{~V} \text { to } 14.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{0}=-10 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	\bullet	$\begin{aligned} & 800 \\ & 350 \end{aligned}$	$\begin{aligned} & 5000 \\ & 2000 \end{aligned}$		V / mV V / mV
	Channel Separation	$\mathrm{V}_{0}=-10 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	\bullet	110	120		dB
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+}	\bullet	90	101		dB
	CMRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.1 \mathrm{~V}$ to V^{+}	\bullet	86	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet	88	100		dB
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet	82	100		dB
V L	Output Voltage Swing (Low) (Note 6)	No Load $I_{\mathrm{SINK}}=0.5 \mathrm{~mA}$ $I_{\text {SINK }}=10 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 25 \\ 50 \\ 275 \end{gathered}$	$\begin{aligned} & 50 \\ & 100 \\ & 520 \end{aligned}$	mV mV mV
V_{OH}	Output Voltage Swing (High) (Note 6)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=10 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & \hline 3.5 \\ & 65 \\ & 500 \end{aligned}$	$\begin{gathered} \hline 15 \\ 120 \\ 1000 \end{gathered}$	mV mV mV
$\mathrm{I}_{\text {SC }}$	Short-Circuit Current		\bullet	± 10	± 18		mA
I_{S}	Supply Current per Amplifier		\bullet		2.0	3.0	mA
GBW	Gain-Bandwidth Product (Note 7)		\bullet	5.8	8.5		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=\text { Open, } V_{0}= \pm 10 \mathrm{~V} \\ & \text { Measure at } V_{0}= \pm 5 \mathrm{~V} \end{aligned}$	\bullet	3	4.75		V/ $/ \mathrm{s}$

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the temperature range

 $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{OV}, \mathrm{V}_{0 U T}=0 \mathrm{~V}$, unless otherwise noted. (Note 4)| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | $\begin{aligned} & V_{C M}=\mathrm{V}^{+}-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.5 \mathrm{~V} \end{aligned}$ | \bullet | | $\begin{aligned} & 350 \\ & 350 \end{aligned}$ | $\begin{aligned} & 1300 \\ & 1300 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| $\mathrm{V}_{\text {OS }}$ TC | Input Offset Voltage Drift (Note 3) | $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+}-0.5 \mathrm{~V}$ | \bullet | | $\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$ | | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
 $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\Delta \mathrm{V}_{\text {OS }}$ | Input Offset Voltage Shift | $\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$ | \bullet | | 250 | 1500 | $\mu \mathrm{V}$ |
| | Input Offset Voltage Match (Channel-to-Channel) | $\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}, \mathrm{~V}^{+}-0.5 \mathrm{~V}$ (Note 5) | \bullet | | 400 | 2200 | $\mu \mathrm{V}$ |
| I_{B} | Input Bias Current | $\begin{aligned} & V_{C M}=V^{+}-0.5 \mathrm{~V} \\ & V_{C M}=V^{-}+0.5 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{gathered} 0 \\ -1200 \end{gathered}$ | $\begin{gathered} 500 \\ -500 \end{gathered}$ | $\begin{gathered} 1200 \\ 0 \end{gathered}$ | nA |
| $\Delta \mathrm{l}_{\mathrm{B}}$ | Input Bias Current Shift | $\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$ | \bullet | | 1000 | 2400 | nA |
| | Input Bias Current Match (Channel-to-Channel) | $\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+}-0.5 \mathrm{~V} \text { (Note 5) } \\ & \left.\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.5 \mathrm{~V} \text { (Note }\right) \end{aligned}$ | \bullet | $\begin{gathered} 0 \\ -400 \end{gathered}$ | $\begin{gathered} 40 \\ -40 \end{gathered}$ | $\begin{gathered} 400 \\ 0 \end{gathered}$ | nA nA |
| los | Input Offset Current | $\begin{aligned} & V_{C M}=\mathrm{V}^{+}-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.5 \mathrm{~V} \end{aligned}$ | \bullet | | $\begin{aligned} & 40 \\ & 40 \end{aligned}$ | $\begin{aligned} & 300 \\ & 300 \end{aligned}$ | nA nA |
| $\Delta l_{0 S}$ | Input Offset Current Shift | $\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$ | \bullet | | 80 | 600 | nA |
| AVOL | Large-Signal Voltage Gain | $\mathrm{V}_{0}=-14.5 \mathrm{~V}$ to 14.5V, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ | \bullet | 40 | 400 | | V / mV |
| | Channel Separation | $\mathrm{V}_{0}=-10 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ | \bullet | 110 | 120 | | dB |
| CMRR | Common Mode Rejection Ratio | $\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$ | \bullet | 86 | 100 | | dB |
| | CMRR Match (Channel-to-Channel) (Note 5) | $\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$ | \bullet | 80 | 100 | | dB |
| PSRR | Power Supply Rejection Ratio | $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ | \bullet | 88 | 100 | | dB |
| | PSRR Match (Channel-to-Channel) (Note 5) | $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ | \bullet | 80 | 100 | | dB |
| V_{OL} | Output Voltage Swing (Low) (Note 6) | $\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & I_{\text {SINK }}=10 \mathrm{~mA} \end{aligned}$ | $\stackrel{\bullet}{\bullet}$ | | $\begin{gathered} \hline 25 \\ 50 \\ 275 \end{gathered}$ | $\begin{gathered} \hline 75 \\ 100 \\ 520 \end{gathered}$ | mV mV mV |
| V_{OH} | Output Voltage Swing (High) (Note 6) | $\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=10 \mathrm{~mA} \\ & \hline \end{aligned}$ | \bullet | | $\begin{gathered} 3.5 \\ 65 \\ 500 \end{gathered}$ | $\begin{gathered} 20 \\ 120 \\ 1400 \end{gathered}$ | mV mV mV |
| $\mathrm{ISC}_{\text {S }}$ | Short-Circuit Current | | \bullet | ± 7.5 | ± 12 | | mA |
| $\mathrm{I}_{\text {S }}$ | Supply Current per Amplifier | | \bullet | | 2.5 | 3.2 | mA |
| GBW | Gain-Bandwidth Product (Note 7) | | \bullet | 5.8 | 8.5 | | MHz |
| SR | Slew Rate | $\begin{aligned} & A_{V}=-1, R_{L}=\text { Open, } V_{0}= \pm 10 \mathrm{~V} \\ & \text { Measure at } V_{0}= \pm 5 \mathrm{~V} \end{aligned}$ | \bullet | 2.2 | 4.75 | | V/ $/ \mathrm{s}$ |

LT1498/LT1499

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the temperature range $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{OV}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=\mathrm{V}^{+}-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.5 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1300 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$V_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 3)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+}-0.5 \mathrm{~V}$	\bullet		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$	\bullet		250	1500	$\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}, \mathrm{~V}^{+}-0.5 \mathrm{~V}$ (Note 5)	\bullet		400	2200	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=\mathrm{V}^{+}-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{gathered} 0 \\ -1200 \end{gathered}$	$\begin{gathered} 500 \\ -500 \end{gathered}$	$\begin{gathered} 1200 \\ 0 \end{gathered}$	nA nA
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$	\bullet		1000	2400	nA
	Input Bias Current Match (Channel-to-Channel)	$\begin{aligned} & V_{C M}=V^{+}-0.5 \mathrm{~V} \text { (Note 5) } \\ & V_{C M}=V^{-}+0.5 \mathrm{~V} \text { (Note 5) } \end{aligned}$	\bullet	$\begin{gathered} 0 \\ -400 \end{gathered}$	$\begin{gathered} 40 \\ -40 \end{gathered}$	$\begin{gathered} 400 \\ 0 \end{gathered}$	nA nA
10 S	Input Offset Current	$\begin{aligned} & V_{C M}=\mathrm{V}^{+}-0.5 \mathrm{~V} \\ & V_{C M}=V^{-}+0.5 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	nA
$\Delta_{\text {l }}^{\text {OS }}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$	\bullet		80	600	nA
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{0}=-14.5 \mathrm{~V}$ to 14.5V, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$	\bullet	40	400		V / mV
	Channel Separation	$V_{0}=-10 \mathrm{~V}$ to 10V, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	\bullet	110	120		dB
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$	\bullet	86	100		dB
	CMRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.5 \mathrm{~V}$ to $\mathrm{V}^{+}-0.5 \mathrm{~V}$	\bullet	80	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet	88	100		dB
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet	80	100		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing (Low) (Note 6)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & I_{\text {SINK }}=10 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 25 \\ & 50 \\ & 275 \end{aligned}$	$\begin{gathered} 75 \\ 100 \\ 520 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing (High) (Note 6)	No Load $\begin{aligned} & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=10 \mathrm{~mA} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 3.5 \\ 65 \\ 500 \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ 120 \\ 1400 \\ \hline \end{gathered}$	mV mV mV
${ }_{\text {ISC }}$	Short-Circuit Current		\bullet	± 7.5	± 12		mA
Is	Supply Current per Amplifier		\bullet		2.5	3.2	mA
GBW	Gain-Bandwidth Product (Note 7)		\bullet	5.8	8.5		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=\text { Open, } V_{0}= \pm 10 \mathrm{~V} \\ & \text { Measure at } V_{0}= \pm 5 \mathrm{~V} \end{aligned}$	\bullet	2.2	4.75		V/us

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.
Note 3: This parameter is not 100% tested.
Note 4: The LT1498C/LT1499C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT1498C/LT1499C are designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but are not tested or QA sampled at these temperatures. The LT14981/LT1499I are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LT1498H/LT1499H are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The LT1498MP is guaranteed to meet specified performance from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Note 5: Matching parameters are the difference between amplifiers A and D and between B and C on the LT1499; between the two amplifiers on the LT1498.
Note 6: Output voltage swings are measured between the output and power supply rails.
Note 7: $V_{S}=3 V, V_{S}= \pm 15 \mathrm{~V}$ GBW limit guaranteed by correlation to 5 V tests.
Note 8: $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}$ slew rate limit guaranteed by correlation to $\pm 15 \mathrm{~V}$ tests.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

14989 G13

PSRR vs Frequency

Gain Bandwidth and Phase
Margin vs Supply Voltage

14989G17

Channel Separation vs Frequency

14989 G18

TYPICAL PERFORMANCE CHARACTERISTICS

Total Harmonic Distortion + Noise vs Peak-to-Peak Voltage

Total Harmonic Distortion + Noise vs Frequency

TYPICAL PERFORMAOCE CHARACTERISTICS

5V Large-Signal Response

$\pm 15 \mathrm{~V}$ Small-Signal Response

$V_{S}= \pm 15 \mathrm{~V}$
200ns/DIV
$\mathrm{Av}=1$
$\mathrm{V}_{\text {IN }}=20 \mathrm{mV}$ P-p AT 50 kHz
$R_{L}=1 k$
$\pm 15 \mathrm{~V}$ Large-Signal Response

APPLICATIONS INFORMATION

Rail-to-Rail Input and Output

The LT1498/LT1499 are fully functional for an input and output signal range from the negative supply to the positive supply. Figure 1 shows a simplified schematic of the amplifier. The input stage consists of two differential amplifiers, a PNP stage (Q1/Q2) and an NPN stage (Q3/Q4) which are active over different ranges of input common mode voltage. A complementary common emitter output stage (Q14/Q15) is employed allowing the output to swing from rail-to-rail. The devices are fabricated on Linear Technology's proprietary complementary bipolar process to ensure very similar DC and AC characteristics for the output devices (Q14/Q15).
The PNP differential input pair is active for input common mode voltages, V_{CM}, between the negative supply to approximately 1.3 V below the positive supply. As V_{CM} moves further toward the positive supply, the transistor (Q5) will steer the tail current, I_{1}, to the current mirror (Q6/Q7) activating the NPN differential pair, and the PNP differential pair becomes inactive for the rest of the input common mode range up to the positive supply.

The output is configured with a pair of complementary common emitter stages that enables the output to swing from rail to rail. Capacitors (C1 and C2) form local feedback loops that lower the output impedance at high frequencies.

Input Offset Voltage

The offset voltage changes depending upon which input stage is active. The input offsets are random, but are trimmed to less than $475 \mu \mathrm{~V}$. To maintain the precision characteristics of the amplifier, the change of $\mathrm{V}_{0 S}$ over the entire input common mode range (CMRR) is guaranteed to be less than $425 \mu \mathrm{~V}$ on a single 5 V supply.

Input Bias Current

The input bias current polarity also depends on the input common mode voltage, as described in the previous section. When the PNP differential pair is active, the input bias currents flow out of the input pins; they flow in opposite direction whenthe NPN inputstage is active. The offset error due to input bias current can be minimized by equalizing the noninverting and inverting input source impedances. This will reduce the error since the input offset currents are much less than the input bias currents.

Figure 1. LT1498 Simplified Schematic Diagram

LT1498/LT1499

APPLICATIONS INFORMATION

Overdrive Protection

To prevent the output from reversing polarity when the input voltage exceeds the power supplies, two pair of crossing diodes D1 to D4 are employed. When the input voltage exceeds either power supply by approximately 700 mV , D1/D2 or D3/D4 will turn on, forcing the output to the proper polarity. For the phase reversal protection to work properly, the input current must be less than 5 mA . If the amplifier is to be severely overdriven, an external resistor should be used to limit the overdrive current.

Furthermore, the LT1498/LT1499's input stages are protected by a pair of back-to-back diodes, D5/D6. When a differential voltage of more than 0.7 V is applied to the inputs, these diodes will turn on, preventing the Zener breakdown of the input transistors. The current in D5/D6 should be limited to less than 10mA. Internal resistors R6 and R7 (700Ω total) limit the input current for differential input signals of 7 V or less. For larger input levels, a resistor in series with either or both inputs should be used to limit the current. Worst-case differential input voltage usually occurs when the output is shorted to ground. In addition, the amplifier is protected against ESD strikes up to 3 kV on all pins.

Capacitive Load

The LT1498/LT1499 are designed for ease of use. The amplifier can drive a capacitive load of more than 10 nF without oscillation at unity gain. When driving a heavy capacitive load, the bandwidth is reduced to maintain stability. Figures 2 a and 2 b illustrate the stability of the device for small-signal and large-signal conditions with capacitive loads. Both the small-signal and large-signal transient response with a 10 nF capacitive load are well behaved.

Feedback Components

To minimize the loading effect of feedback, it is possible to use the high value feedback resistors to set the gain. However, care must be taken to insure that the pole formed by the feedback resistors and the total input capacitance at the inverting input does not degrade the stability of the amplifier. For instance, the LT1498/LT1499 in a noninverting gain of 2, set with two 30k resistors, will probably oscillate with 10pF total input capacitance (5pF input capacitance $+5 p F$ board capacitance). The amplifier has a 2.5 MHz crossing frequency and a 60° phase margin at 6 dB of gain. The feedback resistors and the total input capacitance create a pole at 1.06 MHz that induces 67° of phase shift at 2.5 MHz ! The solution is simple, either lower the value of the resistors or add a feedback capacitor of 10 pF of more.

Figure 2b. LT1498 Large-Signal Response

TYPICAL APPLICATIONS

1A Voltage Controlled Current Source

1A Voltage Controlled Current Sink

Input Bias Current Cancellation

INPUT BIAS CURRENT LESS THAN 50nA
FOR $500 \mathrm{mV} \leq \mathrm{V}_{\text {IN }} \leq\left(\mathrm{V}^{+}-500 \mathrm{mV}\right)$

PACKAGE DESCRIPTION
N8 Package
8-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)

NOTE:

1. DIMENSIONS ARE $\frac{\text { MILLIMETERS }}{\text { MIM }}$
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254 mm)

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

LT1498/LT1499

PACKAGE DESCRIPTION
S Package
14-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

REVISIO HISTORY (Revision history begins at Rev E)

REV	DATE	DESCRIPTION	PAGE NUMBER
E	$10 / 09$	Edit in Absolute Maximum Ratings	2
F	$01 / 10$	Added LT1498H/LT1499H (H-Grade) Parts. Reflected throughout the data sheet.	$2-24$
G	$03 / 10$	Updated Part Markings in Order Information Section Updated Conditions for AvoL in Electrical Characteristics Section	2

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

LT1498/LT1499

TYPICAL APPLICATION

Bidirectional Current Sensor

A bidirectional current sensor for battery-powered systems is shown in Figure 3. Two outputs are provided: one proportional to charge current, the other proportional to discharge current. The circuit takes advantage of the LT1498's rail-to-rail input range and its output phase reversal protection. During the charge cycle, the op amp

A1 forces a voltage equal to ($\left.\mathrm{I}_{\mathrm{L}}\right)\left(\mathrm{R}_{\text {SENSE }}\right)$ across R_{A}. This voltage is then amplified at the Charge Out by the ratio of R_{B} over R_{A}. In this mode, the output of $A 2$ remains high, keeping Q2 off and the Discharge Out low, even though the (+) input of A2 exceeds the positive power supply. During the discharge cycle, A2 and Q2 are active and the operation is similar to the charge cycle.

Figure 3. Bidirectional Current Sensor

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC ${ }^{1152}$	Rail-to-Rail Input and Output, Zero-Drift Op Amp	High DC Accuracy, $10 \mu \mathrm{~V} \mathrm{~V}_{0 S(\text { max }), ~} 100 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ Drift, $1 \mathrm{MHz} \mathrm{GBW}, 1 \mathrm{~V} / \mu \mathrm{S}$ Slew Rate, Max Supply Current 2.2mA
LT1211/LT1212	Dual/Quad 14MHz, 7V/us, Single Supply Precision Op Amps	Input Common Mode Includes Ground, $275 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}, 6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max Drift, Max Supply Current 1.8mA per Op Amp
LT1213/LT1214	Dual/Quad 28MHz, 12V/us, Single Supply Precision Op Amps	Input Common Mode Includes Ground, $275 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}, 6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max Drift, Max Supply Current 3.5mA per Op Amp
LT1215/LT1216	Dual/Quad 23MHz, 50V/us, Single Supply Precision Op Amps	Input Common Mode Includes Ground, $450 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$, Max Supply Current 6.6 mA per Op Amp
LT1366/LT1367	Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps	$475 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}, 400 \mathrm{kHz}$ GBW, $0.13 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate, Max Supply Current $520 \mu \mathrm{~A}$ per Op Amp
LT1490/LT1491	Dual/Quad Micropower, Rail-to-Rail Input and Output Op Amps	Max Supply Current $50 \mu \mathrm{~A}$ per Op Amp, 200kHz GBW, 0.07V/ $\mu \mathrm{s}$ Slew Rate, Operates with Inputs 44 V Above V^{-}Independent of V^{+}
LT1884/LT1885	Dual/Quad, Rail-to-Rail Output Picoamp Input Precision Op Amps	$\mathrm{I}_{\text {CC }}=650 \mu \mathrm{~A}, \mathrm{~V}_{0 S}<50 \mu \mathrm{~V}, \mathrm{I}_{\mathrm{B}}<400 \mathrm{pA}$

